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COMPUTER GRAPHICS

PART-A
1. What are the two tables used in Scan-line method and give the content of those tables

(i) Edge table:

     It contains

· Coordinate endpoints for each line in the scene

· Inverse sl;ope of each line

· Pointers into the polygon table to identify the surfaces bounded by each line

(ii)Polygon table:

    It contains

· Coefficients of the plane equation for each surface

· Intensity information for the surfaces

· Pointers into the edge table
2. Mention the difference between parallel and perspective projection

In a parallel projection, coordinate positions are transformed to the view plane along parallel lines.

In perspective projection, object positions are transformed to the view plane along lines that converge to a point called the projection reference point(center of projection).
3. Define active list in visible surface detection method
It is a list of edges from information in the edges table. This list will contain only edges that cross the current scan line , sorted in order of increasing x.
4. Define about projectors and centre of projection

Projectors:

Imaginary line between object & plane

Centre of projection:

A vanishing point (ie) converging point of all projectors
5.  What bare the two approaches used for visible surface detection?

i) Object space method , ii) Image space method

PART B
      6. a)  Explain the following 3D transformation 

          (i)  Rotation   
          (ii) Translation with scaling  
          (iii) Steps involved in a rotation about an arbitrary point                                 
(i) Rotation 
         [image: image1.png]ROTATION

To generate a rotation transformation for an objec, we must designate an axis of
rotation (about which the object i 1o be rotated) and the amount of angular rota-
ton. Unlike two-dimensional applications, where all transformations are carried
out in the ry plane, a tree-dimensional rtation can be specified around any line
in space. The easiest otation axes (0 handle are those that are paralle t the coor-
dinate axes. Also, we can se combinutions of coordinate-axis rotatons (along.
with appropriate translations) o specify any general rotation.

By convention, positive rotation angles produce counterclockwise rotations.
sbout a coordinate axis, if we are looking along the positive half of the axis to-
ward the coordinate origin (Fig. 11-3). This agrees with our earler discussion of
rotation in two dimensions, where positve rotations in the ry plane are counter-
clockwise about axes paralel o the 2 axs

Coondinate- Axes Rotations

The two dimensional 2-axis rotation equations arc easily extended to three di-
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Parameter & specifies the rotation angle. In homogencous coordinate form, the.
three-dimensional z-axis rtation equations are expressed as
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Figure 11-4 lustrates rotation of an object sbout the : axis.

Transformation equations for rotations about the other o coordinte axes
can be obtained with a cycic permutation of the coordinate parameers ¥, ¥, and.
©in Eqs. 11-4. Thatis, we use the replacements

xoymzox e
as lustrated in Fig 11°5.
Substituting permutations 117 in Eqs. 11-4, we get the equations for an

+-axis rotation:

yeosd - zsind

2 = ysing + zcose ars

which can be written in the homogeneous coordinate form
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Cuelc permutation o the Cartesian-coordinat axes o pradce the
hre st of coardinste-ais rotabion equations
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Rotaion of an object around the » axisis demonstrated in Fig. 116

Cyclically permuting coordinates in Eqs. 118 give us the transformation
quations for a y-axis rotation:
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‘The matrix representation for y-axis otation is
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[image: image5.png]An inverse rotation matrix i formed by replacing the rotation angle 9 by

 Negative values for rotation angkes generate rolations in a clockwise direc
tion, s0 e identity matrix s produced when any rofation matrx is multiplied by
s inverse. Since cnly the sine function s affected by the change in sig of the o
{ation angle, the inverse matrix can also be obtained by interchanging rows and
columns. That i, we can calculate the inverse of any rotation matrix R by evalu:
ating its transpose (R~ = RY).This method for obtaining an inverse matrix holds
also for any composit rotation matrix.

General Three-Dimensional Rotations

A rotation matrix for any asis that does ot coincide with a coordinate axis can
be set up a5 a composite transformation involving combinations of translations
and the coordinate-axes rotations. We obtain the required composite matrix by
first settng up the transformation sequence that moves the selected rotation axis
anto one of the coordinate axes. Then we set up the rotation matrix about that -
ordinate axis for the specified rotation angle. The last step i to obtain the inverse
transformation sequence that returns the otation axis o its original position.

In the specialcase where an object is o be rotated about an axis that is par-
alll o one of the coordinate axes, we can attain the desired rotation with the ol
lowing transformation sequence

1 Transiae the object so that the rotation axis coincides with t
dinate axis

Perform the specified rotation about that axis

Translate the object o that the rotation axi is moved back to its original po-

sition

parallel coor.

e steps in this sequence are llustrated i Fig. 118, Any coordinate position P
o the abject in this figure is ransformed with the sequence shown as

PeTIRG TP
swhar the compsite matri for the transformation is
RO =TREG)T

which is of the same form as the two dimensional transformation sequence for
Fotation sbout an arbitrary pivot point

When an object i to be rotated about an axis that is not parallel to ane of
the coarsinate axes, we need (0 perform some additional transformatons. n this
case, v also need rotations 10 align the axis with a selected coordinate axis and
10 bring the axis hack £ it original orentation. Civen the specificatons for the
rotation axis and the rotation angle, we can accomplish the requised rotation in
five step-

1 Transhate the sbect so that the rotation axis passes through the coordinate
argin

Rotate the object so thatthe axis of rotation coincides with one of the coor.

dinate axes.

5 Perlorm th specifed rotation about that coordinate axis.
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4 Apply inverse rotations to bring the rotation axs back 10 s original orien-
Tation.

5 Apply the inverse translation o bring the rotaton axis back 1o its original
position.

We can transform the rolation axis onto any of the three coordinate axes. The 2
axis i a reasonable choice, and the following discussion shows how o set up the
transformation matrices for geting the rotation axis onto the 2 axis and refurning,
the rotation axis to it criginal position (Fig, 119)
A rotation axis can be defined with two coordinate positions, as in Fig. 11

10, or with one coordinate point and direction angles (cr direstion cosines) be-
tween the rotation axis and two of the coordinate axes. We will assume Ihat the
rocation axisis defined by two poirts, as ilustrated, and that the direction of ro-

taton is to be counterclockwise when looking along the axis rom P; to Py, An
axis vectoris then defined by the two points as
Ver-P
s

Aunit vector i then defined slang the rotation axis s

v
ws Ty =eho i1
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Figure 19
Five transtormation stepsforobaining a composite mlri or otation
about an arbtrary avs, with the rotaton axs projected onto the :3xis

where the components 4, b, and ¢ of unt vector u are the direction cosines for the
rotation axis

[ = ol _— o
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1 the rotation is o be in the opposite direction (clockswise when viewing from I
10 Py, then we would reverse axis vector V and unit vector u so that they poi
from P to P,

The first step in the ransformation sequence for the desired roation is 1o
set up the translation matrix that repositions the rotation axis so that it passes
through the coord nate origia. For the desired direction of rotation (Fig, 11-10),
e accomplish this by moving point P, o the origin. (I the otation direction had
been specified in the opposie direction, we would move P; 1o the origin.) This
translation matrix s

d
1

arn

which repositions the rotation axis and the object, as shown n Fig, 111

Figure 11-10

An axsof rotator (dashed
Iine) deined wit points
P/and P. The diection for
the unit axs vector u 8
determined by the specified
Totaton direction.
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Now we need the transformations that will put the rotation axs on the =
axis, We can use the coordinate-axis rotations 10 accomplish this alignment in
two steps. There are a number of ways o perform the two steps. We wil first ro-
tate about the x axi (o transform vector u into the 1z plane. Then we swing u
around 1o the 2 axis using a y-axis rotation. These two rotations are llustrated in
Fig, 11-12 for one possible arientation of vector u.

Since mtation calculations involve sine and cosine functions, we can use
stendard vector operations (Appendix A) o obtain elements of the two rotation
matrices. Dot-product operations allow s 10 determine the cosine terms, and
vector cross products provide a means for obtaining the sine terms.

We esteblsh the transformation matsis for otation around the x axis by de-
termining the values for the sine and cosine of the rotation angle necessary 1o get
w into the xz plane. This rotation angle i the angle between the projection of u in
the 4z plane and the pastive 2 axs (Fig, 11-13).f we designate the projection of u
inthe yz plane as the vector u' = (0, b, ), then the cosine of the rotation angle a
can be determined from the dot product of w” and the unit vector u, along the z

where d is the magnitude of '
4=V e

Similarly, we can determine the sine of a from the cross product of ' and u, The
coordinate-independent form of this cross productis

wxw =u, lwllulsing s
and the Cartsian form for the cross produc gives s
Wxu = b i

Equating the g sdes of Eqs 11:20 and 121, and noting tat | = 1 and
wl = d wehave

L
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“This matri rotates unit vector u about the x axisinto the x2 plane,

Next we need to determine the form of the transformation matrx that will
wing the unit vector in the 52 plane counterclockwise around the y axis onto the
postive 2 axis. The orientation of the unit vector in the x2 plane (afer rotation
abaut the xaxis) s shown in Fig. 11-13 This vector, abeled u”, has the valuea for
its x component, since rotaion about the  axis leaves the x component un
changed.Its = component is  (the magnitude of w1, because vector u’ has been
fotated onto the 7 axis. And the y component of u” is 0, because it now les in the.
32 plane. Again, we can determine the cosine of rotation angle f from expres
Sions for the dot product of urit vectors u” and v,

B T Tl

since L (4] 1. omparin he conmimre ndependent form f he s
product

\with the Cartesian form

e find that

sinf=-a 1
Thus, the transformation matei for rotation of u” about the y axs is

40 -0
1o )
0 4o o
0

0

R =
0

With transformation matrices 11-17, 1123, and 11-28, we have aligned the
Fotation axis with the positive = axis. The specifed rotaion angle f an now be
applied 25 a rotation about the * axis:

section 1.2

Figure 114
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To complete the required rotation about the given axis, we need o trans-
form the rotation axis back o its riginal position. This is done by applying the
inverse of transformations 11-17, 1123, and 11.28. The transformation matrix for
rofation about an abitrary axis then can be expressed s the composition of these.
“even individual ransformations

RO =T R, (o RS RO RG Rl T (1130

A somewhat quicker, but perhaps less intuitive, method for obtaining the
composite rotation mateix Ry(@) - R,(a) is o take advantage of the form of the
‘composite matrix for any sequence of three-ditmensional rotations:

oo 0
morm om0
Re| e g @

00 01

“The upper left 3 by 3 submatrix of this matrixis orthogonal This means hat the
rows (o the columas) of this submatrix form a set of rthogonal unit vectors that
are rotated by matrix R onto the 1, , and = axes, espectively:

w] [t m] o w] [o
|0 1 | |0

2
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v 1 il 1 1

Therefore, we can consider a locel coondinate sysiem defined by the rotation
axis and simply form  matrix whose columns are the local unit coordinate vec-
tors. Assuming thatthe rotation avis i not parallel to any <oordinate axi, we can
form the following local st of unit vectors (Fig. 11-15)

aran

e
101we expressth element o the localunit vctors for the otation ais a5

= (w2 )

W

[Carral

then the required compesite matrix, equal to the product R (8) - Ko, is
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“This matrix transforms the unit vectors ;. u;, and u;onto the 3, , and s axes,fe-
spectively. Thus, the rotation axis s aligned with the : axis, since u; = u.

Rotations with Quaternions

A more eficient method for obtaining rotaion about a specfied axis is 0 use a
quaternion representation for the rotation transformation. In Chapter 10, we dis-
cussed the usefulress of quaternions for generating three dimensional fractls
using selfsquaring,procedures, Quaternions are useful also i a number of other
computer graphics procedures, including threc-dimensional rotation calcula
tions. They require less storage space than 4-by-4 matrices, and it s simpler o
write quaternion procedures for transformation sequences. This is particularly
importart in animations that require complicated motion sequences énd motion
interpolations betuween two given positions of an object

One way 1o characterize a quatemnion (Appendix A) i as an ordered pair
consisting of  scalar part and a rctor part

PR

We can lso think of a quaternion as 4 higher order compiex number with one
real part (the scalar part) and three complex par's (the clements of vector v). A
rotation about any axs passing through the coordinate origin is performed by
first setting up a unit quaternion with the following scalar and vector parts

: g 11 3¢
socost veus! arse

ehere u s a unit vector along the selected rotation axis, and # i the specfied ro-
tation angle about this axis (Fig. 11-16). Any point position P to be rotated by this
quaternion can be represented in quaternion notation as

[0

with the coordinates of the point as the vector part p = (x, , 2. The rotation of
the pointi then carried out with the quaternion operation

3

Py ay
wwhere g ! = (5. V)i the iverse of the unit quaternion  with the scalar and vec
or parts given in Eqs 11-36. This transformatior produces the new quaternion
with scalar part egual 0 0

Peop) (G

and the wctor part is calculated with dot and cross products as

Secion 1.
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Parameters  and v have the rotation values given in Eqs. 11-36. Many computer
raphics systems use etctent hardware implementations of these vector calcula-
tions to perform rapid three-dimensional cbict rotations.

Transformation 1137 is equivalent (0 rolation about an axis that passes
through the coordinate wrigin. This is the same as the sequence of rotation trans-
fomations i Eq, 11-31 that aigns the rotation axis with the 2 axi, rotates about
=,and then returns the rotation axis to it original position.

Using the definiion for quaternion multiplication given in Appendix A.
and designating the components of the vector part of ¢ as v = (4, b 0, we can
evaluate the terms in Eq 1139 1o obtain the clemens or the composite rotation
matrinR; o) R, (B R.(0) - RUA) - R,(a)ina 3by I formas

Mo

W2 wh-de b
Woru 1-2w-2 W-2a )
-2 es2a 1-24-2

To abtain the complete general rutation equation 11:30, we need 1o inciude the
ranslations that move the rotation axs to the coordinate axis and back tots rig-
inal posiion That s,

ROST M T aan

As an example, we can perform a rotation about the @ axis by seting the
unit quaternion parameters as

0
Ve 0 Dand

2

where the quaternion octor elements are a = b = 0 and ¢ = sin(#/2). Substitut-
ing these values into matrix 11-40, and using the follawing trigonometric identi-
ties

Wwe et the 3 by 3 version of the =-axis rotation matri R,(8) in transformation
quation 115 Similarly, substituting the urit quaternion rotation values into the.
trassformaticn equation 137 produces the rotated covrdinate values in Eqs
4
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where scaling parameters 5, 5, and s, are assigned any positive values. Explict
expressions for the coordinate transformations for scaling relative to the origin

X Yy, Teas s

Scaling an object with transformation 11-42 changes the size of the object
and repositons the object relative (0 the coordinate origin. Also, if the transfor
mation parameters are ot all equal. relative dimensions in the object are
changed. We preserve the original shape of an object with a uniform scaling s, =
5,= 5. The result of scaling an object uniformly with each scaling parameter set
w2 shown in Fig 11-17.

Scaling with respect (0. selected fixed position (x, ¥, z) can be represented
th the following transformation sequence:

1. Translate the fixed point o the origin.
2. Scale the object relative (0 the coordinate orgin using Eq. 11-42
3. Translate the fixed point back to s original position.

This sequence of transformations
Sentation for an arbitrary fixed-
Catenation of these ranlate-scale-

demonstrated in Fig, 1118, The matrix repre-
it scaling can then be expressed as the con-
anshate transformations as

S0 0 sy

005 0 -sy
Tz Ss ) Toxyon = | 5 0 TR
000 1

We form the inverse scaling matri for either g, 11-42 or Eq. 11-45 by re-
Placing the scaling parameters 5, <, and s, with their reciprocals. The inverse ma-

w

N

g 1115
caling an objetreltive 103
Slected fved poi s
Squivaient o the seqence of
rarsfcrmations stowen





(iii) Steps involved in a rotation about an arbitrary point     
· Translate the arbitrary point to the coordinate origin

· Do the rotation transformation

· Translate the point to the original position
(or)

b) Explain Z- Buffer method used in visible surface detection
 DEPTH-BUFFER METHOD

A commonly used image-space approach to detecting visible surfaces is the

depth-buffer method, which compares surface depths at each pixel position on

the projection plane. This procedure is also referred to as the z-buffer method,

since object depth is usually measured from the view plane along the z axis of a

viewing system. Each surface of a scene is processed separately, one point at a

time across the surface. The method is usually applied to scenes containing only

polygon surfaces, because depth values can be computed very quickly and the

method is easy to implement. But the method can be applied to nonplanar surfaces.

With object descriptions converted to projection coordinates, each (x, y, 2 )

position on a polygon surface corresponds to the orthographic projection point

(x, y) on the view plane. Therefore, for each pixel position (x, y) on the view

plane, object depths can be compared by comparing z values. Figure 13-4 shows

three surfaces at varying distances along the orthographic projection line from

position (1,y ) in a view plane taken as the x ~ plane. Surface 5, is closest at this

position, so its surface intensity value at (x, y) is saved.

We can implement the depth-buffer algorithm in normalized coordinates,

so that z values range from 0 at the back clipping plane tn 7,,,, at the front clip

ping plane. The value of z, can be set either to 1 (for a unit cube) or to the

largest value that can be stored on the system.

[image: image14.emf]
As implied by the name of this method, two buffer areas are required. A

depth buffer is used to store depth values for each (x, y) position as surfaces are

processed, and the refresh buffer stores the intensity values for each position. Initially,

all positions in the depth buffer are set to 0 (minimum depth), and the refresh

buffer is initialized to the background intensity. Each surface listed in the

polygon tables is then processed, one scan line at a time, calculating the depth (z value) at each  (x, y) pixel position. The calculated depth is compared to the value

previously stored in the depth buffer at that position. If the calculated depth is

p a t e r than the value stored in the depth buffer, the new depth value is stored,

and the surface intensity at that position is determined and in the same xy

location in the refresh buffer.

We summarize the steps of a depth-buffer algorithm as follows:

[image: image15.emf]
Depth values for a surface position (x, y) are calculated from the plane equation for each surface:

[image: image16.emf]
For any scan line (Fig. 13-5), adjacent horizontal positions across the line differ by 1, and a vertical y value on an adjacent scan line differs by 1. If the depth of position (x, y) has been determined to be z, then the depth z' of the next position (x +1, y) along the scan line is obtained from Eq. 13-4 as Y – 1 Figure 13-

[image: image17.emf]
The ratio -A/C is constant for each surface, so succeeding depth values across a scan line are obtained from precrd~ngv alues with a single addition.On each scan line, we start by calculating the depth on a left edge of the polygon that intersects that scan line (Fig. 13-6). Depth values at each successive position across the scan line are then calculated by Eq. 13-6.We first determine the y-coordinate extents of each polygon, and process the surface from the topmost scan line to the bottom scan line, as shown in Fig.13-6. Starting at a top vertex, we can recursively calculate x positions down a left edge of the polygon as x' = x - l/m, where rn is the slope of the edge (Fig. 13-7). Depth values down the edge are then obtained recursively as 

[image: image18.emf]
[image: image19.emf] From position (x, y) on a scan line, the next position across the line has coordinates ( X + 1, y), and the position immediately below on the next line has coordinates (1, y - 1).

If we are processing down a vertical edge, the slope is infinite and the recursive calculations reduce to

[image: image20.emf]
An alternate approach is to use a midpoint method or Bresenham-type algorithm

for determining x values on left edges for each scan line. Also the method can be applied to curved surfaces by determining depth and intensity values at each surface projection point.

For polygon surfaces, the depth-buffer method is very easy to impjement, and it requires no sorting of the surfaces in a scene. But it does require the availability of a second buffer in addition to the refresh buffer. A system with a resolution

[image: image21.emf]
[image: image22.emf]
of 1024 by 1024, for example, would require over a million positions in the depth buffer, with each position containing enough bits to represent the number of depth increments needed. One way to reduce storage requirements is to process one section of the scene at a time, using a smaller depth buffer. After each view section is processed, the buffer is reused for the next section.

7. a) (i) Explain about Orthographic projection and its various types      
[image: image23.png]Orthographic prorctions are most often used to produce the front, side, and
p views af an object,a= shown in Fig. 1213 Front,side. and rear orthographic
projections of an object 4 called eleations: and a top orthographic projection is
alled o plan tiew. Engineering and architectural drawings commonly employ
hese orthographic proxstions, because lengths and angles are accurately de-
pited and can be measurad from *he drawings

We can also form orthograghic projections that display more than cne face
A an object. Such views are called axonometric orthographic projections. The
st commonly used axunometric projetion is the isometric projection. We gen-
e an sometric projecton by aligning the projecticn piane so that it intersects
cach coordinate axi i whuch the obect s defined (called the principal axes)at the.
ame distance from the wrigin. Figare 12.19 shows an isometric projection for a

=7

[
Ohographuc prctons 1 e, displaying plan and e ation views



 [image: image24.png]Figure 1219
Isometic pojection for & ube.

cube. The somelric projection is obtained by aligning the projcton vector with
the cube diagonal. There are eight posiion, one in each octant for obtaning an
isometic view. Al three principal axes are foreshortened equally in an isometric
projection s that elaive proportons are maintained. This is ot the case in &
general axonometric projection, where scalng factors may be diferent for the
thre principa directions.

‘Transiormation equations for an orthographic. parallel_projecion are
straightforward. If the view plane is placed at positon =, along the 2, 3xis (Fig
12.20), then any point (.. 2) i viewing courdinates i ransformed to projection
coondinates as

“x =y a5

where the original z-coordinate value is preserved for the depth information
needed in depth cueing and visible-surface determination procedures.

Saction 12:3
Fojecrors




 (ii) Explain about Backface detection algorithm used for visible 

        surface detection 
BACK-FACE DETECTION

A fast and simple object-space method for identifying the back faces of a polyhe

dron is based on the "inside-outside" tests discussed in Chapter 10. A point (x, y,

z) is "inside" a polygon surface with plane parameters A, B, C, and D if

[image: image25.emf]
When an inside point is along the line of sight to the surface, the polygon must

be a back face (we are inside that face and cannot see the front of it from our

viewing position).

We can simplify this test by considering the normal vector N to a polygon

surface, which has Cartesian components (A, B, C). In general, if V is a vector in

the viewing direction from the eye (or "camera") position, as shown in Fig. 13-1,

then this polygon is a back face if

[image: image26.emf]
Furthermore, if object descriptions have been converted to projection coordinates

and our viewing direction is parallel to the viewing z,. axis, then V = (0, 0, V;)

and

[image: image27.emf]
so that we only need to consider the sign of C, the ; component of the normal

vector N

In a right-handed viewing system with viewing direction along the negative

z,, axis (Fig. 13-21, the polygon is a back face if C < 0. Also, we cannot see any

Face whose normal has z component C ..- 0, since our viewing direction is grazing

That polygon. Thus, in general, we can label any polygon as a back face if its normal

Vector has a z component value: 

[image: image28.emf][image: image29.emf]
[image: image30.emf]
Similar methods can be used in packages that employ a left-handed viewing

system. In these packages, plane parameters A, B, C: and D can be calculated

from polygon vertex coordinates specified in a clockwise direction (instead of the

counterclockwise direction used in a right-handed system). Inequality 13-1 then

remains a valid test for inside points. Also, back faces have normal vectors that

point away from the viewing position and are identified by C 2 0 when the

viewing direction is along the positive z, axis.

By examining parameter C for the different planes defining an object, we

can immed~atelyid entify all the back faces. For a single convex polyhedron, such

as the pyramid in Fig. 13-2, this test identifies all the hidden surfaces on the object,

since each surface is either completely visible or completely hidden. Also, if

a scene contains only nonoverlapping convex polyhedra, then again all hidden

surfaces are identified with the back-face method.

For other objects, such as the concave polyhedron in Fig. 13-3, more tests

need to be carried out to determine whether there are additional faces that are to-

Figure 13-3 tally or partly obscured by other faces. And a general scene can be expected to

View of a concave contain overlapping objects along the line of sight. We then need to determine

polyhedron with one face where the obscured objects are partially or comp1etel.y hidden by other objects. In

partially hidden by other general, back-face removal can be expected to eliminate about half of the polygon

faces. surfaces in a scene from further visibility tests.
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(or)
b)  (i) Explain Scanline method in detail                                                
SCAN-LINE METHOD

This imagespace method for removing hidden surface5 is an extension of the

scan-linealg&ithni for tilling polygon interiors. Instead of filling just one surface,

we now deal with multiple surfaces. As each scan line is processed, all polygon

surfaces intersecting that line are examined to determine which are visible.

Across each scan line, d ~ p t hca lculations are made for each overlapping surface

to determine which is nearest to the view plane. When the visible surface has

been determined, the mtensity value for that position is entered into the refresh

buffer.

We assume that tables are-set up for the various surfaces, as discussed in

Chapter 10, which include both an edge table and a polygon table. The edge table

contains coordinate endpoints for each line in-the scene, the inverse slope of each

line, and pointers into the polygon table to identify the surfaces bounded by each

line. The polygon table contains coefficients of the plane equation for each surface, intensity information for the surfaces, and possibly pointers into the edge 

table. To facilitate the search for surfaces crossinga @ven scan line, we can set up

an active list of edges from information in the edge table. This active list will contain

only edges that cross the current scan line, sorted in order of increasing x. In

addition, we define a flag for each surface that is set on or off to indicate whether

a position along a scan line is inside or outside of the surface. Scan lines are

processed from left to right. At the leftmost boundary of a surface, the surface

flag is turned on; and at the rightmost boundary, it is turned off.

Figure 13-10 illustrates the scan-line method for locating visible portions of

surfaces for pixel positions along the line. The active list for &an line 1 contains

information from the edge table for edges AB, BC, EH, and FG. For positions

along this scan line between edges AB and BC, only the flag for surface Sl is on.

Therefo~n, o depth calculations are necessary, and intensity information for surface

S, is entered from the polygon table into the refresh buffer. Similarly, between

edges EH and FG, only the flag for surface S2 is on. NO other positions

along scan line 1 intersect surfaces, so the intensity values in the other areas are

set to the background intensity. The background intensity can be loaded throughout

the buffer in an initialization routine.

For scan lines 2 and 3 in Fig. 13-10, the active edge l~scto ntains edges AD,

EH, BC, and FG. Along scan line 2 from edge AD to edge EH, only the flag for

surface S, is on. But between edges EH and BC, the flags for both surfaces are on.

In this interval, depth calculations must be made using the plane coefficients for

the two surfaces. For this example, the depth of surface SI is assumed to be less

than that of S,, so intensities for surface S, are loaded into the refresh buffer until

boundary BC is encountered. Then the flag for surface SI goes off, and intensities

for surface S2 are stored until edge FG is passed.

We can take advantage of-coherence along the scan lines as we pass from

one scan line to the next. In Fig. 13-10, scan line 3 has the same active list of edges

as scan line 2. Since no changes have occurred in line intersections, it is unnecessary

again to make depth calculations between edges EH and BC. The two surfaces must be in the same orientation as determined on scan line 2, so the intensities

for surface S, can be entered without further calculations.

  Any number of overlapping polygon surfaces can be processed with this

scan-line method. Flags for the surfaces are set to indicate whether a position is

inside or outside, and depth calculations are performed when surfaces overlap.

When these coherence methods are used, we need to be careful to keep track of
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which surface section is visible on each scan line. This works only if surfaces do

not cut through or otherwise cyclically overlap each other (Fig. 13-11). If any kind

of cyclic overlap is present in a scene, we can divide the surfaces to eliminate the

overlaps. The dashed lines in this figure indicate where planes could be subdivided

to form two distinct surfaces, so that the cyclic overlaps are eliminated.


(ii) Explain Oblique projection                                                          
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an oblique projecion vector is specfied wih two angles, @ and  as shown in
Fig.12:21. Point (x, . 2) s projected t0 positon (3, ) on the view plane. Ortha-
§raphic projcton coordinates on the plane are (x. ). The oblique projection line
from (z, .20 (1, ,) makes an angle a Wit the line on the projection planc that
foins 1, and (s, ). Thi line, of length L is at an angle 6 with the horizontal
direction tn the projection plane. We can express the projection coordinates in
lermsof x4, L and ¢ as

Figure 1220 -
‘Orthographic proecion of a pint
. ontoa viewing pane
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where L, i the inverse of tana, which is als the value of L when 2 = 1. We can

then write the oblique projection equations 12-6 25
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The transformatin m
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for producing any parallel projection onta the
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An orthographic projetn is obained when L, = 0 which oceurs 3t 2 projection
angle o of 90°). Oblique projections are generated with nonzero alues for L,
Projoction matrix 12-10 has @ structure similar 10 that o & z-axis shear matrix In
fact,the effectof his projection matri is o shear planes of consant = and project
them onto the view plane. The - and y-coordinate valucs within each plane of
constant = are shifted by an amount proportional to the : value of the plane <o
that angles. cistances, . paralel lines i the plane are projected accurately. This




[image: image36.png]effect is shown in Fig, 12-22, where the back plane of the box is sheared and over-
lapped with the fron plane n the projecion to he viewing surface. An edge of
the box connecting the front and back planes is projected into a lne of ength Ly
that makes an angle 6 with 2 horizontl line i the plane

‘Common choices for angle 6 are 30° and 457, which display a combination
iew of thefront,side, and top (o front, side, and bottom) of an bject. Two com-
monly used values for  ae those for which tana = 1 and tana = 2. For the first
case, - 45" and the views oblained are called cavalier projecions. Al lines per-
pendicular 0 the projection plane are projected with no change i length, Exam-
Ples of cavalier projectons fo a cube are gyven in Fig, 1223

‘When the projecton angle a s chasen 50 that ana = 2, the resulting view is
called a cabinet projection. For this angle (=63.4%, lies perpepdicular (o the
Viewing surface are projected at one-hal ther length Cabinet projctions appear
more realstic than cavaber projections because o this reduction in the length of
perpendicular. Figure 12.24 shows examples of cabinet projections for 3 cube.





8. a) Explain the 3D viewing pipeline operations


3D viewing pipeline                                                                                      [image: image37.png]Moswea | oo o vewne | v
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Figure 122
‘General thee-dimensiona ransformation ipeline, Fom modelng cordinstes o il
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faces s projected onto the camera film. We need 1o keep in mind, howevi
the camera analogy can be carried only 5o fa, since we have more flexbilty and
many more options for generating views of a scene with a graphics package than
we do with a camera.

Figure 12.2 shows the general processing steps for modeling and convert-
ing a world-coordinate description of a scene 1o device coordinates. Once the.
scene has been modeled, world-coordirate positions are converted (0 viewing co-
ordinates. The viewing.<oordinate system is wsed in graphics packages 25 a refer-
ence for specifying the observer viewing position and the position of the projec-
tion plane, which we can think of in analogy with the camera flm plane. Next,
projection operations are performed 1o convert the viewing-coordingte descrip-
o of the scene to coordinate positions on the projection plane, which will then
be mapped 10 the output device. Objects outsde the specified viewing limils are
clipped from further consideration, and the remaining cbjects are processed
through visible-surface identiication and surface.rendering procedures (o pro.
duce the display within the device viewport






(or)
      b) (i) Describe the theory and taxonomy of projection                                 
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Once world-coordinate descriptions of the obiects in 4 scere are converted o
Viewing coordinates, we can prosect the three-dimensional ubjects onto the (s
dimensional view plane. There are two basic proectcn methods. In 3 parallel
projection, coordinate postions are ransormes tothe view plane along paraliel
nes, as shown in the xample of Fig. 12-14 For a perspecive projection (Fi,
1219, object pusitions are transformed to the vie' piane aiong lines that con
verge (o a point caled the projection reference point (or center of projection)
“The projected view of an ubct s determined by calulating the imlersection of
the projecton lines with the vien plae

Figen 214
Paralel projection cf n obect 0
heview plane
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Figure 125
¥tapective projctionof an obeet
the view plane.

A parallel projection preserves relative proportions of objects, and this s
he method wsed in drafting to produce scale drawings of thrce-dimensional ob-
ccts. Accurate views of the various sides of an obyect are obtained with a parallel
projection, but this does not give us a realisic representation of the appearance of
s three-dimensional object. A perspective profection, on the other hand, produces
ealstic views but does not preserve reltive proportions. Projections of distant
sojects are smaller than the projections of objects of the same size that are closer
o the projection plane (Fig. |

sac
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(ii) Compare parallel and perspective projection                                          
[image: image40.png]A parallel projection preserves reltive proportions of objects, and this s
the muthod used in drafing to produce scale drswings of hree dimensional b
jects. Accurae views of the various sdes of an et are obtaed with  paralc
Projecion,but this does not give us a realstic representation o the appearance of
3 hree-dimensional bject. A perspective projection, on theother hand, produces
realitic views but does not preserve rlaive proportions. Proctiors of distant
obects ae smallr than the progctons of bjects of the same sge that are closer
1o the projection plane (Fig. 12-16)




