
PART 5

SYSTEM ARCHITECTURE
The architecture of a database system is greatly influenced by the underlying
computer system on which the database system runs. Database systems can
be centralized, where one server machine executes operations on the database.
Database systems can also be designed to exploit parallel computer architectures.
Distributed databases span multiple geographically separated machines.

Chapter 17 first outlines the architectures of database systems running on
server systems, which are used in centralized and client–server architectures.
The various processes that together implement the functionality of a database
are outlined here. The chapter then outlines parallel computer architectures, and
parallel database architectures designed for different types of parallel computers.
Finally, the chapter outlines architectural issues in building a distributed database
system.

Chapter 18 describes how various actions of a database, in particular query
processing, can be implemented to exploit parallel processing.

Chapter 19 presents a number of issues that arise in a distributed database,
and describes how to deal with each issue. The issues include how to store data,
how to ensure atomicity of transactions that execute at multiple sites, how to
perform concurrency control, and how to provide high availability in the presence
of failures.a Cloud-based data storage systems, distributed query processing and
directory systems are also described in this chapter.

767

This page intentionally left blank

C H A P T E R17
Database-System Architectures

The architecture of a database system is greatly influenced by the underlying
computer system on which it runs, in particular by such aspects of computer
architecture as networking, parallelism, and distribution:

• Networking of computers allows some tasks to be executed on a server system
and some tasks to be executed on client systems. This division of work has
led to client–server database systems.

• Parallel processing within a computer system allows database-system activi-
ties to be speeded up, allowing faster response to transactions, as well as more
transactions per second. Queries can be processed in a way that exploits the
parallelism offered by the underlying computer system. The need for parallel
query processing has led to parallel database systems.

• Distributing data across sites in an organization allows those data to reside
where they are generated or most needed, but still to be accessible from other
sites and from other departments. Keeping multiple copies of the database
across different sites also allows large organizations to continue their database
operations even when one site is affected by a natural disaster, such as flood,
fire, or earthquake. Distributed database systems handle geographically or ad-
ministratively distributed data spread across multiple database systems.

We study the architecture of database systems in this chapter, starting with
the traditional centralized systems, and covering client–server, parallel, and dis-
tributed database systems.

17.1 Centralized and Client–Server Architectures

Centralized database systems are those that run on a single computer system
and do not interact with other computer systems. Such database systems span
a range from single-user database systems running on personal computers to
high-performance database systems running on high-end server systems. Client

769

770 Chapter 17 Database-System Architectures

–server systems, on the other hand, have functionality split between a server
system and multiple client systems.

17.1.1 Centralized Systems

A modern, general-purpose computer system consists of one to a few processors
and a number of device controllers that are connected through a common bus that
provides access to shared memory (Figure 17.1). The processors have local cache
memories that store local copies of parts of the memory, to speed up access to data.
Each processor may have several independent cores, each of which can execute
a separate instruction stream. Each device controller is in charge of a specific
type of device (for example, a disk drive, an audio device, or a video display).
The processors and the device controllers can execute concurrently, competing
for memory access. Cache memory reduces the contention for memory access,
since it reduces the number of times that the processor needs to access the shared
memory.

We distinguish two ways in which computers are used: as single-user systems
and as multiuser systems. Personal computers and workstations fall into the first
category. A typical single-user system is a desktop unit used by a single person,
usually with only one processor and one or two hard disks, and usually only one
person using the machine at a time. A typical multiuser system, on the other
hand, has more disks and more memory and may have multiple processors. It
serves a large number of users who are connected to the system remotely.

Database systems designed for use by single users usually do not provide
many of the facilities that a multiuser database provides. In particular, they may
not support concurrency control, which is not required when only a single user
can generate updates. Provisions for crash recovery in such systems are either
absent or primitive—for example, they may consist of simply making a backup
of the database before any update. Some such systems do not support SQL, and
they provide a simpler query language, such as a variant of QBE. In contrast,

USB controller

keyboard printermouse monitor
disks

graphics
adapter

disk
controller

memory

CPU

on-line

Figure 17.1 A centralized computer system.

17.1 Centralized and Client–Server Architectures 771

database systems designed for multiuser systems support the full transactional
features that we have studied earlier.

Although most general-purpose computer systems in use today have multiple
processors, they have coarse-granularity parallelism, with only a few processors
(about two to four, typically), all sharing the main memory. Databases running
on such machines usually do not attempt to partition a single query among the
processors; instead, they run each query on a single processor, allowing multiple
queries to run concurrently. Thus, such systems support a higher throughput;
that is, they allow a greater number of transactions to run per second, although
individual transactions do not run any faster.

Databases designed for single-processor machines already provide multitask-
ing, allowing multiple processes to run on the same processor in a time-shared
manner, giving a view to the user of multiple processes running in parallel. Thus,
coarse-granularity parallel machines logically appear to be identical to single-
processor machines, and database systems designed for time-shared machines
can be easily adapted to run on them.

In contrast, machines with fine-granularity parallelism have a large num-
ber of processors, and database systems running on such machines attempt to
parallelize single tasks (queries, for example) submitted by users. We study the
architecture of parallel database systems in Section 17.3.

Parallelism is emerging as a critical issue in the future design of database
systems. Whereas today those computer systems with multicore processors have
only a few cores, future processors will have large numbers of cores.1 As a re-
sult, parallel database systems, which once were specialized systems running on
specially designed hardware, will become the norm.

17.1.2 Client–Server Systems

As personal computers became faster, more powerful, and cheaper, there was
a shift away from the centralized system architecture. Personal computers sup-
planted terminals connected to centralized systems. Correspondingly, personal
computers assumed the user-interface functionality that used to be handled di-
rectly by the centralized systems. As a result, centralized systems today act as
server systems that satisfy requests generated by client systems. Figure 17.2 shows
the general structure of a client–server system.

Functionality provided by database systems can be broadly divided into two
parts—the front end and the back end. The back end manages access structures,
query evaluation and optimization, concurrency control, and recovery. The front
end of a database system consists of tools such as the SQL user interface, forms
interfaces, report generation tools, and data mining and analysis tools (see Fig-
ure 17.3). The interface between the front end and the back end is through SQL,
or through an application program.

1The reasons for this pertain to issues in computer architecture related to heat generation and power consumption.
Rather than make processors significantly faster, computer architects are using advances in chip design to put more
cores on a single chip, a trend likely to continue for some time.

772 Chapter 17 Database-System Architectures

client client client client

server

network

Figure 17.2 General structure of a client–server system.

Standards such as ODBC and JDBC, which we saw in Chapter 3, were developed
to interface clients with servers. Any client that uses the ODBC or JDBC interface
can connect to any server that provides the interface.

Certain application programs, such as spreadsheets and statistical-analysis
packages, use the client–server interface directly to access data from a back-end
server. In effect, they provide front ends specialized for particular tasks.

Systems that deal with large numbers of users adopt a three-tier architecture,
which we saw earlier in Figure 1.6 (Chapter 1), where the front end is a Web
browser that talks to an application server. The application server, in effect, acts
as a client to the database server.

Some transaction-processing systems provide a transactional remote proce-
dure call interface to connect clients with a server. These calls appear like ordi-
nary procedure calls to the programmer, but all the remote procedure calls from a
client are enclosed in a single transaction at the server end. Thus, if the transaction
aborts, the server can undo the effects of the individual remote procedure calls.

17.2 Server System Architectures

Server systems can be broadly categorized as transaction servers and data servers.

SQL user
interface

forms
interface

report
generation

tools

data mining
and analysis

tools

SQL engine

front end

interface
(SQL API)

back end

Figure 17.3 Front-end and back-end functionality.

17.2 Server System Architectures 773

• Transaction-server systems, also called query-server systems, provide an in-
terface to which clients can send requests to perform an action, in response
to which they execute the action and send back results to the client. Usually,
client machines ship transactions to the server systems, where those transac-
tions are executed, and results are shipped back to clients that are in charge
of displaying the data. Requests may be specified by using SQL, or through a
specialized application program interface.

• Data-server systems allow clients to interact with the servers by making
requests to read or update data, in units such as files or pages. For example,
file servers provide a file-system interface where clients can create, update,
read, and delete files. Data servers for database systems offer much more
functionality; they support units of data—such as pages, tuples, or objects
—that are smaller than a file. They provide indexing facilities for data, and
provide transaction facilities so that the data are never left in an inconsistent
state if a client machine or process fails.

Of these, the transaction-server architecture is by far the more widely used archi-
tecture. We shall elaborate on the transaction-server and data-server architectures
in Sections 17.2.1 and 17.2.2.

17.2.1 Transaction Servers

A typical transaction-server system today consists of multiple processes accessing
data in shared memory, as in Figure 17.4. The processes that form part of the
database system include:

• Server processes: These are processes that receive user queries (transactions),
execute them, and send the results back. The queries may be submitted to the
server processes from a user interface, or from a user process running embed-
ded SQL, or via JDBC, ODBC, or similar protocols. Some database systems use
a separate process for each user session, and a few use a single database pro-
cess for all user sessions, but with multiple threads so that multiple queries
can execute concurrently. (A thread is like a process, but multiple threads
execute as part of the same process, and all threads within a process run in
the same virtual-memory space. Multiple threads within a process can exe-
cute concurrently.) Many database systems use a hybrid architecture, with
multiple processes, each one running multiple threads.

• Lock manager process: This process implements lock manager functionality,
which includes lock grant, lock release, and deadlock detection.

• Database writer process: There are one or more processes that output modi-
fied buffer blocks back to disk on a continuous basis.

• Log writer process: This process outputs log records from the log record
buffer to stable storage. Server processes simply add log records to the log

774 Chapter 17 Database-System Architectures

lock
manager
processlock tablelog buffer

shared
memory

database
 writer
process

log writer
process

checkpoint
process

process
monitor
process

server
process

server
process

user
process

user
process

server
process

user
process

ODBC JDBC

log disks data disks

query plan cache

buffer pool

Figure 17.4 Shared memory and process structure.

record buffer in shared memory, and if a log force is required, they request
the log writer process to output log records.

• Checkpoint process: This process performs periodic checkpoints.

• Process monitor process: This process monitors other processes, and if any
of them fails, it takes recovery actions for the process, such as aborting any
transaction being executed by the failed process, and then restarting the
process.

The shared memory contains all shared data, such as:

• Buffer pool.

• Lock table.

• Log buffer, containing log records waiting to be output to the log on stable
storage.

17.2 Server System Architectures 775

• Cached query plans, which can be reused if the same query is submitted
again.

All database processes can access the data in shared memory. Since multiple
processes may read or perform updates on data structures in shared memory,
there must be a mechanism to ensure that a data structure is modified by at
most one process at a time, and no process is reading a data structure while it is
being written by others. Such mutual exclusion can be implemented by means
of operating system functions called semaphores. Alternative implementations,
with less overhead, use special atomic instructions supported by the computer
hardware; one type of atomic instruction tests a memory location and sets it to 1
atomically. Further implementation details of mutual exclusion can be found in
any standard operating system textbook. The mutual exclusion mechanisms are
also used to implement latches.

To avoid the overhead of message passing, in many database systems,
server processes implement locking by directly updating the lock table (which is
in shared memory), instead of sending lock request messages to a lock manager
process. The lock request procedure executes the actions that the lock manager
process would take on getting a lock request. The actions on lock request and
release are like those in Section 15.1.4, but with two significant differences:

• Since multiple server processes may access shared memory, mutual exclusion
must be ensured on the lock table.

• If a lock cannot be obtained immediately because of a lock conflict, the lock
request code may monitor the lock table to check when the lock has been
granted. The lock release code updates the lock table to note which process
has been granted the lock.

To avoid repeated checks on the lock table, operating system semaphores
can be used by the lock request code to wait for a lock grant notification. The
lock release code must then use the semaphore mechanism to notify waiting
transactions that their locks have been granted.

Even if the system handles lock requests through shared memory, it still uses the
lock manager process for deadlock detection.

17.2.2 Data Servers

Data-server systems are used in local-area networks, where there is a high-speed
connection between the clients and the server, the client machines are comparable
in processing power to the server machine, and the tasks to be executed are
computation intensive. In such an environment, it makes sense to ship data to
client machines, to perform all processing at the client machine (which may
take a while), and then to ship the data back to the server machine. Note that
this architecture requires full back-end functionality at the clients. Data-server
architectures have been particularly popular in object-oriented database systems
(Chapter 22).

776 Chapter 17 Database-System Architectures

Interesting issues arise in such an architecture, since the time cost of com-
munication between the client and the server is high compared to that of a local
memory reference (milliseconds, versus less than 100 nanoseconds):

• Page shipping versus item shipping. The unit of communication for data
can be of coarse granularity, such as a page, or fine granularity, such as a tuple
(or an object, in the context of object-oriented database systems). We use the
term item to refer to both tuples and objects.

If the unit of communication is a single item, the overhead of message
passing is high compared to the amount of data transmitted. Instead, when an
item is requested, it makes sense also to send back other items that are likely
to be used in the near future. Fetching items even before they are requested
is called prefetching. Page shipping can be considered a form of prefetching
if multiple items reside on a page, since all the items in the page are shipped
when a process desires to access a single item in the page.

• Adaptive lock granularity. Locks are usually granted by the server for the
data items that it ships to the client machines. A disadvantage of page ship-
ping is that client machines may be granted locks of too coarse a granularity
—a lock on a page implicitly locks all items contained in the page. Even if the
client is not accessing some items in the page, it has implicitly acquired locks
on all prefetched items. Other client machines that require locks on those
items may be blocked unnecessarily. Techniques for lock de-escalation have
been proposed where the server can request its clients to transfer back locks
on prefetched items. If the client machine does not need a prefetched item,
it can transfer locks on the item back to the server, and the locks can then be
allocated to other clients.

• Data caching. Data that are shipped to a client on behalf of a transaction
can be cached at the client, even after the transaction completes, if sufficient
storage space is available. Successive transactions at the same client may be
able to make use of the cached data. However, cache coherency is an issue:
Even if a transaction finds cached data, it must make sure that those data
are up to date, since they may have been updated by a different client after
they were cached. Thus, a message must still be exchanged with the server
to check validity of the data, and to acquire a lock on the data.

• Lock caching. If the use of data is mostly partitioned among the clients, with
clients rarely requesting data that are also requested by other clients, locks can
also be cached at the client machine. Suppose that a client finds a data item in
the cache, and that it also finds the lock required for an access to the data item
in the cache. Then, the access can proceed without any communication with
the server. However, the server must keep track of cached locks; if a client
requests a lock from the server, the server must call back all conflicting locks
on the data item from any other client machines that have cached the locks.
The task becomes more complicated when machine failures are taken into
account. This technique differs from lock de-escalation in that lock caching
takes place across transactions; otherwise, the two techniques are similar.

17.3 Parallel Systems 777

The bibliographical references provide more information about client–server
database systems.

17.2.3 Cloud-Based Servers

Servers are usually owned by the enterprise providing the service, but there is an
increasing trend for service providers to rely at least in part upon servers that are
owned by a “third party” that is neither the client nor the service provider.

One model for using third-party servers is to outsource the entire service
to another company that hosts the service on its own computers using its own
software. This allows the service provider to ignore most details of technology
and focus on the marketing of the service.

Another model for using third-party servers is cloud computing, in which
the service provider runs its own software, but runs it on computers provided by
another company. Under this model, the third party does not provide any of the
application software; it provides only a collection of machines. These machines
are not “real” machines, but rather simulated by software that allows a single real
computer to simulate several independent computers. Such simulated machines
are called virtual machines. The service provider runs its software (possibly
including a database system) on these virtual machines. A major advantage of
cloud computing is that the service provider can add machines as needed to
meet demand and release them at times of light load. This can prove to be highly
cost-effective in terms of both money and energy.

A third model uses a cloud computing service as a data server; such cloud-based
data storage systems are covered in detail in Section 19.9. Database applications
using cloud-based storage may run on the same cloud (that is, the same set
of machines), or on another cloud. The bibliographical references provide more
information about cloud-computing systems.

17.3 Parallel Systems

Parallel systems improve processing and I/O speeds by using multiple processors
and disks in parallel. Parallel machines are becoming increasingly common, mak-
ing the study of parallel database systems correspondingly more important. The
driving force behind parallel database systems is the demands of applications that
have to query extremely large databases (of the order of terabytes—that is, 1012

bytes) or that have to process an extremely large number of transactions per sec-
ond (of the order of thousands of transactions per second). Centralized and client
–server database systems are not powerful enough to handle such applications.

In parallel processing, many operations are performed simultaneously, as
opposed to serial processing, in which the computational steps are performed se-
quentially. A coarse-grain parallel machine consists of a small number of powerful
processors; a massively parallel or fine-grain parallel machine uses thousands
of smaller processors. Virtually all high-end machines today offer some degree of
coarse-grain parallelism: at least two or four processors. Massively parallel com-

778 Chapter 17 Database-System Architectures

puters can be distinguished from the coarse-grain parallel machines by the much
larger degree of parallelism that they support. Parallel computers with hundreds
of processors and disks are available commercially.

There are two main measures of performance of a database system: (1)
throughput, the number of tasks that can be completed in a given time inter-
val, and (2) response time, the amount of time it takes to complete a single task
from the time it is submitted. A system that processes a large number of small
transactions can improve throughput by processing many transactions in paral-
lel. A system that processes large transactions can improve response time as well
as throughput by performing subtasks of each transaction in parallel.

17.3.1 Speedup and Scaleup

Two important issues in studying parallelism are speedup and scaleup. Running
a given task in less time by increasing the degree of parallelism is called speedup.
Handling larger tasks by increasing the degree of parallelism is called scaleup.

Consider a database application running on a parallel system with a certain
number of processors and disks. Now suppose that we increase the size of the
system by increasing the number of processors, disks, and other components of
the system. The goal is to process the task in time inversely proportional to the
number of processors and disks allocated. Suppose that the execution time of a
task on the larger machine is TL , and that the execution time of the same task on
the smaller machine is TS. The speedup due to parallelism is defined as TS/TL . The
parallel system is said to demonstrate linear speedup if the speedup is N when
the larger system has N times the resources (processors, disk, and so on) of the
smaller system. If the speedup is less than N, the system is said to demonstrate
sublinear speedup. Figure 17.5 illustrates linear and sublinear speedup.

Scaleup relates to the ability to process larger tasks in the same amount of time
by providing more resources. Let Q be a task, and let QN be a task that is N times
bigger than Q. Suppose that the execution time of task Q on a given machine

linear speedup

sublinear speedup

resources

sp
ee

d

Figure 17.5 Speedup with increasing resources.

17.3 Parallel Systems 779

linear scaleup

sublinear scaleup

problem size

TS
TL

Figure 17.6 Scaleup with increasing problem size and resources.

MS is TS, and the execution time of task QN on a parallel machine ML , which is
N times larger than MS, is TL . The scaleup is then defined as TS/TL . The parallel
system ML is said to demonstrate linear scaleup on task Q if TL = TS. If TL > TS,
the system is said to demonstrate sublinear scaleup. Figure 17.6 illustrates linear
and sublinear scaleups (where the resources increase in proportion to problem
size). There are two kinds of scaleup that are relevant in parallel database systems,
depending on how the size of the task is measured:

• In batch scaleup, the size of the database increases, and the tasks are large jobs
whose runtime depends on the size of the database. An example of such a task
is a scan of a relation whose size is proportional to the size of the database.
Thus, the size of the database is the measure of the size of the problem. Batch
scaleup also applies in scientific applications, such as executing a query at an
N-times finer resolution or performing an N-times longer simulation.

• In transaction scaleup, the rate at which transactions are submitted to the
database increases and the size of the database increases proportionally to
the transaction rate. This kind of scaleup is what is relevant in transaction-
processing systems where the transactions are small updates—for example,
a deposit or withdrawal from an account—and transaction rates grow as
more accounts are created. Such transaction processing is especially well
adapted for parallel execution, since transactions can run concurrently and
independently on separate processors, and each transaction takes roughly
the same amount of time, even if the database grows.

Scaleup is usually the more important metric for measuring efficiency of par-
allel database systems. The goal of parallelism in database systems is usually to
make sure that the database system can continue to perform at an acceptable
speed, even as the size of the database and the number of transactions increases.
Increasing the capacity of the system by increasing the parallelism provides a
smoother path for growth for an enterprise than does replacing a centralized

780 Chapter 17 Database-System Architectures

system with a faster machine (even assuming that such a machine exists). How-
ever, we must also look at absolute performance numbers when using scaleup
measures; a machine that scales up linearly may perform worse than a machine
that scales less than linearly, simply because the latter machine is much faster to
start off with.

A number of factors work against efficient parallel operation and can diminish
both speedup and scaleup.

• Start-up costs. There is a start-up cost associated with initiating a single
process. In a parallel operation consisting of thousands of processes, the
start-up time may overshadow the actual processing time, affecting speedup
adversely.

• Interference. Since processes executing in a parallel system often access
shared resources, a slowdown may result from the interference of each new
process as it competes with existing processes for commonly held resources,
such as a system bus, or shared disks, or even locks. Both speedup and scaleup
are affected by this phenomenon.

• Skew. By breaking down a single task into a number of parallel steps, we
reduce the size of the average step. Nonetheless, the service time for the
single slowest step will determine the service time for the task as a whole. It
is often difficult to divide a task into exactly equal-sized parts, and the way
that the sizes are distributed is therefore skewed. For example, if a task of size
100 is divided into 10 parts, and the division is skewed, there may be some
tasks of size less than 10 and some tasks of size more than 10; if even one
task happens to be of size 20, the speedup obtained by running the tasks in
parallel is only five, instead of ten as we would have hoped.

17.3.2 Interconnection Networks

Parallel systems consist of a set of components (processors, memory, and disks)
that can communicate with each other via an interconnection network. Fig-
ure 17.7 shows three commonly used types of interconnection networks:

• Bus. All the system components can send data on and receive data from a sin-
gle communication bus. This type of interconnection is shown in Figure 17.7a.
The bus could be an Ethernet or a parallel interconnect. Bus architectures
work well for small numbers of processors. However, they do not scale well
with increasing parallelism, since the bus can handle communication from
only one component at a time.

• Mesh. The components are nodes in a grid, and each component connects to
all its adjacent components in the grid. In a two-dimensional mesh each node
connects to four adjacent nodes, while in a three-dimensional mesh each node
connects to six adjacent nodes. Figure 17.7b shows a two-dimensional mesh.

17.3 Parallel Systems 781

110

111011
101

100000

(c) hypercube(b) mesh(a) bus

001

010

Figure 17.7 Interconnection networks.

Nodes that are not directly connected can communicate with one another
by routing messages via a sequence of intermediate nodes that are directly
connected to one another. The number of communication links grows as the
number of components grows, and the communication capacity of a mesh
therefore scales better with increasing parallelism.

• Hypercube. The components are numbered in binary, and a component is
connected to another if the binary representations of their numbers differ
in exactly one bit. Thus, each of the n components is connected to log(n)
other components. Figure 17.7c shows a hypercube with eight nodes. In
a hypercube interconnection, a message from a component can reach any
other component by going through at most log(n) links. In contrast, in a
mesh architecture a component may be 2(

√
n − 1) links away from some of

the other components (or
√

n links away, if the mesh interconnection wraps
around at the edges of the grid). Thus communication delays in a hypercube
are significantly lower than in a mesh.

17.3.3 Parallel Database Architectures

There are several architectural models for parallel machines. Among the most
prominent ones are those in Figure 17.8 (in the figure, M denotes memory, P
denotes a processor, and disks are shown as cylinders):

• Shared memory. All the processors share a common memory (Figure 17.8a).

• Shared disk. All the processors share a common set of disks (Figure 17.8b).
Shared-disk systems are sometimes called clusters.

• Shared nothing. The processors share neither a common memory nor com-
mon disk (Figure 17.8c).

• Hierarchical. This model is a hybrid of the preceding three architectures
(Figure 17.8d).

In Sections 17.3.3.1 through 17.3.3.4, we elaborate on each of these models.

782 Chapter 17 Database-System Architectures

P

P
M

P

P

P

M M M
P
P
P
P
P

P
P
P
P
P

P
P
P
P
P

(a) shared memory

P

P

P

P

(c) shared nothing (d) hierarchical

PM

P

P

P

P

(b) shared disk

PM

PM

PM

M

M

M

MP

M

M

Figure 17.8 Parallel database architectures.

Techniques used to speed up transaction processing on data-server systems,
such as data and lock caching and lock de-escalation, outlined in Section 17.2.2,
can also be used in shared-disk parallel databases as well as in shared-nothing
parallel databases. In fact, they are very important for efficient transaction pro-
cessing in such systems.

17.3.3.1 Shared Memory

In a shared-memory architecture, the processors and disks have access to a com-
mon memory, typically via a bus or through an interconnection network. The
benefit of shared memory is extremely efficient communication between proces-
sors—data in shared memory can be accessed by any processor without being
moved with software. A processor can send messages to other processors much
faster by using memory writes (which usually take less than a microsecond) than
by sending a message through a communication mechanism. The downside of
shared-memory machines is that the architecture is not scalable beyond 32 or 64
processors because the bus or the interconnection network becomes a bottleneck
(since it is shared by all processors). Adding more processors does not help after
a point, since the processors will spend most of their time waiting for their turn
on the bus to access memory.

Shared-memory architectures usually have large memory caches at each pro-
cessor, so that referencing of the shared memory is avoided whenever possible.

17.3 Parallel Systems 783

However, at least some of the data will not be in the cache, and accesses will have
to go to the shared memory. Moreover, the caches need to be kept coherent; that
is, if a processor performs a write to a memory location, the data in that memory
location should be either updated at or removed from any processor where the
data are cached. Maintaining cache coherency becomes an increasing overhead
with increasing numbers of processors. Consequently, shared-memory machines
are not capable of scaling up beyond a point; current shared-memory machines
cannot support more than 64 processors.

17.3.3.2 Shared Disk

In the shared-disk model, all processors can access all disks directly via an in-
terconnection network, but the processors have private memories. There are two
advantages of this architecture over a shared-memory architecture. First, since
each processor has its own memory, the memory bus is not a bottleneck. Second,
it offers a cheap way to provide a degree of fault tolerance: If a processor (or its
memory) fails, the other processors can take over its tasks, since the database is
resident on disks that are accessible from all processors. We can make the disk
subsystem itself fault tolerant by using a RAID architecture, as described in Chap-
ter 10. The shared-disk architecture has found acceptance in many applications.

The main problem with a shared-disk system is again scalability. Although
the memory bus is no longer a bottleneck, the interconnection to the disk sub-
system is now a bottleneck; it is particularly so in a situation where the database
makes a large number of accesses to disks. Compared to shared-memory systems,
shared-disk systems can scale to a somewhat larger number of processors, but
communication across processors is slower (up to a few milliseconds in the ab-
sence of special-purpose hardware for communication), since it has to go through
a communication network.

17.3.3.3 Shared Nothing

In a shared-nothing system, each node of the machine consists of a processor,
memory, and one or more disks. The processors at one node may communicate
with another processor at another node by a high-speed interconnection network.
A node functions as the server for the data on the disk or disks that the node
owns. Since local disk references are serviced by local disks at each processor,
the shared-nothing model overcomes the disadvantage of requiring all I/O to go
through a single interconnection network; only queries, accesses to nonlocal disks,
and result relations pass through the network. Moreover, the interconnection
networks for shared-nothing systems are usually designed to be scalable, so that
their transmission capacity increases as more nodes are added. Consequently,
shared-nothing architectures are more scalable and can easily support a large
number of processors. The main drawbacks of shared-nothing systems are the
costs of communication and of nonlocal disk access, which are higher than in a
shared-memory or shared-disk architecture since sending data involves software
interaction at both ends.

784 Chapter 17 Database-System Architectures

17.3.3.4 Hierarchical

The hierarchical architecture combines the characteristics of shared-memory,
shared-disk, and shared-nothing architectures. At the top level, the system con-
sists of nodes that are connected by an interconnection network and do not share
disks or memory with one another. Thus, the top level is a shared-nothing ar-
chitecture. Each node of the system could actually be a shared-memory system
with a few processors. Alternatively, each node could be a shared-disk system,
and each of the systems sharing a set of disks could be a shared-memory system.
Thus, a system could be built as a hierarchy, with shared-memory architecture
with a few processors at the base, and a shared-nothing architecture at the top,
with possibly a shared-disk architecture in the middle. Figure 17.8d illustrates
a hierarchical architecture with shared-memory nodes connected together in a
shared-nothing architecture. Commercial parallel database systems today run on
several of these architectures.

Attempts to reduce the complexity of programming such systems have yielded
distributed virtual-memory architectures, where logically there is a single shared
memory, but physically there are multiple disjoint memory systems; the virtual-
memory-mapping hardware, coupled with system software, allows each pro-
cessor to view the disjoint memories as a single virtual memory. Since access
speeds differ, depending on whether the page is available locally or not, such an
architecture is also referred to as a nonuniform memory architecture (NUMA).

17.4 Distributed Systems

In a distributed database system, the database is stored on several computers.
The computers in a distributed system communicate with one another through
various communication media, such as high-speed private networks or the In-
ternet. They do not share main memory or disks. The computers in a distributed
system may vary in size and function, ranging from workstations up to mainframe
systems.

The computers in a distributed system are referred to by a number of dif-
ferent names, such as sites or nodes, depending on the context in which they
are mentioned. We mainly use the term site, to emphasize the physical distribu-
tion of these systems. The general structure of a distributed system appears in
Figure 17.9.

The main differences between shared-nothing parallel databases and dis-
tributed databases are that distributed databases are typically geographically
separated, are separately administered, and have a slower interconnection. An-
other major difference is that, in a distributed database system, we differentiate
between local and global transactions. A local transaction is one that accesses
data only from sites where the transaction was initiated. A global transaction, on
the other hand, is one that either accesses data in a site different from the one at
which the transaction was initiated, or accesses data in several different sites.

17.4 Distributed Systems 785

site A site C

site B

communication
via network

network

Figure 17.9 A distributed system.

There are several reasons for building distributed database systems, including
sharing of data, autonomy, and availability.

• Sharing data. The major advantage in building a distributed database system
is the provision of an environment where users at one site may be able to
access the data residing at other sites. For instance, in a distributed university
system, where each campus stores data related to that campus, it is possible
for a user in one campus to access data in another campus. Without this
capability, the transfer of student records from one campus to another campus
would have to resort to some external mechanism that would couple existing
systems.

• Autonomy. The primary advantage of sharing data by means of data dis-
tribution is that each site is able to retain a degree of control over data that
are stored locally. In a centralized system, the database administrator of the
central site controls the database. In a distributed system, there is a global
database administrator responsible for the entire system. A part of these re-
sponsibilities is delegated to the local database administrator for each site.
Depending on the design of the distributed database system, each adminis-
trator may have a different degree of local autonomy. The possibility of local
autonomy is often a major advantage of distributed databases.

• Availability. If one site fails in a distributed system, the remaining sites may
be able to continue operating. In particular, if data items are replicated in
several sites, a transaction needing a particular data item may find that item
in any of several sites. Thus, the failure of a site does not necessarily imply
the shutdown of the system.

786 Chapter 17 Database-System Architectures

The failure of one site must be detected by the system, and appropriate
action may be needed to recover from the failure. The system must no longer
use the services of the failed site. Finally, when the failed site recovers or is
repaired, mechanisms must be available to integrate it smoothly back into
the system.

Although recovery from failure is more complex in distributed systems than
in centralized systems, the ability of most of the system to continue to operate
despite the failure of one site results in increased availability. Availability is
crucial for database systems used for real-time applications. Loss of access
to data by, for example, an airline may result in the loss of potential ticket
buyers to competitors.

17.4.1 An Example of a Distributed Database

Consider a banking system consisting of four branches in four different cities.
Each branch has its own computer, with a database of all the accounts maintained
at that branch. Each such installation is thus a site. There also exists one single
site that maintains information about all the branches of the bank.

To illustrate the difference between the two types of transactions—local and
global—at the sites, consider a transaction to add $50 to account number A-177
located at the Valleyview branch. If the transaction was initiated at the Valleyview
branch, then it is considered local; otherwise, it is considered global. A transaction
to transfer $50 from account A-177 to account A-305, which is located at the
Hillside branch, is a global transaction, since accounts in two different sites are
accessed as a result of its execution.

In an ideal distributed database system, the sites would share a common
global schema (although some relations may be stored only at some sites), all
sites would run the same distributed database-management software, and the
sites would be aware of each other’s existence. If a distributed database is built
from scratch, it would indeed be possible to achieve the above goals. However,
in reality a distributed database has to be constructed by linking together mul-
tiple already-existing database systems, each with its own schema and possibly
running different database-management software. Such systems are sometimes
called multidatabase systems or heterogeneous distributed database systems.
We discuss these systems in Section 19.8, where we show how to achieve a degree
of global control despite the heterogeneity of the component systems.

17.4.2 Implementation Issues

Atomicity of transactions is an important issue in building a distributed database
system. If a transaction runs across two sites, unless the system designers are
careful, it may commit at one site and abort at another, leading to an inconsistent
state. Transaction commit protocols ensure such a situation cannot arise. The
two-phase commit protocol (2PC) is the most widely used of these protocols.

17.4 Distributed Systems 787

The basic idea behind 2PC is for each site to execute the transaction until it
enters the partially committed state, and then leave the commit decision to a sin-
gle coordinator site; the transaction is said to be in the ready state at a site at this
point. The coordinator decides to commit the transaction only if the transaction
reaches the ready state at every site where it executed; otherwise (for example, if
the transaction aborts at any site), the coordinator decides to abort the transaction.
Every site where the transaction executed must follow the decision of the coor-
dinator. If a site fails when a transaction is in ready state, when the site recovers
from failure it should be in a position to either commit or abort the transaction,
depending on the decision of the coordinator. The 2PC protocol is described in
detail in Section 19.4.1.

Concurrency control is another issue in a distributed database. Since a trans-
action may access data items at several sites, transaction managers at several sites
may need to coordinate to implement concurrency control. If locking is used, lock-
ing can be performed locally at the sites containing accessed data items, but there
is also a possibility of deadlock involving transactions originating at multiple
sites. Therefore deadlock detection needs to be carried out across multiple sites.
Failures are more common in distributed systems since not only may computers
fail, but communication links may also fail. Replication of data items, which is
the key to the continued functioning of distributed databases when failures occur,
further complicates concurrency control. Section 19.5 provides detailed coverage
of concurrency control in distributed databases.

The standard transaction models, based on multiple actions carried out by a
single program unit, are often inappropriate for carrying out tasks that cross the
boundaries of databases that cannot or will not cooperate to implement protocols
such as 2PC. Alternative approaches, based on persistent messaging for commu-
nication, are generally used for such tasks; persistent messaging is discussed in
Section 19.4.3.

When the tasks to be carried out are complex, involving multiple databases
and/or multiple interactions with humans, coordination of the tasks and en-
suring transaction properties for the tasks become more complicated. Workflow
management systems are systems designed to help with carrying out such tasks,
and are described in Section 26.2.

In case an organization has to choose between a distributed architecture and
a centralized architecture for implementing an application, the system architect
must balance the advantages against the disadvantages of distribution of data.
We have already seen the advantages of using distributed databases. The primary
disadvantage of distributed database systems is the added complexity required
to ensure proper coordination among the sites. This increased complexity takes
various forms:

• Software-development cost. It is more difficult to implement a distributed
database system; thus, it is more costly.

• Greater potential for bugs. Since the sites that constitute the distributed
system operate in parallel, it is harder to ensure the correctness of algorithms,

788 Chapter 17 Database-System Architectures

especially operation during failures of part of the system, and recovery from
failures. The potential exists for extremely subtle bugs.

• Increased processing overhead. The exchange of messages and the addi-
tional computation required to achieve intersite coordination are a form of
overhead that does not arise in centralized systems.

There are several approaches to distributed database design, ranging from
fully distributed designs to ones that include a large degree of centralization. We
study them in Chapter 19.

17.5 Network Types

Distributed databases and client–server systems are built around communica-
tion networks. There are basically two types of networks: local-area networks
and wide-area networks. The main difference between the two is the way in
which they are distributed geographically. In local-area networks, processors are
distributed over small geographical areas, such as a single building or a number
of adjacent buildings. In wide-area networks, on the other hand, a number of
autonomous processors are distributed over a large geographical area (such as
the United States or the entire world). These differences imply major variations
in the speed and reliability of the communication network, and are reflected in
the distributed operating-system design.

printer laptop file server

workstation workstation workstation

gateway

application server

Figure 17.10 Local-area network.

17.5 Network Types 789

17.5.1 Local-Area Networks

Local-area networks (LANs) (Figure 17.10) emerged in the early 1970s as a way for
computers to communicate and to share data with one another. People recognized
that, for many enterprises, numerous small computers, each with its own self-
contained applications, are more economical than a single large system. Because
each small computer is likely to need access to a full complement of peripheral
devices (such as disks and printers), and because some form of data sharing is
likely to occur in a single enterprise, it was a natural step to connect these small
systems into a network.

LANs are generally used in an office environment. All the sites in such systems
are close to one another, so the communication links tend to have a higher speed
and lower error rate than do their counterparts in wide-area networks. The most
common links in a local-area network are twisted pair, coaxial cable, fiber optics,
and wireless connections. Communication speeds range from tens of megabits
per second (for wireless local-area networks), to 1 gigabit per second for Gigabit
Ethernet. The most recent Ethernet standard is 10-gigabit Ethernet.

A storage-area network (SAN) is a special type of high-speed local-area net-
work designed to connect large banks of storage devices (disks) to computers
that use the data (see Figure 17.11).

Thus storage-area networks help build large-scale shared-disk systems. The
motivation for using storage-area networks to connect multiple computers to
large banks of storage devices is essentially the same as that for shared-disk
databases, namely:

• Scalability by adding more computers.

• High availability, since data are still accessible even if a computer fails.

LAN/WAN

storage
array

storage
array

data-processing
center

Web content
provider

server
client

client

client
server

tape
library

SAN

Figure 17.11 Storage-area network.

790 Chapter 17 Database-System Architectures

RAID organizations are used in the storage devices to ensure high availability
of the data, permitting processing to continue even if individual disks fail. Storage-
area networks are usually built with redundancy, such as multiple paths between
nodes, so if a component such as a link or a connection to the network fails, the
network continues to function.

17.5.2 Wide-Area Networks

Wide-area networks (WANs) emerged in the late 1960s, mainly as an academic re-
search project to provide efficient communication among sites, allowing hardware
and software to be shared conveniently and economically by a wide community
of users. Systems that allowed remote terminals to be connected to a central com-
puter via telephone lines were developed in the early 1960s, but they were not
true WANs. The first WAN to be designed and developed was the Arpanet. Work on
the Arpanet began in 1968. The Arpanet has grown from a four-site experimental
network to a worldwide network of networks, the Internet, comprising hundreds
of millions of computer systems. Typical links on the Internet are fiber-optic lines
and, sometimes, satellite channels. Data rates for wide-area links typically range
from a few megabits per second to hundreds of gigabits per second. The last link,
to end user sites, has traditionally been the slowest link, using such technologies
as digital subscriber line (DSL) technology (supporting a few megabits per second)
or dial-up modem connections over land-based telephone lines (supporting up
to 56 kilobits per second). Today, the last link is typically a cable modem or fiber
optic connection (each supporting tens of megabits per second), or a wireless
connection supporting several megabits per second.

In addition to limits on data rates, communication in a WAN must also contend
with significant latency: a message may take up to a few hundred milliseconds to
be delivered across the world, both due to speed of light delays, and due to queu-
ing delays at a number of routers in the path of the message. Applications whose
data and computing resources are distributed geographically have to be carefully
designed to ensure latency does not affect system performance excessively.

WANs can be classified into two types:

• In discontinuous connection WANs, such as those based on mobile wireless
connections, hosts are connected to the network only part of the time.

• In continuous connection WANs, such as the wired Internet, hosts are con-
nected to the network at all times.

Networks that are not continuously connected typically do not allow transac-
tions across sites, but may keep local copies of remote data, and refresh the copies
periodically (every night, for instance). For applications where consistency is not
critical, such as sharing of documents, groupware systems such as Lotus Notes
allow updates of remote data to be made locally, and the updates are then prop-
agated back to the remote site periodically. There is a potential for conflicting
updates at different sites, conflicts that have to be detected and resolved. A mech-

17.6 Summary 791

anism for detecting conflicting updates is described later, in Section 25.5.4; the
resolution mechanism for conflicting updates is, however, application dependent.

17.6 Summary

• Centralized database systems run entirely on a single computer. With the
growth of personal computers and local-area networking, the database front-
end functionality has moved increasingly to clients, with server systems
providing the back-end functionality. Client–server interface protocols have
helped the growth of client–server database systems.

• Servers can be either transaction servers or data servers, although the use
of transaction servers greatly exceeds the use of data servers for providing
database services.

◦ Transaction servers have multiple processes, possibly running on multiple
processors. So that these processes have access to common data, such as
the database buffer, systems store such data in shared memory. In addition
to processes that handle queries, there are system processes that carry out
tasks such as lock and log management and checkpointing.

◦ Data-server systems supply raw data to clients. Such systems strive to
minimize communication between clients and servers by caching data and
locks at the clients. Parallel database systems use similar optimizations.

• Parallel database systems consist of multiple processors and multiple disks
connected by a fast interconnection network. Speedup measures how much
we can increase processing speed by increasing parallelism for a single trans-
action. Scaleup measures how well we can handle an increased number of
transactions by increasing parallelism. Interference, skew, and start-up costs
act as barriers to getting ideal speedup and scaleup.

• Parallel database architectures include the shared-memory, shared-disk, share-
d-nothing, and hierarchical architectures. These architectures have different
trade-offs of scalability versus communication speed.

• A distributed database system is a collection of partially independent database
systems that (ideally) share a common schema, and coordinate processing of
transactions that access nonlocal data. The systems communicate with one
another through a communication network.

• Local-area networks connect nodes that are distributed over small geograph-
ical areas, such as a single building or a few adjacent buildings. Wide-area
networks connect nodes spread over a large geographical area. The Internet
is the most extensively used wide-area network today.

• Storage-area networks are a special type of local-area network designed to
provide fast interconnection between large banks of storage devices and
multiple computers.

792 Chapter 17 Database-System Architectures

Review Terms

• Centralized systems
• Server systems
• Coarse-granularity parallelism
• Fine-granularity parallelism
• Database process structure
• Mutual exclusion
• Thread
• Server processes

◦ Lock manager process

◦ Database writer process

◦ Log writer process

◦ Checkpoint process

◦ Process monitor process

• Client–server systems
• Transaction server
• Query server
• Data server

◦ Prefetching

◦ De-escalation

◦ Data caching

◦ Cache coherency

◦ Lock caching

◦ Call back

• Parallel systems
• Throughput
• Response time
• Speedup

◦ Linear speedup

◦ Sublinear speedup

• Scaleup

◦ Linear scaleup

◦ Sublinear scaleup

◦ Batch scaleup

◦ Transaction scaleup

• Start-up costs
• Interference
• Skew
• Interconnection networks

◦ Bus

◦ Mesh

◦ Hypercube

• Parallel database architectures

◦ Shared memory

◦ Shared disk (clusters)

◦ Shared nothing

◦ Hierarchical

• Fault tolerance
• Distributed virtual memory
• Nonuniform memory architecture

(NUMA)
• Distributed systems
• Distributed database

◦ Sites (nodes)

◦ Local transaction

◦ Global transaction

◦ Local autonomy

• Multidatabase systems
• Network types

◦ Local-area networks (LAN)

◦ Wide-area networks (WAN)

◦ Storage-area network (SAN)

Exercises 793

Practice Exercises

17.1 Instead of storing shared structures in shared memory, an alternative
architecture would be to store them in the local memory of a special
process, and access the shared data by interprocess communication with
the process. What would be the drawback of such an architecture?

17.2 In typical client–server systems the server machine is much more pow-
erful than the clients; that is, its processor is faster, it may have multiple
processors, and it has more memory and disk capacity. Consider instead a
scenario where client and server machines have exactly the same power.
Would it make sense to build a client–server system in such a scenario?
Why? Which scenario would be better suited to a data-server architecture?

17.3 Consider a database system based on a client–server architecture, with
the server acting as a data server.

a. What is the effect of the speed of the interconnection between the
client and the server on the choice between tuple and page shipping?

b. If page shipping is used, the cache of data at the client can be orga-
nized either as a tuple cache or a page cache. The page cache stores
data in units of a page, while the tuple cache stores data in units of
tuples. Assume tuples are smaller than pages. Describe one benefit
of a tuple cache over a page cache.

17.4 Suppose a transaction is written in C with embedded SQL, and about 80
percent of the time is spent in the SQL code, with the remaining 20 percent
spent in C code. How much speedup can one hope to attain if parallelism
is used only for the SQL code? Explain.

17.5 Some database operations such as joins can see a significant difference in
speed when data (for example, one of the relations involved in a join) fits
in memory as compared to the situation where the data does not fit in
memory. Show how this fact can explain the phenomenon of superlinear
speedup, where an application sees a speedup greater than the amount
of resources allocated to it.

17.6 Parallel systems often have a network structure where sets of n processors
connect to a single Ethernet switch, and the Ethernet switches themselves
connect to another Ethernet switch. Does this architecture correspond to
a bus, mesh or hypercube architecture? If not, how would you describe
this interconnection architecture?

Exercises

17.7 Why is it relatively easy to port a database from a single processor machine
to a multiprocessor machine if individual queries need not be parallelized?

794 Chapter 17 Database-System Architectures

17.8 Transaction-server architectures are popular for client–server relational
databases, where transactions are short. On the other hand, data-server
architectures are popular for client–server object-oriented database sys-
tems, where transactions are expected to be relatively long. Give two
reasons why data servers may be popular for object-oriented databases
but not for relational databases.

17.9 What is lock de-escalation, and under what conditions is it required? Why
is it not required if the unit of data shipping is an item?

17.10 Suppose you were in charge of the database operations of a company
whose main job is to process transactions. Suppose the company is grow-
ing rapidly each year, and has outgrown its current computer system.
When you are choosing a new parallel computer, what measure is most
relevant—speedup, batch scaleup, or transaction scaleup? Why?

17.11 Database systems are typically implemented as a set of processes (or
threads) sharing a shared memory area.

a. How is access to the shared memory area controlled?

b. Is two-phase locking appropriate for serializing access to the data
structures in shared memory? Explain your answer.

17.12 Is it wise to allow a user process to access the shared memory area of a
database system? Explain your answer.

17.13 What are the factors that can work against linear scaleup in a transaction
processing system? Which of the factors are likely to be the most important
in each of the following architectures: shared memory, shared disk, and
shared nothing?

17.14 Memory systems can be divided into multiple modules, each of which
can be serving a separate request at a given time. What impact would
such a memory architecture have on the number of processors that can be
supported in a shared-memory system?

17.15 Consider a bank that has a collection of sites, each running a database sys-
tem. Suppose the only way the databases interact is by electronic transfer
of money between themselves, using persistent messaging. Would such a
system qualify as a distributed database? Why?

Bibliographical Notes

Hennessy et al. [2006] provides an excellent introduction to the area of computer
architecture. Abadi [2009] provides an excellent introduction to cloud computing
and the challenges of running database transactions in such an environment.

Gray and Reuter [1993] provides a textbook description of transaction pro-
cessing, including the architecture of client–server and distributed systems. The

Bibliographical Notes 795

bibliographical notes of Chapter 5 provide references to more information on
ODBC, JDBC, and other database access APIs.

DeWitt and Gray [1992] surveys parallel database systems, including their
architecture and performance measures. A survey of parallel computer architec-
tures is presented by Duncan [1990]. Dubois and Thakkar [1992] is a collection
of papers on scalable shared-memory architectures. DEC clusters running Rdb
were among the early commercial users of the shared-disk database architecture.
Rdb is now owned by Oracle, and is called Oracle Rdb. The Teradata database
machine was among the earliest commercial systems to use the shared-nothing
database architecture. The Grace and the Gamma research prototypes also used
shared-nothing architectures.

Ozsu and Valduriez [1999] provides textbook coverage of distributed database
systems. Further references pertaining to parallel and distributed database sys-
tems appear in the bibliographical notes of Chapters 18 and 19, respectively.

Comer [2009], Halsall [2006], and Thomas [1996] describe computer network-
ing and the Internet. Tanenbaum [2002], Kurose and Ross [2005], and Peterson
and Davie [2007] provide general overviews of computer networks.

This page intentionally left blank

C H A P T E R18
Parallel Databases

In this chapter, we discuss fundamental algorithms for parallel database systems
that are based on the relational data model. In particular, we focus on the place-
ment of data on multiple disks and the parallel evaluation of relational operations,
both of which have been instrumental in the success of parallel databases.

18.1 Introduction

At one point over two decades ago, parallel database systems had been nearly
written off, even by some of their staunchest advocates. Today, they are suc-
cessfully marketed by practically every database-system vendor. Several trends
fueled this transition:

• The transaction requirements of organizations have grown with increasing
use of computers. Moreover, the growth of the World Wide Web has created
many sites with millions of viewers, and the increasing amounts of data
collected from these viewers has produced extremely large databases at many
companies.

• Organizations are using these increasingly large volumes of data—such as
data about what items people buy, what Web links users click on, and when
people make telephone calls—to plan their activities and pricing. Queries
used for such purposes are called decision-support queries, and the data
requirements for such queries may run into terabytes. Single-processor sys-
tems are not capable of handling such large volumes of data at the required
rates.

• The set-oriented nature of database queries naturally lends itself to paral-
lelization. A number of commercial and research systems have demonstrated
the power and scalability of parallel query processing.

• As microprocessors have become cheap, parallel machines have become com-
mon and relatively inexpensive.

• Individual processors have themselves become parallel machines using mul-
ticore architectures.

797

798 Chapter 18 Parallel Databases

As we discussed in Chapter 17, parallelism is used to provide speedup, where
queries are executed faster because more resources, such as processors and disks,
are provided. Parallelism is also used to provide scaleup, where increasing work-
loads are handled without increased response time, via an increase in the degree
of parallelism.

We outlined in Chapter 17 the different architectures for parallel database
systems: shared-memory, shared-disk, shared-nothing, and hierarchical architec-
tures. Briefly, in shared-memory architectures, all processors share a common
memory and disks; in shared-disk architectures, processors have independent
memories, but share disks; in shared-nothing architectures, processors share nei-
ther memory nor disks; and hierarchical architectures have nodes that share
neither memory nor disks with each other, but internally each node has a shared-
memory or a shared-disk architecture.

18.2 I/O Parallelism

In its simplest form, I/O parallelism refers to reducing the time required to retrieve
relations from disk by partitioning the relations over multiple disks. The most
common form of data partitioning in a parallel database environment is horizontal
partitioning. In horizontal partitioning, the tuples of a relation are divided (or
declustered) among many disks, so that each tuple resides on one disk. Several
partitioning strategies have been proposed.

18.2.1 Partitioning Techniques

We present three basic data-partitioning strategies. Assume that there are n disks,
D0, D1, . . . , Dn−1, across which the data are to be partitioned.

• Round-robin. This strategy scans the relation in any order and sends the
ith tuple to disk number Di mod n. The round-robin scheme ensures an even
distribution of tuples across disks; that is, each disk has approximately the
same number of tuples as the others.

• Hash partitioning. This declustering strategy designates one or more attrib-
utes from the given relation’s schema as the partitioning attributes. A hash
function is chosen whose range is {0, 1, . . . , n − 1}. Each tuple of the original
relation is hashed on the partitioning attributes. If the hash function returns
i , then the tuple is placed on disk Di .1

• Range partitioning. This strategy distributes tuples by assigning contiguous
attribute-value ranges to each disk. It chooses a partitioning attribute, A, and
a partitioning vector [v0, v1, . . . , vn−2], such that, if i < j , then vi < v j . The
relation is partitioned as follows: Consider a tuple t such that t[A] = x. If

1Hash-function design is discussed in Section 11.6.1.

18.2 I/O Parallelism 799

x < v0, then t goes on disk D0. If x ≥ vn−2, then t goes on disk Dn−1. If
vi ≤ x < vi+1, then t goes on disk Di+1.

For example, range partitioning with three disks numbered 0, 1, and 2
may assign tuples with values less than 5 to disk 0, values between 5 and 40
to disk 1, and values greater than 40 to disk 2.

18.2.2 Comparison of Partitioning Techniques

Once a relation has been partitioned among several disks, we can retrieve it in
parallel, using all the disks. Similarly, when a relation is being partitioned, it can
be written to multiple disks in parallel. Thus, the transfer rates for reading or
writing an entire relation are much faster with I/O parallelism than without it.
However, reading an entire relation, or scanning a relation, is only one kind of
access to data. Access to data can be classified as follows:

1. Scanning the entire relation.

2. Locating a tuple associatively (for example, employee name = “Campbell”);
these queries, called point queries, seek tuples that have a specified value
for a specific attribute.

3. Locating all tuples for which the value of a given attribute lies within a
specified range (for example, 10000 < salar y < 20000); these queries are
called range queries.

The different partitioning techniques support these types of access at different
levels of efficiency:

• Round-robin. The scheme is ideally suited for applications that wish to read
the entire relation sequentially for each query. With this scheme, both point
queries and range queries are complicated to process, since each of the n disks
must be used for the search.

• Hash partitioning. This scheme is best suited for point queries based on
the partitioning attribute. For example, if a relation is partitioned on the
telephone number attribute, then we can answer the query “Find the record of
the employee with telephone number = 555-3333” by applying the partitioning
hash function to 555-3333 and then searching that disk. Directing a query to
a single disk saves the start-up cost of initiating a query on multiple disks,
and leaves the other disks free to process other queries.

Hash partitioning is also useful for sequential scans of the entire relation.
If the hash function is a good randomizing function, and the partitioning
attributes form a key of the relation, then the number of tuples in each of
the disks is approximately the same, without much variance. Hence, the time
taken to scan the relation is approximately 1/n of the time required to scan
the relation in a single disk system.

The scheme, however, is not well suited for point queries on nonpartitioning
attributes. Hash-based partitioning is also not well suited for answering range

800 Chapter 18 Parallel Databases

queries, since, typically, hash functions do not preserve proximity within a
range. Therefore, all the disks need to be scanned for range queries to be
answered.

• Range partitioning. This scheme is well suited for point and range queries on
the partitioning attribute. For point queries, we can consult the partitioning
vector to locate the disk where the tuple resides. For range queries, we consult
the partitioning vector to find the range of disks on which the tuples may
reside. In both cases, the search narrows to exactly those disks that might
have any tuples of interest.

An advantage of this feature is that, if there are only a few tuples in the
queried range, then the query is typically sent to one disk, as opposed to
all the disks. Since other disks can be used to answer other queries, range
partitioning results in higher throughput while maintaining good response
time. On the other hand, if there are many tuples in the queried range (as
there are when the queried range is a larger fraction of the domain of the
relation), many tuples have to be retrieved from a few disks, resulting in
an I/O bottleneck (hot spot) at those disks. In this example of execution
skew, all processing occurs in one—or only a few—partitions. In contrast,
hash partitioning and round-robin partitioning would engage all the disks
for such queries, giving a faster response time for approximately the same
throughput.

The type of partitioning also affects other relational operations, such as joins,
as we shall see in Section 18.5. Thus, the choice of partitioning technique also
depends on the operations that need to be executed. In general, hash partitioning
or range partitioning are preferred to round-robin partitioning.

In a system with many disks, the number of disks across which to partition
a relation can be chosen in this way: If a relation contains only a few tuples that
will fit into a single disk block, then it is better to assign the relation to a single
disk. Large relations are preferably partitioned across all the available disks. If a
relation consists of m disk blocks and there are n disks available in the system,
then the relation should be allocated min(m, n) disks.

18.2.3 Handling of Skew

When a relation is partitioned (by a technique other than round-robin), there may
be a skew in the distribution of tuples, with a high percentage of tuples placed
in some partitions and fewer tuples in other partitions. The ways that skew may
appear are classified as:

• Attribute-value skew.

• Partition skew.

Attribute-value skew refers to the fact that some values appear in the par-
titioning attributes of many tuples. All the tuples with the same value for the

18.2 I/O Parallelism 801

partitioning attribute end up in the same partition, resulting in skew. Partition
skew refers to the fact that there may be load imbalance in the partitioning, even
when there is no attribute skew.

Attribute-value skew can result in skewed partitioning regardless of whether
range partitioning or hash partitioning is used. If the partition vector is not chosen
carefully, range partitioning may result in partition skew. Partition skew is less
likely with hash partitioning, if a good hash function is chosen.

As Section 17.3.1 noted, even a small skew can result in a significant decrease
in performance. Skew becomes an increasing problem with a higher degree of
parallelism. For example, if a relation of 1000 tuples is divided into 10 parts, and
the division is skewed, then there may be some partitions of size less than 100
and some partitions of size more than 100; if even one partition happens to be of
size 200, the speedup that we would obtain by accessing the partitions in parallel
is only 5, instead of the 10 for which we would have hoped. If the same relation
has to be partitioned into 100 parts, a partition will have 10 tuples on an average.
If even one partition has 40 tuples (which is possible, given the large number of
partitions) the speedup that we would obtain by accessing them in parallel would
be 25, rather than 100. Thus, we see that the loss of speedup due to skew increases
with parallelism.

A balanced range-partitioning vector can be constructed by sorting: The
relation is first sorted on the partitioning attributes. The relation is then scanned
in sorted order. After every 1/n of the relation has been read, the value of the
partitioning attribute of the next tuple is added to the partition vector. Here, n
denotes the number of partitions to be constructed. In case there are many tuples
with the same value for the partitioning attribute, the technique can still result
in some skew. The main disadvantage of this method is the extra I/O overhead
incurred in doing the initial sort.

The I/O overhead for constructing balanced range-partition vectors can be
reduced by constructing and storing a frequency table, or histogram, of the at-
tribute values for each attribute of each relation. Figure 18.1 shows an example of
a histogram for an integer-valued attribute that takes values in the range 1 to 25. A
histogram takes up only a little space, so histograms on several different attributes
can be stored in the system catalog. It is straightforward to construct a balanced
range-partitioning function given a histogram on the partitioning attributes. If
the histogram is not stored, it can be computed approximately by sampling the
relation, using only tuples from a randomly chosen subset of the disk blocks of
the relation.

Another approach to minimizing the effect of skew, particularly with range
partitioning, is to use virtual processors. In the virtual processor approach, we
pretend there are several times as many virtual processors as the number of real
processors. Any of the partitioning techniques and query-evaluation techniques
that we study later in this chapter can be used, but they map tuples and work
to virtual processors instead of to real processors. Virtual processors, in turn, are
mapped to real processors, usually by round-robin partitioning.

The idea is that even if one range had many more tuples than the others
because of skew, these tuples would get split across multiple virtual processor

802 Chapter 18 Parallel Databases

value

fr
eq

ue
nc

y

50

40

30

20

10

1–5 6–10 11–15 16–20 21–25

Figure 18.1 Example of histogram.

ranges. Round-robin allocation of virtual processors to real processors would
distribute the extra work among multiple real processors, so that one processor
does not have to bear all the burden.

18.3 Interquery Parallelism

In interquery parallelism, different queries or transactions execute in parallel
with one another. Transaction throughput can be increased by this form of paral-
lelism. However, the response times of individual transactions are no faster than
they would be if the transactions were run in isolation. Thus, the primary use of
interquery parallelism is to scale up a transaction-processing system to support
a larger number of transactions per second.

Interquery parallelism is the easiest form of parallelism to support in a
database system—particularly in a shared-memory parallel system. Database
systems designed for single-processor systems can be used with few or no changes
on a shared-memory parallel architecture, since even sequential database systems
support concurrent processing. Transactions that would have operated in a time-
shared concurrent manner on a sequential machine operate in parallel in the
shared-memory parallel architecture.

Supporting interquery parallelism is more complicated in a shared-disk or
shared-nothing architecture. Processors have to perform some tasks, such as
locking and logging, in a coordinated fashion, and that requires that they pass
messages to each other. A parallel database system must also ensure that two
processors do not update the same data independently at the same time. Further,
when a processor accesses or updates data, the database system must ensure that
the processor has the latest version of the data in its buffer pool. The problem of
ensuring that the version is the latest is known as the cache-coherency problem.

18.4 Intraquery Parallelism 803

Various protocols are available to guarantee cache coherency; often, cache-
coherency protocols are integrated with concurrency-control protocols so that
their overhead is reduced. One such protocol for a shared-disk system is this:

1. Before any read or write access to a page, a transaction locks the page in
shared or exclusive mode, as appropriate. Immediately after the transaction
obtains either a shared or exclusive lock on a page, it also reads the most
recent copy of the page from the shared disk.

2. Before a transaction releases an exclusive lock on a page, it flushes the page
to the shared disk; then, it releases the lock.

This protocol ensures that, when a transaction sets a shared or exclusive lock on
a page, it gets the correct copy of the page.

More complex protocols avoid the repeated reading and writing to disk re-
quired by the preceding protocol. Such protocols do not write pages to disk when
exclusive locks are released. When a shared or exclusive lock is obtained, if the
most recent version of a page is in the buffer pool of some processor, the page
is obtained from there. The protocols have to be designed to handle concurrent
requests. The shared-disk protocols can be extended to shared-nothing architec-
tures by this scheme: Each page has a home processor Pi , and is stored on disk
Di . When other processors want to read or write the page, they send requests to
the home processor Pi of the page, since they cannot directly communicate with
the disk. The other actions are the same as in the shared-disk protocols.

The Oracle and Oracle Rdb systems are examples of shared-disk parallel
database systems that support interquery parallelism.

18.4 Intraquery Parallelism

Intraquery parallelism refers to the execution of a single query in parallel on
multiple processors and disks. Using intraquery parallelism is important for
speeding up long-running queries. Interquery parallelism does not help in this
task, since each query is run sequentially.

To illustrate the parallel evaluation of a query, consider a query that requires
a relation to be sorted. Suppose that the relation has been partitioned across
multiple disks by range partitioning on some attribute, and the sort is requested
on the partitioning attribute. The sort operation can be implemented by sorting
each partition in parallel, then concatenating the sorted partitions to get the final
sorted relation.

Thus, we can parallelize a query by parallelizing individual operations. There
is another source of parallelism in evaluating a query: The operator tree for a query
can contain multiple operations. We can parallelize the evaluation of the operator
tree by evaluating in parallel some of the operations that do not depend on one
another. Further, as Chapter 12 mentions, we may be able to pipeline the output
of one operation to another operation. The two operations can be executed in

804 Chapter 18 Parallel Databases

parallel on separate processors, one generating output that is consumed by the
other, even as it is generated.

In summary, the execution of a single query can be parallelized in two different
ways:

• Intraoperation parallelism. We can speed up processing of a query by par-
allelizing the execution of each individual operation, such as sort, select,
project, and join. We consider intraoperation parallelism in Section 18.5.

• Interoperation parallelism. We can speed up processing of a query by exe-
cuting in parallel the different operations in a query expression. We consider
this form of parallelism in Section 18.6.

The two forms of parallelism are complementary, and can be used simulta-
neously on a query. Since the number of operations in a typical query is small,
compared to the number of tuples processed by each operation, the first form of
parallelism can scale better with increasing parallelism. However, with the rela-
tively small number of processors in typical parallel systems today, both forms of
parallelism are important.

In the following discussion of parallelization of queries, we assume that the
queries are read only. The choice of algorithms for parallelizing query evalu-
ation depends on the machine architecture. Rather than present algorithms for
each architecture separately, we use a shared-nothing architecture model in our
description. Thus, we explicitly describe when data have to be transferred from
one processor to another. We can simulate this model easily by using the other
architectures, since transfer of data can be done via shared memory in a shared-
memory architecture, and via shared disks in a shared-disk architecture. Hence,
algorithms for shared-nothing architectures can be used on the other architec-
tures, too. We mention occasionally how the algorithms can be further optimized
for shared-memory or shared-disk systems.

To simplify the presentation of the algorithms, assume that there are n proces-
sors, P0, P1, . . . , Pn−1, and n disks D0, D1, . . . , Dn−1, where disk Di is associated
with processor Pi . A real system may have multiple disks per processor. It is not
hard to extend the algorithms to allow multiple disks per processor: We simply
allow Di to be a set of disks. However, for simplicity, we assume here that Di is a
single disk.

18.5 Intraoperation Parallelism

Since relational operations work on relations containing large sets of tuples, we
can parallelize the operations by executing them in parallel on different subsets
of the relations. Since the number of tuples in a relation can be large, the degree of
parallelism is potentially enormous. Thus, intraoperation parallelism is natural
in a database system. We shall study parallel versions of some common relational
operations in Sections 18.5.1 through 18.5.3.

18.5 Intraoperation Parallelism 805

18.5.1 Parallel Sort

Suppose that we wish to sort a relation that resides on n disks D0, D1, . . . , Dn−1.
If the relation has been range-partitioned on the attributes on which it is to be
sorted, then, as noted in Section 18.2.2, we can sort each partition separately, and
can concatenate the results to get the full sorted relation. Since the tuples are
partitioned on n disks, the time required for reading the entire relation is reduced
by the parallel access.

If the relation has been partitioned in any other way, we can sort it in one of
two ways:

1. We can range-partition it on the sort attributes, and then sort each partition
separately.

2. We can use a parallel version of the external sort–merge algorithm.

18.5.1.1 Range-Partitioning Sort

Range-partitioning sort works in two steps: first range partitioning the relation,
then sorting each partition separately. When we sort by range partitioning the
relation, it is not necessary to range-partition the relation on the same set of
processors or disks as those on which that relation is stored. Suppose that we
choose processors P0, P1, . . . , Pm, where m < n, to sort the relation. There are two
steps involved in this operation:

1. Redistribute the tuples in the relation, using a range-partition strategy, so
that all tuples that lie within the ith range are sent to processor Pi , which
stores the relation temporarily on disk Di .

To implement range partitioning, in parallel every processor reads the
tuples from its disk and sends the tuples to their destination processors.
Each processor P0, P1, . . . , Pm also receives tuples belonging to its partition,
and stores them locally. This step requires disk I/O and communication
overhead.

2. Each of the processors sorts its partition of the relation locally, without
interaction with the other processors. Each processor executes the same
operation—namely, sorting—on a different data set. (Execution of the same
operation in parallel on different sets of data is called data parallelism.)

The final merge operation is trivial, because the range partitioning in the
first phase ensures that, for 1 ≤ i < j ≤ m, the key values in processor Pi
are all less than the key values in Pj .

We must do range partitioning with a good range-partition vector, so that each
partition will have approximately the same number of tuples. Virtual processor
partitioning can also be used to reduce skew.

806 Chapter 18 Parallel Databases

18.5.1.2 Parallel External Sort–Merge

Parallel external sort–merge is an alternative to range partitioning. Suppose that
a relation has already been partitioned among disks D0, D1, . . . , Dn−1 (it does not
matter how the relation has been partitioned). Parallel external sort–merge then
works this way:

1. Each processor Pi locally sorts the data on disk Di .

2. The system then merges the sorted runs on each processor to get the final
sorted output.

The merging of the sorted runs in step 2 can be parallelized by this sequence
of actions:

1. The system range-partitions the sorted partitions at each processor Pi (all
by the same partition vector) across the processors P0, P1, . . . , Pm−1. It sends
the tuples in sorted order, so that each processor receives the tuples in sorted
streams.

2. Each processor Pi performs a merge on the streams as they are received, to
get a single sorted run.

3. The system concatenates the sorted runs on processors P0, P1, . . . , Pm−1 to
get the final result.

As described, this sequence of actions results in an interesting form of execution
skew, since at first every processor sends all blocks of partition 0 to P0, then
every processor sends all blocks of partition 1 to P1, and so on. Thus, while
sending happens in parallel, receiving tuples becomes sequential: First only P0
receives tuples, then only P1 receives tuples, and so on. To avoid this problem,
each processor repeatedly sends a block of data to each partition. In other words,
each processor sends the first block of every partition, then sends the second block
of every partition, and so on. As a result, all processors receive data in parallel.

Some machines, such as the Teradata Purpose-Built Platform Family ma-
chines, use specialized hardware to perform merging. The BYNET interconnection
network in the Teradata machines can merge output from multiple processors to
give a single sorted output.

18.5.2 Parallel Join

The join operation requires that the system test pairs of tuples to see whether
they satisfy the join condition; if they do, the system adds the pair to the join
output. Parallel join algorithms attempt to split the pairs to be tested over several
processors. Each processor then computes part of the join locally. Then, the system
collects the results from each processor to produce the final result.

18.5 Intraoperation Parallelism 807

18.5.2.1 Partitioned Join

For certain kinds of joins, such as equi-joins and natural joins, it is possible to
partition the two input relations across the processors and to compute the join
locally at each processor. Suppose that we are using n processors and that the
relations to be joined are r and s. Partitioned join then works this way: The system
partitions the relations r and s each into n partitions, denoted r0, r1, . . . , rn−1 and
s0, s1, . . . , sn−1. The system sends partitions ri and si to processor Pi , where their
join is computed locally.

The partitioned join technique works correctly only if the join is an equi-join
(for example, r �r.A=s.B s) and if we partition r and s by the same partitioning
function on their join attributes. The idea of partitioning is exactly the same as
that behind the partitioning step of hash join. In a partitioned join, however, there
are two different ways of partitioning r and s:

• Range partitioning on the join attributes.

• Hash partitioning on the join attributes.

In either case, the same partitioning function must be used for both relations.
For range partitioning, the same partition vector must be used for both relations.
For hash partitioning, the same hash function must be used on both relations.
Figure 18.2 depicts the partitioning in a partitioned parallel join.

Once the relations are partitioned, we can use any join technique locally at
each processor Pi to compute the join of ri and si . For example, hash join, merge
join, or nested-loop join could be used. Thus, we can use partitioning to parallelize
any join technique.

P0r0

P1r1

s
r

P2r2

P3r3

s0

s1

s2

s3

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

Figure 18.2 Partitioned parallel join.

808 Chapter 18 Parallel Databases

If one or both of the relations r and s are already partitioned on the join
attributes (by either hash partitioning or range partitioning), the work needed
for partitioning is reduced greatly. If the relations are not partitioned, or are
partitioned on attributes other than the join attributes, then the tuples need to
be repartitioned. Each processor Pi reads in the tuples on disk Di , computes for
each tuple t the partition j to which t belongs, and sends tuple t to processor Pj .
Processor Pj stores the tuples on disk Dj .

We can optimize the join algorithm used locally at each processor to reduce
I/O by buffering some of the tuples to memory, instead of writing them to disk.
We describe such optimizations in Section 18.5.2.3.

Skew presents a special problem when range partitioning is used, since a
partition vector that splits one relation of the join into equal-sized partitions
may split the other relations into partitions of widely varying size. The partition
vector should be such that |ri | + |si | (that is, the sum of the sizes of ri and si) is
roughly equal over all the i = 0, 1, . . . , n − 1. With a good hash function, hash
partitioning is likely to have a smaller skew, except when there are many tuples
with the same values for the join attributes.

18.5.2.2 Fragment-and-Replicate Join

Partitioning is not applicable to all types of joins. For instance, if the join condition
is an inequality, such as r �r.a<s.b s, it is possible that all tuples in r join with some
tuple in s (and vice versa). Thus, there may be no easy way of partitioning r and
s so that tuples in partition ri join with only tuples in partition si .

We can parallelize such joins by using a technique called fragment and replicate.
We first consider a special case of fragment and replicate—asymmetric fragment-
and-replicate join—which works as follows:

1. The system partitions one of the relations—say, r . Any partitioning tech-
nique can be used on r , including round-robin partitioning.

2. The system replicates the other relation, s, across all the processors.

3. Processor Pi then locally computes the join of ri with all of s, using any join
technique.

The asymmetric fragment-and-replicate scheme appears in Figure 18.3a. If r is
already stored by partitioning, there is no need to partition it further in step 1. All
that is required is to replicate s across all processors.

The general case of fragment-and-replicate join appears in Figure 18.3b; it
works this way: The system partitions relation r into n partitions, r0, r1, . . . , rn−1,
and partitions s into m partitions, s0, s1, . . . , sm−1. As before, any partitioning
technique may be used on r and on s. The values of m and n do not need to
be equal, but they must be chosen so that there are at least m ∗ n processors.
Asymmetric fragment and replicate is simply a special case of general fragment
and replicate, where m = 1. Fragment and replicate reduces the sizes of the
relations at each processor, compared to asymmetric fragment and replicate.

18.5 Intraoperation Parallelism 809

r0 P0,0

s0 s1 s2

s
s3 sm–1

r1

r r2

r3

rn–1
Pn–1,m–1

...

P0r0

P1r1
r s

P2r2

P3r3

...
...

P1,0

P2,0

P0,1

P1,1

P2,1

P0,2

P1,2

P0,3

. . .

.

.

.

.

.

.

(a) Asymmetric
fragment and replicate

(b) Fragment and replicate

Figure 18.3 Fragment-and-replicate schemes.

Let the processors be P0,0, P0,1, . . . , P0,m−1, P1,0, . . . , Pn−1,m−1. Processor Pi, j
computes the join of ri with s j . Each processor must get those tuples in the
partitions on which it works. To accomplish this, the system replicates ri to pro-
cessors Pi,0, Pi,1, . . . , Pi,m−1 (which form a row in Figure 18.3b), and replicates si
to processors P0,i , P1,i , . . . , Pn−1,i (which form a column in Figure 18.3b). Any join
technique can be used at each processor Pi, j .

Fragment and replicate works with any join condition, since every tuple in
r can be tested with every tuple in s. Thus, it can be used where partitioning
cannot be.

Fragment and replicate usually has a higher cost than partitioning when both
relations are of roughly the same size, since at least one of the relations has to be
replicated. However, if one of the relations—say, s —is small, it may be cheaper
to replicate s across all processors, rather than to repartition r and s on the join
attributes. In such a case, asymmetric fragment and replicate is preferable, even
though partitioning could be used.

18.5.2.3 Partitioned Parallel Hash Join

The partitioned hash join of Section 12.5.5 can be parallelized. Suppose that we
have n processors, P0, P1, . . . , Pn−1, and two relations r and s, such that the
relations r and s are partitioned across multiple disks. Recall from Section 12.5.5

810 Chapter 18 Parallel Databases

that the smaller relation is chosen as the build relation. If the size of s is less than
that of r , the parallel hash-join algorithm proceeds this way:

1. Choose a hash function—say, h1 —that takes the join attribute value of
each tuple in r and s and maps the tuple to one of the n processors. Let ri
denote the tuples of relation r that are mapped to processor Pi ; similarly,
let si denote the tuples of relation s that are mapped to processor Pi . Each
processor Pi reads the tuples of s that are on its disk Di and sends each tuple
to the appropriate processor on the basis of hash function h1.

2. As the destination processor Pi receives the tuples of si , it further partitions
them by another hash function, h2, which the processor uses to compute the
hash join locally. The partitioning at this stage is exactly the same as in the
partitioning phase of the sequential hash-join algorithm. Each processor Pi
executes this step independently from the other processors.

3. Once the tuples of s have been distributed, the system redistributes the larger
relation r across the n processors by the hash function h1, in the same way
as before. As it receives each tuple, the destination processor repartitions it
by the function h2, just as the probe relation is partitioned in the sequential
hash-join algorithm.

4. Each processor Pi executes the build and probe phases of the hash-join
algorithm on the local partitions ri and si of r and s to produce a partition
of the final result of the hash join.

The hash join at each processor is independent of that at other processors, and
receiving the tuples of ri and si is similar to reading them from disk. Therefore,
any of the optimizations of the hash join described in Chapter 12 can be applied as
well to the parallel case. In particular, we can use the hybrid hash-join algorithm
to cache some of the incoming tuples in memory, and thus avoid the costs of
writing them and of reading them back in.

18.5.2.4 Parallel Nested-Loop Join

To illustrate the use of fragment-and-replicate–based parallelization, consider the
case where the relation s is much smaller than relation r . Suppose that relation r
is stored by partitioning; the attribute on which it is partitioned does not matter.
Suppose too that there is an index on a join attribute of relation r at each of the
partitions of relation r .

We use asymmetric fragment and replicate, with relation s being replicated
and with the existing partitioning of relation r . Each processor Pj where a partition
of relation s is stored reads the tuples of relation s stored in Dj , and replicates the
tuples to every other processor Pi . At the end of this phase, relation s is replicated
at all sites that store tuples of relation r .

Now, each processor Pi performs an indexed nested-loop join of relation s
with the ith partition of relation r . We can overlap the indexed nested-loop join

18.5 Intraoperation Parallelism 811

with the distribution of tuples of relation s, to reduce the costs of writing the
tuples of relation s to disk, and of reading them back. However, the replication of
relation s must be synchronized with the join so that there is enough space in the
in-memory buffers at each processor Pi to hold the tuples of relation s that have
been received but that have not yet been used in the join.

18.5.3 Other Relational Operations

The evaluation of other relational operations also can be parallelized:

• Selection. Let the selection be ��(r). Consider first the case where � is of the
form ai = v, where ai is an attribute and v is a value. If the relation r is
partitioned on ai , the selection proceeds at a single processor. If � is of the
form l ≤ ai ≤ u—that is, � is a range selection—and the relation has been
range-partitioned on ai , then the selection proceeds at each processor whose
partition overlaps with the specified range of values. In all other cases, the
selection proceeds in parallel at all the processors.

• Duplicate elimination. Duplicates can be eliminated by sorting; either of
the parallel sort techniques can be used, optimized to eliminate duplicates
as soon as they appear during sorting. We can also parallelize duplicate
elimination by partitioning the tuples (by either range or hash partitioning)
and eliminating duplicates locally at each processor.

• Projection. Projection without duplicate elimination can be performed as
tuples are read in from disk in parallel. If duplicates are to be eliminated,
either of the techniques just described can be used.

• Aggregation. Consider an aggregation operation. We can parallelize the op-
eration by partitioning the relation on the grouping attributes, and then com-
puting the aggregate values locally at each processor. Either hash partitioning
or range partitioning can be used. If the relation is already partitioned on the
grouping attributes, the first step can be skipped.

We can reduce the cost of transferring tuples during partitioning by partly
computing aggregate values before partitioning, at least for the commonly
used aggregate functions. Consider an aggregation operation on a relation r ,
using the sum aggregate function on attribute B, with grouping on attribute
A. The system can perform the operation at each processor Pi on those r tuples
stored on disk Di . This computation results in tuples with partial sums at each
processor; there is one tuple at Pi for each value for attribute A present in r
tuples stored on Di . The system partitions the result of the local aggregation
on the grouping attribute A, and performs the aggregation again (on tuples
with the partial sums) at each processor Pi to get the final result.

As a result of this optimization, fewer tuples need to be sent to other
processors during partitioning. This idea can be extended easily to the min
and max aggregate functions. Extensions to the count and avg aggregate
functions are left for you to do in Exercise 18.12.

812 Chapter 18 Parallel Databases

The parallelization of other operations is covered in several of the exercises.

18.5.4 Cost of Parallel Evaluation of Operations

We achieve parallelism by partitioning the I/O among multiple disks, and par-
titioning the CPU work among multiple processors. If such a split is achieved
without any overhead, and if there is no skew in the splitting of work, a parallel
operation using n processors will take 1/n times as long as the same operation
on a single processor. We already know how to estimate the cost of an operation
such as a join or a selection. The time cost of parallel processing would then be
1/n of the time cost of sequential processing of the operation.

We must also account for the following costs:

• Start-up costs for initiating the operation at multiple processors.

• Skew in the distribution of work among the processors, with some processors
getting a larger number of tuples than others.

• Contention for resources—such as memory, disk, and the communication
network—resulting in delays.

• Cost of assembling the final result by transmitting partial results from each
processor.

The time taken by a parallel operation can be estimated as:

Tpart + Tasm + max(T0, T1, . . . , Tn−1)

where Tpart is the time for partitioning the relations, Tasm is the time for assembling
the results, and Ti is the time taken for the operation at processor Pi . Assuming
that the tuples are distributed without any skew, the number of tuples sent to
each processor can be estimated as 1/n of the total number of tuples. Ignoring
contention, the cost Ti of the operations at each processor Pi can then be estimated
by the techniques in Chapter 12.

The preceding estimate will be an optimistic estimate, since skew is common.
Even though breaking down a single query into a number of parallel steps reduces
the size of the average step, it is the time for processing the single slowest step
that determines the time taken for processing the query as a whole. A partitioned
parallel evaluation, for instance, is only as fast as the slowest of the parallel
executions. Thus, any skew in the distribution of the work across processors
greatly affects performance.

The problem of skew in partitioning is closely related to the problem of
partition overflow in sequential hash joins (Chapter 12). We can use overflow
resolution and avoidance techniques developed for hash joins to handle skew
when hash partitioning is used. We can use balanced range partitioning and
virtual processor partitioning to minimize skew due to range partitioning, as in
Section 18.2.3.

18.6 Interoperation Parallelism 813

18.6 Interoperation Parallelism

There are two forms of interoperation parallelism: pipelined parallelism and
independent parallelism.

18.6.1 Pipelined Parallelism

As discussed in Chapter 12, pipelining forms an important source of economy of
computation for database query processing. Recall that, in pipelining, the output
tuples of one operation, A, are consumed by a second operation, B, even before
the first operation has produced the entire set of tuples in its output. The major
advantage of pipelined execution in a sequential evaluation is that we can carry
out a sequence of such operations without writing any of the intermediate results
to disk.

Parallel systems use pipelining primarily for the same reason that sequential
systems do. However, pipelines are a source of parallelism as well, in the same
way that instruction pipelines are a source of parallelism in hardware design. It is
possible to run operations Aand B simultaneously on different processors, so that
B consumes tuples in parallel with A producing them. This form of parallelism
is called pipelined parallelism.

Consider a join of four relations:

r1 � r2 � r3 � r4

We can set up a pipeline that allows the three joins to be computed in parallel.
Suppose processor P1 is assigned the computation of temp1 ← r1 � r2, and P2
is assigned the computation of r3 � temp1. As P1 computes tuples in r1 � r2,
it makes these tuples available to processor P2. Thus, P2 has available to it some
of the tuples in r1 � r2 before P1 has finished its computation. P2 can use those
tuples that are available to begin computation of temp1 � r3, even before r1 � r2
is fully computed by P1. Likewise, as P2 computes tuples in (r1 � r2) � r3, it
makes these tuples available to P3, which computes the join of these tuples with
r4.

Pipelined parallelism is useful with a small number of processors, but does
not scale up well. First, pipeline chains generally do not attain sufficient length
to provide a high degree of parallelism. Second, it is not possible to pipeline rela-
tional operators that do not produce output until all inputs have been accessed,
such as the set-difference operation. Third, only marginal speedup is obtained for
the frequent cases in which one operator’s execution cost is much higher than are
those of the others.

All things considered, when the degree of parallelism is high, pipelining is a
less important source of parallelism than partitioning. The real reason for using
pipelining is that pipelined executions can avoid writing intermediate results to
disk.

814 Chapter 18 Parallel Databases

18.6.2 Independent Parallelism

Operations in a query expression that do not depend on one another can be
executed in parallel. This form of parallelism is called independent parallelism.

Consider the join r1 � r2 � r3 � r4. Clearly, we can compute temp1 ←
r1 � r2 in parallel with temp2 ← r3 � r4. When these two computations
complete, we compute:

temp1 � temp2

To obtain further parallelism, we can pipeline the tuples in temp1 and temp2 into
the computation of temp1 � temp2, which is itself carried out by a pipelined join
(Section 12.7.2.2).

Like pipelined parallelism, independent parallelism does not provide a high
degree of parallelism and is less useful in a highly parallel system, although it is
useful with a lower degree of parallelism.

18.7 Query Optimization

Query optimizers account in large measure for the success of relational technol-
ogy. Recall that a query optimizer takes a query and finds the cheapest execution
plan among the many possible execution plans that give the same answer.

Query optimizers for parallel query evaluation are more complicated than
query optimizers for sequential query evaluation. First, the cost models are more
complicated, since partitioning costs have to be accounted for, and issues such as
skew and resource contention must be taken into account. More important is the
issue of how to parallelize a query. Suppose that we have somehow chosen an
expression (from among those equivalent to the query) to be used for evaluating
the query. The expression can be represented by an operator tree, as in Section 12.1.

To evaluate an operator tree in a parallel system, we must make the following
decisions:

• How to parallelize each operation, and how many processors to use for it.

• What operations to pipeline across different processors, what operations to
execute independently in parallel, and what operations to execute sequen-
tially, one after the other.

These decisions constitute the task of scheduling the execution tree.
Determining the resources of each kind—such as processors, disks, and mem-

ory—that should be allocated to each operation in the tree is another aspect of
the optimization problem. For instance, it may appear wise to use the maximum
amount of parallelism available, but it is a good idea not to execute certain opera-
tions in parallel. Operations whose computational requirements are significantly
smaller than the communication overhead should be clustered with one of their

18.8 Design of Parallel Systems 815

neighbors. Otherwise, the advantage of parallelism is negated by the overhead
of communication.

One concern is that long pipelines do not lend themselves to good resource
utilization. Unless the operations are coarse grained, the final operation of the
pipeline may wait for a long time to get inputs, while holding precious resources,
such as memory. Hence, long pipelines should be avoided.

The number of parallel evaluation plans from which to choose is much larger
than the number of sequential evaluation plans. Optimizing parallel queries by
considering all alternatives is therefore much more expensive than optimizing
sequential queries. Hence, we usually adopt heuristic approaches to reduce the
number of parallel execution plans that we have to consider. We describe two
popular heuristics here.

The first heuristic is to consider only evaluation plans that parallelize every
operation across all processors, and that do not use any pipelining. This approach
is used in the Teradata systems. Finding the best such execution plan is like doing
query optimization in a sequential system. The main differences lie in how the
partitioning is performed and what cost-estimation formula is used.

The second heuristic is to choose the most efficient sequential evaluation plan,
and then to parallelize the operations in that evaluation plan. The Volcano paral-
lel database popularized a model of parallelization called the exchange-operator
model. This model uses existing implementations of operations, operating on
local copies of data, coupled with an exchange operation that moves data around
between different processors. Exchange operators can be introduced into an eval-
uation plan to transform it into a parallel evaluation plan.

Yet another dimension of optimization is the design of physical-storage or-
ganization to speed up queries. The optimal physical organization differs for
different queries. The database administrator must choose a physical organiza-
tion that appears to be good for the expected mix of database queries. Thus, the
area of parallel query optimization is complex, and it is still an area of active
research.

18.8 Design of Parallel Systems

So far this chapter has concentrated on parallelization of data storage and of
query processing. Since large-scale parallel database systems are used primarily
for storing large volumes of data, and for processing decision-support queries
on those data, these topics are the most important in a parallel database system.
Parallel loading of data from external sources is an important requirement, if we
are to handle large volumes of incoming data.

A large parallel database system must also address these availability issues:

• Resilience to failure of some processors or disks.

• Online reorganization of data and schema changes.

We consider these issues here.

816 Chapter 18 Parallel Databases

With a large number of processors and disks, the probability that at least
one processor or disk will malfunction is significantly greater than in a single-
processor system with one disk. A poorly designed parallel system will stop
functioning if any component (processor or disk) fails. Assuming that the proba-
bility of failure of a single processor or disk is small, the probability of failure of
the system goes up linearly with the number of processors and disks. If a single
processor or disk would fail once every 5 years, a system with 100 processors
would have a failure every 18 days.

Therefore, large-scale parallel database systems, such as Teradata, and IBM
Informix XPS, are designed to operate even if a processor or disk fails. Data are
replicated across at least two processors. If a processor fails, the data that it stored
can still be accessed from the other processors. The system keeps track of failed
processors and distributes the work among functioning processors. Requests for
data stored at the failed site are automatically routed to the backup sites that
store a replica of the data. If all the data of a processor A are replicated at a single
processor B, B will have to handle all the requests to A as well as those to itself,
and that will result in B becoming a bottleneck. Therefore, the replicas of the data
of a processor are partitioned across multiple other processors.

When we are dealing with large volumes of data (ranging in the terabytes),
simple operations, such as creating indices, and changes to schema, such as
adding a column to a relation, can take a long time—perhaps hours or even days.
Therefore, it is unacceptable for the database system to be unavailable while such
operations are in progress. Most database systems allow such operations to be
performed online, that is, while the system is executing other transactions.

Consider, for instance, online index construction. A system that supports this
feature allows insertions, deletions, and updates on a relation even as an index
is being built on the relation. The index-building operation therefore cannot lock
the entire relation in shared mode, as it would have done otherwise. Instead,
the process keeps track of updates that occur while it is active and incorporates
the changes into the index being constructed. (Most database systems today
support online index construction, since this feature is very important even for
non-parallel database systems.)

In recent years, a number of companies have developed new parallel database
products, including Netezza, DATAllegro (which was acquired by Microsoft),
Greenplum, and Aster Data. Each of these products runs on systems containing
tens to thousands of nodes, with each node running an instance of an underlying
database; Each product manages the partitioning of data, as well as parallel
processing of queries, across the database instances.

Netezza, Greenplum and Aster Data use PostgreSQL as the underlying data-
base; DATAllegro originally used Ingres as the underlying database system, but
moved to SQL Server subsequent to its acquisition by Microsoft. By building on
top of an existing database system, these systems are able to leverage the data stor-
age, query processing, and transaction management features of the underlying
database, leaving them free to focus on data partitioning (including replication
for fault tolerance), fast interprocessor communication, parallel query process-
ing, and parallel-query optimization. Another benefit of using a public domain

18.9 Parallelism on Multicore Processors 817

database such as PostgreSQL is that the software cost per node is very low; in
contrast commercial databases have a significant per-processor cost.

It is also worth mentioning that Netezza and DATAllegro actually sell data
warehouse “appliances”, which include hardware and software, allowing cus-
tomers to build parallel databases with minimal effort.

18.9 Parallelism on Multicore Processors

Parallelism has become commonplace on most computers today, even some of
the smallest, due to current trends in computer architecture. As a result, virtually
all database systems today run on a parallel platform. In this section, we shall
explore briefly the reasons for this architectural trend and the effects this has on
database system design and implementation.

18.9.1 Parallelism versus Raw Speed

Since the dawn of computers, processor speed has increased at an exponential
rate, doubling every 18 to 24 months. This increase results from an exponential
growth in the number of transistors that could be fit within a unit area of a silicon
chip, and is known popularly as Moore’s law, named after Intel co-founder
Gordon Moore. Technically, Moore’s law is not a law, but rather an observation
and a prediction regarding technology trends. Until recently, the increase in the
number of transistors and the decrease in their size led to ever-faster processors.
Although technological progress continues to behave as predicted by Moore’s law,
another factor has emerged to slow the growth in processor speed. Fast processors
are power inefficient. This is problematic in terms of energy consumption and
cost, battery life for mobile computers, and heat dissipation (all the power used
eventually turns into heat). As a result, modern processors typically are not one
single processor but rather consist of several processors on one chip. To maintain a
distinction between on-chip multiprocessors and traditional processors, the term
core is used for an on-chip processor. Thus we say that a machine has a multicore
processor.2

18.9.2 Cache Memory and Multithreading

Each core is capable of processing an independent stream of machine instructions.
However, because processors are able to process data faster than it can be accessed
from main memory, main memory can become a bottleneck that limits overall
performance. For this reason, computer designers include one or more levels of
cache memory in a computer system. Cache memory is more costly than main
memory on a per-byte basis, but offers a faster access time. In multilevel cache
designs, the levels are called L1, L2, and so on, with L1 being the fastest cache
(and thus the most costly per byte and therefore the smallest), L2 the next fastest,

2The use of the term core here is different from the use of that term in the early days of computing to refer to a
main-memory technology based on magnetic cores.

818 Chapter 18 Parallel Databases

and so on. The result is an extension of the storage hierarchy that we discussed
in Chapter 10 to include the various levels of cache below main memory.

Although the database system can control the transfer of data between disk
and main memory, the computer hardware maintains control over the transfer
of data among the various levels of cache and between cache and main memory.
Despite this lack of direct control, the database system’s performance can be
affected by how cache is utilized. If a core needs to access a data item that is not in
cache, it must be fetched from main memory. Because main memory is so much
slower than processors, a significant amount of potential processing speed may
be lost while a core waits for data from main memory. These waits are referred to
as cache misses.

One way in which computer designers attempt to limit the impact of cache
misses is via multithreading. A thread is an execution stream that shares memory3

with other threads running on the same core. If the thread currently executing on
a core suffers a cache miss (or other type of wait), the core proceeds to execute
another thread, thereby not wasting computing speed while waiting.

Threads introduce yet another source of parallelism beyond the multiplicity of
cores. Each new generation of processors supports more cores and more threads.
The Sun UltraSPARC T2 processor has 8 cores, each of which supports 8 threads,
for a total of 64 threads on one processor chip.

The architecture trend of slower increase in raw speed accompanied by the
growth in the number of cores has significant implications for database system
design, as we shall see shortly.

18.9.3 Adapting Database System Design for Modern Architectures

It would appear that database systems are an ideal application to take advantage
of large numbers of cores and threads, since database systems support large
numbers of concurrent transactions. However, there are a variety of factors that
make optimal use of modern processors challenging.

As we allow a higher degree of concurrency to take advantage of the par-
allelism of modern processors, we increase the amount of data that needs to be
in cache. This can result in more cache misses, perhaps so many that even a
multithreaded core has to wait for data from memory.

Concurrent transactions need some sort of concurrency control to ensure the
ACID properties that we discussed in Chapter 14. When concurrent transactions
access data in common, some sort of restrictions must be imposed on that concur-
rent access. Those restrictions, whether based on locks, timestamps, or validation,
result in waiting or the loss of work due to transaction aborts. To avoid excessive
amounts of waiting or lost work, it is ideal that concurrent transactions conflict
rarely, but attempting to ensure that can increase the amount of data needed in
cache, resulting in more cache misses.

Finally, there are components of a database system shared by all transactions.
In a system using locking, the lock table is shared by all transactions and access to

3Technically, in operating-system terminology, its address space.

18.10 Summary 819

it can become a bottleneck. Similar problems exist for other forms of concurrency
control. Similarly, the buffer manager, the log manager, and the recovery manager
serve all transactions and are potential bottlenecks.

Because having a large number of concurrent transactions may not take opti-
mal advantage of modern processors, it is desirable to find ways to allow multiple
cores to work on a single transaction. This requires the database query processor
to find effective ways to parallelize queries without creating excessive demands
on cache. This can be done by creating pipelines of database operations from
queries and by finding ways to parallelize individual database operations.

The adaptation of database system design and database query processing to
multicore and multithreaded systems remains an area of active research. See the
bibliographical notes for further details.

18.10 Summary

• Parallel databases have gained significant commercial acceptance in the past
20 years.

• In I/O parallelism, relations are partitioned among available disks so that
they can be retrieved faster. Three commonly used partitioning techniques
are round-robin partitioning, hash partitioning, and range partitioning.

• Skew is a major problem, especially with increasing degrees of parallelism.
Balanced partitioning vectors, using histograms, and virtual processor parti-
tioning are among the techniques used to reduce skew.

• In interquery parallelism, we run different queries concurrently to increase
throughput.

• Intraquery parallelism attempts to reduce the cost of running a query. There
are two types of intraquery parallelism: intraoperation parallelism and inter-
operation parallelism.

• We use intraoperation parallelism to execute relational operations, such as
sorts and joins, in parallel. Intraoperation parallelism is natural for relational
operations, since they are set oriented.

• There are two basic approaches to parallelizing a binary operation such as a
join.

◦ In partitioned parallelism, the relations are split into several parts, and
tuples in ri are joined only with tuples from si . Partitioned parallelism can
be used only for natural and equi-joins.

◦ In fragment and replicate, both relations are partitioned and each partition
is replicated. In asymmetric fragment and replicate, one of the relations is
replicated while the other is partitioned. Unlike partitioned parallelism,
fragment and replicate and asymmetric fragment and replicate can be
used with any join condition.

820 Chapter 18 Parallel Databases

Both parallelization techniques can work in conjunction with any join tech-
nique.

• In independent parallelism, different operations that do not depend on one
another are executed in parallel.

• In pipelined parallelism, processors send the results of one operation to an-
other operation as those results are computed, without waiting for the entire
operation to finish.

• Query optimization in parallel databases is significantly more complex than
query optimization in sequential databases.

• Modern multicore processors are introducing new research problems in par-
allel databases.

Review Terms

• Decision-support queries
• I/O parallelism
• Horizontal partitioning
• Partitioning techniques

◦ Round-robin

◦ Hash partitioning

◦ Range partitioning

• Partitioning attribute
• Partitioning vector
• Point query
• Range query
• Skew

◦ Execution skew

◦ Attribute-value skew

◦ Partition skew

• Handling of skew

◦ Balanced range-partitioning
vector

◦ Histogram

◦ Virtual processors

• Interquery parallelism

• Cache coherency
• Intraquery parallelism

◦ Intraoperation parallelism

◦ Interoperation parallelism

• Parallel sort

◦ Range-partitioning sort

◦ Parallel external sort–merge

• Data parallelism
• Parallel join

◦ Partitioned join

◦ Fragment-and-replicate join

◦ Asymmetric fragment-and-
replicate join

◦ Partitioned parallel hash join

◦ Parallel nested-loop join

• Parallel selection
• Parallel duplicate elimination
• Parallel projection
• Parallel aggregation
• Cost of parallel evaluation

Practice Exercises 821

• Interoperation parallelism

◦ Pipelined parallelism

◦ Independent parallelism

• Query optimization

• Scheduling
• Exchange-operator model
• Design of parallel systems
• Online index construction
• Multicore processors

Practice Exercises

18.1 In a range selection on a range-partitioned attribute, it is possible that only
one disk may need to be accessed. Describe the benefits and drawbacks
of this property.

18.2 What form of parallelism (interquery, interoperation, or intraoperation) is
likely to be the most important for each of the following tasks?

a. Increasing the throughput of a system with many small queries

b. Increasing the throughput of a system with a few large queries, when
the number of disks and processors is large

18.3 With pipelined parallelism, it is often a good idea to perform several
operations in a pipeline on a single processor, even when many processors
are available.

a. Explain why.

b. Would the arguments you advanced in part a hold if the machine
has a shared-memory architecture? Explain why or why not.

c. Would the arguments in part a hold with independent parallelism?
(That is, are there cases where, even if the operations are not pipelined
and there are many processors available, it is still a good idea to per-
form several operations on the same processor?)

18.4 Consider join processing using symmetric fragment and replicate with
range partitioning. How can you optimize the evaluation if the join con-
dition is of the form | r.A− s.B | ≤ k, where k is a small constant? Here,
| x | denotes the absolute value of x. A join with such a join condition is
called a band join.

18.5 Recall that histograms are used for constructing load-balanced range par-
titions.

a. Suppose you have a histogram where values are between 1 and 100,
and are partitioned into 10 ranges, 1–10, 11–20, . . . , 91–100, with
frequencies 15, 5, 20, 10, 10, 5, 5, 20, 5, and 5, respectively. Give a
load-balanced range partitioning function to divide the values into
5 partitions.

822 Chapter 18 Parallel Databases

b. Write an algorithm for computing a balanced range partition with p
partitions, given a histogram of frequency distributions containing
n ranges.

18.6 Large-scale parallel database systems store an extra copy of each data
item on disks attached to a different processor, to avoid loss of data if one
of the processors fails.

a. Instead of keeping the extra copy of data items from a processor at
a single backup processor, it is a good idea to partition the copies
of the data items of a processor across multiple processors. Explain
why.

b. Explain how virtual-processor partitioning can be used to efficiently
implement the partitioning of the copies as described above.

c. What are the benefits and drawbacks of using RAID storage instead
of storing an extra copy of each data item?

18.7 Suppose we wish to index a large relation that is partitioned. Can the
idea of partitioning (including virtual processor partitioning) be applied
to indices? Explain your answer, considering the following two cases
(assuming for simplicity that partitioning as well as indexing are on single
attributes):

a. Where the index is on the partitioning attribute of the relation.

b. Where the index is on an attribute other than the partitioning at-
tribute of the relation.

18.8 Suppose a well-balanced range-partitioning vector had been chosen for a
relation, but the relation is subsequently updated, making the partitioning
unbalanced. Even if virtual-processor partitioning is used, a particular
virtual processor may end up with a very large number of tuples after the
update, and repartitioning would then be required.

a. Suppose a virtual processor has a significant excess of tuples (say,
twice the average). Explain how repartitioning can be done by split-
ting the partition, thereby increasing the number of virtual proces-
sors.

b. If, instead of round-robin allocation of virtual processors, virtual
partitions can be allocated to processors in an arbitrary fashion,
with a mapping table tracking the allocation. If a particular node
has excess load (compared to the others), explain how load can be
balanced.

c. Assuming there are no updates, does query processing have to be
stopped while repartitioning, or reallocation of virtual processors,
is carried out? Explain your answer.

Exercises 823

Exercises

18.9 For each of the three partitioning techniques, namely round-robin, hash
partitioning, and range partitioning, give an example of a query for which
that partitioning technique would provide the fastest response.

18.10 What factors could result in skew when a relation is partitioned on one of
its attributes by:

a. Hash partitioning?

b. Range partitioning?

In each case, what can be done to reduce the skew?

18.11 Give an example of a join that is not a simple equi-join for which parti-
tioned parallelism can be used. What attributes should be used for parti-
tioning?

18.12 Describe a good way to parallelize each of the following:

a. The difference operation

b. Aggregation by the count operation

c. Aggregation by the count distinct operation

d. Aggregation by the avg operation

e. Left outer join, if the join condition involves only equality

f. Left outer join, if the join condition involves comparisons other than
equality

g. Full outer join, if the join condition involves comparisons other than
equality

18.13 Describe the benefits and drawbacks of pipelined parallelism.

18.14 Suppose you wish to handle a workload consisting of a large number of
small transactions by using shared-nothing parallelism.

a. Is intraquery parallelism required in such a situation? If not, why,
and what form of parallelism is appropriate?

b. What form of skew would be of significance with such a workload?

c. Suppose most transactions accessed one account record, which in-
cludes an account type attribute, and an associated account type master
record, which provides information about the account type. How
would you partition and/or replicate data to speed up transactions?
You may assume that the account type master relation is rarely up-
dated.

824 Chapter 18 Parallel Databases

18.15 The attribute on which a relation is partitioned can have a significant
impact on the cost of a query.

a. Given a workload of SQL queries on a single relation, what attributes
would be candidates for partitioning?

b. How would you choose between the alternative partitioning tech-
niques, based on the workload?

c. Is it possible to partition a relation on more than one attribute?
Explain your answer.

Bibliographical Notes

In the late 1970s and early 1980s, as the relational model gained reasonably sound
footing, people recognized that relational operators are highly parallelizable and
have good dataflow properties. Several research projects including GAMMA (De-
Witt [1990]), XPRS (Stonebraker et al. [1989]) and Volcano (Graefe [1990]) were
launched to investigate the practicality of parallel execution of relational opera-
tors.

Teradata was one of the first commercial parallel database systems, and con-
tinues to have a large market share. The Red Brick Warehouse was another early
parallel database system; Red Brick was was acquired by Informix, which was
itself acquired by IBM. More recent parallel database systems include Netezza,
DATAllegro (now part of Microsoft), Greenplum, and Aster Data.

Locking in parallel databases is discussed in Joshi [1991] and Mohan and
Narang [1992]. Cache-coherency protocols for parallel database systems are dis-
cussed by Dias et al. [1989], Mohan and Narang [1992], and Rahm [1993]. Carey
et al. [1991] discusses caching issues in a client–server system.

Graefe and McKenna [1993b] presents an excellent survey of query process-
ing, including parallel processing of queries. The exchange-operator model was
advocated by Graefe [1990] and Graefe and McKenna [1993b].

Parallel sorting is discussed in DeWitt et al. [1992]. Parallel sorting on multi-
core and multithreaded processors is discussed in Garcia and Korth [2005] and
Chen et al. [2007]. Parallel join algorithms are described by Nakayama et al.
[1984], Richardson et al. [1987], Kitsuregawa and Ogawa [1990], and Wilschut
et al. [1995], among other works.

Skew handling in parallel joins is described by Walton et al. [1991], Wolf
[1991], and DeWitt et al. [1992].

Parallel query-optimization techniques are described by Lu et al. [1991] and
Ganguly et al. [1992].

The adaptation of database-system design and query-processing algorithms
to multicore and multithreaded architectures is discussed in the proceedings of the
International Workshop on Data Management on Modern Hardware (DaMoN),
held annually since 2005.

C H A P T E R19
Distributed Databases

Unlike parallel systems, in which the processors are tightly coupled and consti-
tute a single database system, a distributed database system consists of loosely
coupled sites that share no physical components. Furthermore, the database sys-
tems that run on each site may have a substantial degree of mutual independence.
We discussed the basic structure of distributed systems in Chapter 17.

Each site may participate in the execution of transactions that access data at
one site, or several sites. The main difference between centralized and distributed
database systems is that, in the former, the data reside in one single location,
whereas in the latter, the data reside in several locations. This distribution of data
is the cause of many difficulties in transaction processing and query processing.
In this chapter, we address these difficulties.

We start by classifying distributed databases as homogeneous or heteroge-
neous, in Section 19.1. We then address the question of how to store data in a
distributed database in Section 19.2. In Section 19.3, we outline a model for trans-
action processing in a distributed database. In Section 19.4, we describe how to
implement atomic transactions in a distributed database by using special com-
mit protocols. In Section 19.5, we describe concurrency control in distributed
databases. In Section 19.6, we outline how to provide high availability in a dis-
tributed database by exploiting replication, so the system can continue processing
transactions even when there is a failure. We address query processing in dis-
tributed databases in Section 19.7. In Section 19.8, we outline issues in handling
heterogeneous databases. In Section 19.10, we describe directory systems, which
can be viewed as a specialized form of distributed databases.

In this chapter, we illustrate all our examples using the bank database of
Figure 19.1.

19.1 Homogeneous and Heterogeneous Databases

In a homogeneous distributed database system, all sites have identical database-
management system software, are aware of one another, and agree to cooperate in
processing users’ requests. In such a system, local sites surrender a portion of their
autonomy in terms of their right to change schemas or database-management

825

826 Chapter 19 Distributed Databases

branch(branch name, branch city, assets)
account (account number, branch name, balance)
depositor (customer name, account number)

Figure 19.1 Banking database.

system software. That software must also cooperate with other sites in exchanging
information about transactions, to make transaction processing possible across
multiple sites.

In contrast, in a heterogeneous distributed database, different sites may use
different schemas, and different database-management system software. The sites
may not be aware of one another, and they may provide only limited facilities
for cooperation in transaction processing. The differences in schemas are often a
major problem for query processing, while the divergence in software becomes a
hindrance for processing transactions that access multiple sites.

In this chapter, we concentrate on homogeneous distributed databases. How-
ever, in Section 19.8 we briefly discuss issues in heterogeneous distributed database
systems.

19.2 Distributed Data Storage

Consider a relation r that is to be stored in the database. There are two approaches
to storing this relation in the distributed database:

• Replication. The system maintains several identical replicas (copies) of the
relation, and stores each replica at a different site. The alternative to replica-
tion is to store only one copy of relation r.

• Fragmentation. The system partitions the relation into several fragments,
and stores each fragment at a different site.

Fragmentation and replication can be combined: A relation can be partitioned
into several fragments and there may be several replicas of each fragment. In the
following subsections, we elaborate on each of these techniques.

19.2.1 Data Replication

If relation r is replicated, a copy of relation r is stored in two or more sites. In the
most extreme case, we have full replication, in which a copy is stored in every
site in the system.

There are a number of advantages and disadvantages to replication.

• Availability. If one of the sites containing relation r fails, then the relation r
can be found in another site. Thus, the system can continue to process queries
involving r, despite the failure of one site.

19.2 Distributed Data Storage 827

• Increased parallelism. In the case where the majority of accesses to the rela-
tion r result in only the reading of the relation, then several sites can process
queries involving r in parallel. The more replicas of r there are, the greater the
chance that the needed data will be found in the site where the transaction
is executing. Hence, data replication minimizes movement of data between
sites.

• Increased overhead on update. The system must ensure that all replicas of a
relation r are consistent; otherwise, erroneous computations may result. Thus,
whenever r is updated, the update must be propagated to all sites containing
replicas. The result is increased overhead. For example, in a banking system,
where account information is replicated in various sites, it is necessary to
ensure that the balance in a particular account agrees in all sites.

In general, replication enhances the performance of read operations and in-
creases the availability of data to read-only transactions. However, update trans-
actions incur greater overhead. Controlling concurrent updates by several trans-
actions to replicated data is more complex than in centralized systems, which we
studied in Chapter 15. We can simplify the management of replicas of relation
r by choosing one of them as the primary copy of r. For example, in a banking
system, an account can be associated with the site in which the account has been
opened. Similarly, in an airline-reservation system, a flight can be associated with
the site at which the flight originates. We shall examine the primary copy scheme
and other options for distributed concurrency control in Section 19.5.

19.2.2 Data Fragmentation

If relation r is fragmented, r is divided into a number of fragments r1, r2, . . . , rn.
These fragments contain sufficient information to allow reconstruction of the
original relation r. There are two different schemes for fragmenting a relation:
horizontal fragmentation and vertical fragmentation. Horizontal fragmentation
splits the relation by assigning each tuple of r to one or more fragments. Vertical
fragmentation splits the relation by decomposing the scheme R of relation r.

In horizontal fragmentation, a relation r is partitioned into a number of
subsets, r1, r2, . . . , rn. Each tuple of relation r must belong to at least one of the
fragments, so that the original relation can be reconstructed, if needed.

As an illustration, the account relation can be divided into several different
fragments, each of which consists of tuples of accounts belonging to a particular
branch. If the banking system has only two branches—Hillside and Valleyview
—then there are two different fragments:

account1 = �branch name = “Hillside” (account)
account2 = �branch name = “Valleyview” (account)

Horizontal fragmentation is usually used to keep tuples at the sites where they
are used the most, to minimize data transfer.

828 Chapter 19 Distributed Databases

In general, a horizontal fragment can be defined as a selection on the global
relation r. That is, we use a predicate Pi to construct fragment ri :

ri = �Pi (r)

We reconstruct the relation r by taking the union of all fragments; that is:

r = r1 ∪ r2 ∪ · · · ∪ rn

In our example, the fragments are disjoint. By changing the selection predi-
cates used to construct the fragments, we can have a particular tuple of r appear
in more than one of the ri .

In its simplest form, vertical fragmentation is the same as decomposition
(see Chapter 8). Vertical fragmentation of r(R) involves the definition of several
subsets of attributes R1, R2, . . . , Rn of the schema R so that:

R = R1 ∪ R2 ∪ · · · ∪ Rn

Each fragment ri of r is defined by:

ri = �Ri (r)

The fragmentation should be done in such a way that we can reconstruct relation
r from the fragments by taking the natural join:

r = r1 � r2 � r3 � · · · � rn

One way of ensuring that the relation r can be reconstructed is to include the
primary-key attributes of R in each Ri . More generally, any superkey can be used.
It is often convenient to add a special attribute, called a tuple-id, to the schema
R. The tuple-id value of a tuple is a unique value that distinguishes the tuple
from all other tuples. The tuple-id attribute thus serves as a candidate key for the
augmented schema, and is included in each Ri . The physical or logical address
for a tuple can be used as a tuple-id, since each tuple has a unique address.

To illustrate vertical fragmentation, consider a university database with a re-
lation employee info that stores, for each employee, employee id, name, designation,
and salary. For privacy reasons, this relation may be fragmented into a relation em-
ployee private info containing employee id and salary, and another relation employee
public info containing attributes employee id, name, and designation. These may be

stored at different sites, again, possibly for security reasons.
The two types of fragmentation can be applied to a single schema; for instance,

the fragments obtained by horizontally fragmenting a relation can be further
partitioned vertically. Fragments can also be replicated. In general, a fragment
can be replicated, replicas of fragments can be fragmented further, and so on.

19.2 Distributed Data Storage 829

19.2.3 Transparency

The user of a distributed database system should not be required to know where
the data are physically located nor how the data can be accessed at the specific
local site. This characteristic, called data transparency, can take several forms:

• Fragmentation transparency. Users are not required to know how a relation
has been fragmented.

• Replication transparency. Users view each data object as logically unique.
The distributed system may replicate an object to increase either system
performance or data availability. Users do not have to be concerned with
what data objects have been replicated, or where replicas have been placed.

• Location transparency. Users are not required to know the physical location
of the data. The distributed database system should be able to find any data
as long as the data identifier is supplied by the user transaction.

Data items—such as relations, fragments, and replicas—must have unique
names. This property is easy to ensure in a centralized database. In a distributed
database, however, we must take care to ensure that two sites do not use the same
name for distinct data items.

One solution to this problem is to require all names to be registered in a
central name server. The name server helps to ensure that the same name does
not get used for different data items. We can also use the name server to locate a
data item, given the name of the item. This approach, however, suffers from two
major disadvantages. First, the name server may become a performance bottle-
neck when data items are located by their names, resulting in poor performance.
Second, if the name server crashes, it may not be possible for any site in the
distributed system to continue to run.

A more widely used alternative approach requires that each site prefix its
own site identifier to any name that it generates. This approach ensures that
no two sites generate the same name (since each site has a unique identifier).
Furthermore, no central control is required. This solution, however, fails to achieve
location transparency, since site identifiers are attached to names. Thus, the account
relation might be referred to as site17. account, or account@site17, rather than as
simply account. Many database systems use the Internet address (IP address) of a
site to identify it.

To overcome this problem, the database system can create a set of alternative
names, or aliases, for data items. A user may thus refer to data items by simple
names that are translated by the system to complete names. The mapping of
aliases to the real names can be stored at each site. With aliases, the user can be
unaware of the physical location of a data item. Furthermore, the user will be
unaffected if the database administrator decides to move a data item from one
site to another.

Users should not have to refer to a specific replica of a data item. Instead,
the system should determine which replica to reference on a read request, and

830 Chapter 19 Distributed Databases

should update all replicas on a write request. We can ensure that it does so by
maintaining a catalog table, which the system uses to determine all replicas for
the data item.

19.3 Distributed Transactions

Access to the various data items in a distributed system is usually accomplished
through transactions, which must preserve the ACID properties (Section 14.1).
There are two types of transaction that we need to consider. The local transactions
are those that access and update data in only one local database; the global
transactions are those that access and update data in several local databases.
Ensuring the ACID properties of the local transactions can be done as described in
Chapters 14, 15, and 16. However, for global transactions, this task is much more
complicated, since several sites may be participating in execution. The failure of
one of these sites, or the failure of a communication link connecting these sites,
may result in erroneous computations.

In this section, we study the system structure of a distributed database and
its possible failure modes. In Section 19.4, we study protocols for ensuring atomic
commit of global transactions, and in Section 19.5 we study protocols for concur-
rency control in distributed databases. In Section 19.6, we study how a distributed
database can continue functioning even in the presence of various types of failure.

19.3.1 System Structure

Each site has its own local transaction manager, whose function is to ensure the
ACID properties of those transactions that execute at that site. The various trans-
action managers cooperate to execute global transactions. To understand how
such a manager can be implemented, consider an abstract model of a transaction
system, in which each site contains two subsystems:

• The transaction manager manages the execution of those transactions (or
subtransactions) that access data stored in a local site. Note that each such
transaction may be either a local transaction (that is, a transaction that exe-
cutes at only that site) or part of a global transaction (that is, a transaction
that executes at several sites).

• The transaction coordinator coordinates the execution of the various trans-
actions (both local and global) initiated at that site.

The overall system architecture appears in Figure 19.2.
The structure of a transaction manager is similar in many respects to the

structure of a centralized system. Each transaction manager is responsible for:

• Maintaining a log for recovery purposes.

19.3 Distributed Transactions 831

TM1 TMn

computer 1 computer n

TC1 TCn
transaction
coordinator

transaction
manager

Figure 19.2 System architecture.

• Participating in an appropriate concurrency-control scheme to coordinate the
concurrent execution of the transactions executing at that site.

As we shall see, we need to modify both the recovery and concurrency schemes
to accommodate the distribution of transactions.

The transaction coordinator subsystem is not needed in the centralized en-
vironment, since a transaction accesses data at only a single site. A transaction
coordinator, as its name implies, is responsible for coordinating the execution of
all the transactions initiated at that site. For each such transaction, the coordinator
is responsible for:

• Starting the execution of the transaction.

• Breaking the transaction into a number of subtransactions and distributing
these subtransactions to the appropriate sites for execution.

• Coordinating the termination of the transaction, which may result in the
transaction being committed at all sites or aborted at all sites.

19.3.2 System Failure Modes

A distributed system may suffer from the same types of failure that a centralized
system does (for example, software errors, hardware errors, or disk crashes).
There are, however, additional types of failure with which we need to deal in a
distributed environment. The basic failure types are:

• Failure of a site.

• Loss of messages.

832 Chapter 19 Distributed Databases

• Failure of a communication link.

• Network partition.

The loss or corruption of messages is always a possibility in a distributed
system. The system uses transmission-control protocols, such as TCP/IP, to handle
such errors. Information about such protocols may be found in standard textbooks
on networking (see the bibliographical notes).

However, if two sites A and B are not directly connected, messages from
one to the other must be routed through a sequence of communication links. If a
communication link fails, messages that would have been transmitted across the
link must be rerouted. In some cases, it is possible to find another route through
the network, so that the messages are able to reach their destination. In other
cases, a failure may result in there being no connection between some pairs of
sites. A system is partitioned if it has been split into two (or more) subsystems,
called partitions, that lack any connection between them. Note that, under this
definition, a partition may consist of a single node.

19.4 Commit Protocols

If we are to ensure atomicity, all the sites in which a transaction T executed must
agree on the final outcome of the execution. T must either commit at all sites, or
it must abort at all sites. To ensure this property, the transaction coordinator of T
must execute a commit protocol.

Among the simplest and most widely used commit protocols is the two-phase
commit protocol (2PC), which is described in Section 19.4.1. An alternative is the
three-phase commit protocol (3PC), which avoids certain disadvantages of the
2PC protocol but adds to complexity and overhead. Section 19.4.2 briefly outlines
the 3PC protocol.

19.4.1 Two-Phase Commit

We first describe how the two-phase commit protocol (2PC) operates during nor-
mal operation, then describe how it handles failures and finally how it carries out
recovery and concurrency control.

Consider a transaction T initiated at site Si , where the transaction coordinator
is Ci .

19.4.1.1 The Commit Protocol

When T completes its execution—that is, when all the sites at which T has exe-
cuted inform Ci that T has completed—Ci starts the 2PC protocol.

• Phase 1. Ci adds the record <prepare T> to the log, and forces the log onto
stable storage. It then sends a prepare T message to all sites at which T
executed. On receiving such a message, the transaction manager at that site

19.4 Commit Protocols 833

determines whether it is willing to commit its portion of T. If the answer is
no, it adds a record <no T> to the log, and then responds by sending an abort
T message to Ci . If the answer is yes, it adds a record <ready T> to the log,
and forces the log (with all the log records corresponding to T) onto stable
storage. The transaction manager then replies with a ready T message to Ci .

• Phase 2. When Ci receives responses to the prepare T message from all the
sites, or when a prespecified interval of time has elapsed since the prepare
T message was sent out, Ci can determine whether the transaction T can be
committed or aborted. Transaction T can be committed if Ci received a ready
T message from all the participating sites. Otherwise, transaction T must be
aborted. Depending on the verdict, either a record <commit T> or a record
<abort T> is added to the log and the log is forced onto stable storage. At this
point, the fate of the transaction has been sealed. Following this point, the
coordinator sends either a commit T or an abort T message to all participating
sites. When a site receives that message, it records the message in the log.

A site at which T executed can unconditionally abort T at any time before
it sends the message ready T to the coordinator. Once the message is sent, the
transaction is said to be in the ready state at the site. The ready T message is,
in effect, a promise by a site to follow the coordinator’s order to commit T or to
abort T. To make such a promise, the needed information must first be stored
in stable storage. Otherwise, if the site crashes after sending ready T, it may be
unable to make good on its promise. Further, locks acquired by the transaction
must continue to be held until the transaction completes.

Since unanimity is required to commit a transaction, the fate of T is sealed as
soon as at least one site responds abort T. Since the coordinator site Si is one of
the sites at which T executed, the coordinator can decide unilaterally to abort T.
The final verdict regarding T is determined at the time that the coordinator writes
that verdict (commit or abort) to the log and forces that verdict to stable storage.
In some implementations of the 2PC protocol, a site sends an acknowledge T
message to the coordinator at the end of the second phase of the protocol. When
the coordinator receives the acknowledge T message from all the sites, it adds the
record <complete T> to the log.

19.4.1.2 Handling of Failures

The 2PC protocol responds in different ways to various types of failures:

• Failure of a participating site. If the coordinator Ci detects that a site has
failed, it takes these actions: If the site fails before responding with a ready
T message to Ci , the coordinator assumes that it responded with an abort T
message. If the site fails after the coordinator has received the ready T message
from the site, the coordinator executes the rest of the commit protocol in the
normal fashion, ignoring the failure of the site.

When a participating site Sk recovers from a failure, it must examine its log
to determine the fate of those transactions that were in the midst of execution

834 Chapter 19 Distributed Databases

when the failure occurred. Let T be one such transaction. We consider each
of the possible cases:

◦ The log contains a <commit T> record. In this case, the site executes
redo(T).

◦ The log contains an <abort T> record. In this case, the site executes
undo(T).

◦ The log contains a <ready T> record. In this case, the site must consult
Ci to determine the fate of T. If Ci is up, it notifies Sk regarding whether
T committed or aborted. In the former case, it executes redo(T); in the
latter case, it executes undo(T). If Ci is down, Sk must try to find the
fate of T from other sites. It does so by sending a querystatus T message
to all the sites in the system. On receiving such a message, a site must
consult its log to determine whether T has executed there, and if T has,
whether T committed or aborted. It then notifies Sk about this outcome. If
no site has the appropriate information (that is, whether T committed or
aborted), then Sk can neither abort nor commit T. The decision concerning
T is postponed until Sk can obtain the needed information. Thus, Sk must
periodically resend the querystatus message to the other sites. It continues
to do so until a site that contains the needed information recovers. Note
that the site at which Ci resides always has the needed information.

◦ The log contains no control records (abort, commit, ready) concerning T.
Thus, we know that Sk failed before responding to the prepare T message
from Ci . Since the failure of Sk precludes the sending of such a response,
by our algorithm Ci must abort T. Hence, Sk must execute undo(T).

• Failure of the coordinator. If the coordinator fails in the midst of the execution
of the commit protocol for transaction T, then the participating sites must
decide the fate of T. We shall see that, in certain cases, the participating sites
cannot decide whether to commit or abort T, and therefore these sites must
wait for the recovery of the failed coordinator.

◦ If an active site contains a <commit T> record in its log, then T must be
committed.

◦ If an active site contains an <abort T> record in its log, then T must be
aborted.

◦ If some active site does not contain a <ready T> record in its log, then
the failed coordinator Ci cannot have decided to commit T, because a site
that does not have a <ready T> record in its log cannot have sent a ready
T message to Ci . However, the coordinator may have decided to abort T,
but not to commit T. Rather than wait for Ci to recover, it is preferable to
abort T.

◦ If none of the preceding cases holds, then all active sites must have a
<ready T> record in their logs, but no additional control records (such

19.4 Commit Protocols 835

as <abort T> or <commit T>). Since the coordinator has failed, it is
impossible to determine whether a decision has been made, and if one
has, what that decision is, until the coordinator recovers. Thus, the active
sites must wait for Ci to recover. Since the fate of T remains in doubt, T may
continue to hold system resources. For example, if locking is used, T may
hold locks on data at active sites. Such a situation is undesirable, because
it may be hours or days before Ci is again active. During this time, other
transactions may be forced to wait for T. As a result, data items may be
unavailable not only on the failed site (Ci), but on active sites as well. This
situation is called the blocking problem, because T is blocked pending
the recovery of site Ci .

• Network partition. When a network partitions, two possibilities exist:

1. The coordinator and all its participants remain in one partition. In this
case, the failure has no effect on the commit protocol.

2. The coordinator and its participants belong to several partitions. From
the viewpoint of the sites in one of the partitions, it appears that the
sites in other partitions have failed. Sites that are not in the partition
containing the coordinator simply execute the protocol to deal with
failure of the coordinator. The coordinator and the sites that are in the
same partition as the coordinator follow the usual commit protocol,
assuming that the sites in the other partitions have failed.

Thus, the major disadvantage of the 2PC protocol is that coordinator failure may
result in blocking, where a decision either to commit or to abort T may have to be
postponed until Ci recovers.

19.4.1.3 Recovery and Concurrency Control

When a failed site restarts, we can perform recovery by using, for example, the
recovery algorithm described in Section 16.4. To deal with distributed commit
protocols, the recovery procedure must treat in-doubt transactions specially; in-
doubt transactions are transactions for which a <ready T> log record is found,
but neither a <commit T> log record nor an <abort T> log record is found. The
recovering site must determine the commit–abort status of such transactions by
contacting other sites, as described in Section 19.4.1.2.

If recovery is done as just described, however, normal transaction processing
at the site cannot begin until all in-doubt transactions have been committed or
rolled back. Finding the status of in-doubt transactions can be slow, since multiple
sites may have to be contacted. Further, if the coordinator has failed, and no other
site has information about the commit–abort status of an incomplete transaction,
recovery potentially could become blocked if 2PC is used. As a result, the site
performing restart recovery may remain unusable for a long period.

To circumvent this problem, recovery algorithms typically provide support
for noting lock information in the log. (We are assuming here that locking is used
for concurrency control.) Instead of writing a <ready T> log record, the algorithm

836 Chapter 19 Distributed Databases

writes a <ready T, L> log record, where L is a list of all write locks held by the
transaction T when the log record is written. At recovery time, after performing
local recovery actions, for every in-doubt transaction T , all the write locks noted
in the <ready T, L> log record (read from the log) are reacquired.

After lock reacquisition is complete for all in-doubt transactions, transaction
processing can start at the site, even before the commit–abort status of the in-
doubt transactions is determined. The commit or rollback of in-doubt transactions
proceeds concurrently with the execution of new transactions. Thus, site recovery
is faster, and never gets blocked. Note that new transactions that have a lock
conflict with any write locks held by in-doubt transactions will be unable to make
progress until the conflicting in-doubt transactions have been committed or rolled
back.

19.4.2 Three-Phase Commit

The three-phase commit (3PC) protocol is an extension of the two-phase commit
protocol that avoids the blocking problem under certain assumptions. In partic-
ular, it is assumed that no network partition occurs, and not more than k sites
fail, where k is some predetermined number. Under these assumptions, the pro-
tocol avoids blocking by introducing an extra third phase where multiple sites
are involved in the decision to commit. Instead of directly noting the commit
decision in its persistent storage, the coordinator first ensures that at least k other
sites know that it intended to commit the transaction. If the coordinator fails, the
remaining sites first select a new coordinator. This new coordinator checks the
status of the protocol from the remaining sites; if the coordinator had decided
to commit, at least one of the other k sites that it informed will be up and will
ensure that the commit decision is respected. The new coordinator restarts the
third phase of the protocol if some site knew that the old coordinator intended to
commit the transaction. Otherwise the new coordinator aborts the transaction.

While the 3PC protocol has the desirable property of not blocking unless k
sites fail, it has the drawback that a partitioning of the network may appear to be
the same as more than k sites failing, which would lead to blocking. The protocol
also has to be implemented carefully to ensure that network partitioning (or
more than k sites failing) does not result in inconsistencies, where a transaction
is committed in one partition and aborted in another. Because of its overhead,
the 3PC protocol is not widely used. See the bibliographical notes for references
giving more details of the 3PC protocol.

19.4.3 Alternative Models of Transaction Processing

For many applications, the blocking problem of two-phase commit is not accept-
able. The problem here is the notion of a single transaction that works across
multiple sites. In this section, we describe how to use persistent messaging to avoid
the problem of distributed commit, and then briefly outline the larger issue of
workflows; workflows are considered in more detail in Section 26.2.

To understand persistent messaging, consider how one might transfer funds
between two different banks, each with its own computer. One approach is to have

19.4 Commit Protocols 837

a transaction span the two sites and use two-phase commit to ensure atomicity.
However, the transaction may have to update the total bank balance, and blocking
could have a serious impact on all other transactions at each bank, since almost
all transactions at the bank would update the total bank balance.

In contrast, consider how funds transfer by a bank check occurs. The bank
first deducts the amount of the check from the available balance and prints out
a check. The check is then physically transferred to the other bank where it is
deposited. After verifying the check, the bank increases the local balance by the
amount of the check. The check constitutes a message sent between the two banks.
So that funds are not lost or incorrectly increased, the check must not be lost, and
must not be duplicated and deposited more than once. When the bank computers
are connected by a network, persistent messages provide the same service as the
check (but much faster, of course).

Persistent messages are messages that are guaranteed to be delivered to
the recipient exactly once (neither less nor more), regardless of failures, if the
transaction sending the message commits, and are guaranteed to not be delivered
if the transaction aborts. Database recovery techniques are used to implement
persistent messaging on top of the normal network channels, as we shall see
shortly. In contrast, regular messages may be lost or may even be delivered
multiple times in some situations.

Error handling is more complicated with persistent messaging than with two-
phase commit. For instance, if the account where the check is to be deposited has
been closed, the check must be sent back to the originating account and credited
back there. Both sites must therefore be provided with error-handling code, along
with code to handle the persistent messages. In contrast, with two-phase commit,
the error would be detected by the transaction, which would then never deduct
the amount in the first place.

The types of exception conditions that may arise depend on the application,
so it is not possible for the database system to handle exceptions automatically.
The application programs that send and receive persistent messages must include
code to handle exception conditions and bring the system back to a consistent
state. For instance, it is not acceptable to just lose the money being transferred if
the receiving account has been closed; the money must be credited back to the
originating account, and if that is not possible for some reason, humans must be
alerted to resolve the situation manually.

There are many applications where the benefit of eliminating blocking is well
worth the extra effort to implement systems that use persistent messages. In fact,
few organizations would agree to support two-phase commit for transactions
originating outside the organization, since failures could result in blocking of
access to local data. Persistent messaging therefore plays an important role in
carrying out transactions that cross organizational boundaries.

Workflows provide a general model of transaction processing involving mul-
tiple sites and possibly human processing of certain steps. For instance, when
a bank receives a loan application, there are many steps it must take, including
contacting external credit-checking agencies, before approving or rejecting a loan
application. The steps, together, form a workflow. We study workflows in more

838 Chapter 19 Distributed Databases

detail in Section 26.2. We also note that persistent messaging forms the underlying
basis for workflows in a distributed environment.

We now consider the implementation of persistent messaging. Persistent
messaging can be implemented on top of an unreliable messaging infrastructure,
which may lose messages or deliver them multiple times, by these protocols:

• Sending site protocol. When a transaction wishes to send a persistent mes-
sage, it writes a record containing the message in a special relation messages to
send, instead of directly sending out the message. The message is also given

a unique message identifier.
A message delivery process monitors the relation, and when a new mes-

sage is found, it sends the message to its destination. The usual database
concurrency-control mechanisms ensure that the system process reads the
message only after the transaction that wrote the message commits; if the
transaction aborts, the usual recovery mechanism would delete the message
from the relation.

The message delivery process deletes a message from the relation only
after it receives an acknowledgment from the destination site. If it receives
no acknowledgement from the destination site, after some time it sends the
message again. It repeats this until an acknowledgment is received. In case
of permanent failures, the system will decide, after some period of time,
that the message is undeliverable. Exception handling code provided by the
application is then invoked to deal with the failure.

Writing the message to a relation and processing it only after the trans-
action commits ensures that the message will be delivered if and only if the
transaction commits. Repeatedly sending it guarantees it will be delivered
even if there are (temporary) system or network failures.

• Receiving site protocol. When a site receives a persistent message, it runs
a transaction that adds the message to a special received messages relation,
provided it is not already present in the relation (the unique message iden-
tifier allows duplicates to be detected). After the transaction commits, or if
the message was already present in the relation, the receiving site sends an
acknowledgment back to the sending site.

Note that sending the acknowledgment before the transaction commits
is not safe, since a system failure may then result in loss of the message.
Checking whether the message has been received earlier is essential to avoid
multiple deliveries of the message.

In many messaging systems, it is possible for messages to get delayed
arbitrarily, although such delays are very unlikely. Therefore, to be safe, the
message must never be deleted from the received messages relation. Deleting
it could result in a duplicate delivery not being detected. But as a result,
the received messages relation may grow indefinitely. To deal with this prob-
lem, each message is given a timestamp, and if the timestamp of a received
message is older than some cutoff, the message is discarded. All messages
recorded in the received messages relation that are older than the cutoff can be
deleted.

19.5 Concurrency Control in Distributed Databases 839

19.5 Concurrency Control in Distributed Databases

We show here how some of the concurrency-control schemes discussed in Chap-
ter 15 can be modified so that they can be used in a distributed environment. We
assume that each site participates in the execution of a commit protocol to ensure
global transaction atomicity.

The protocols we describe in this section require updates to be done on
all replicas of a data item. If any site containing a replica of a data item has
failed, updates to the data item cannot be processed. In Section 19.6, we describe
protocols that can continue transaction processing even if some sites or links have
failed, thereby providing high availability.

19.5.1 Locking Protocols

The various locking protocols described in Chapter 15 can be used in a distributed
environment. The only change that needs to be incorporated is in the way the lock
manager deals with replicated data. We present several possible schemes that are
applicable to an environment where data can be replicated in several sites. As in
Chapter 15, we shall assume the existence of the shared and exclusive lock modes.

19.5.1.1 Single Lock-Manager Approach

In the single lock-manager approach, the system maintains a single lock manager
that resides in a single chosen site—say Si . All lock and unlock requests are made
at site Si . When a transaction needs to lock a data item, it sends a lock request to
Si . The lock manager determines whether the lock can be granted immediately. If
the lock can be granted, the lock manager sends a message to that effect to the site
at which the lock request was initiated. Otherwise, the request is delayed until
it can be granted, at which time a message is sent to the site at which the lock
request was initiated. The transaction can read the data item from any one of the
sites at which a replica of the data item resides. In the case of a write, all the sites
where a replica of the data item resides must be involved in the writing.

The scheme has these advantages:

• Simple implementation. This scheme requires two messages for handling
lock requests and one message for handling unlock requests.

• Simple deadlock handling. Since all lock and unlock requests are made at
one site, the deadlock-handling algorithms discussed in Chapter 15 can be
applied directly.

The disadvantages of the scheme are:

• Bottleneck. The site Si becomes a bottleneck, since all requests must be pro-
cessed there.

• Vulnerability. If the site Si fails, the concurrency controller is lost. Either
processing must stop, or a recovery scheme must be used so that a backup
site can take over lock management from Si , as described in Section 19.6.5.

840 Chapter 19 Distributed Databases

19.5.1.2 Distributed Lock Manager

A compromise between the advantages and disadvantages can be achieved
through the distributed-lock-manager approach, in which the lock-manager
function is distributed over several sites.

Each site maintains a local lock manager whose function is to administer the
lock and unlock requests for those data items that are stored in that site. When a
transaction wishes to lock a data item Q that is not replicated and resides at site
Si , a message is sent to the lock manager at site Si requesting a lock (in a particular
lock mode). If data item Q is locked in an incompatible mode, then the request is
delayed until it can be granted. Once it has determined that the lock request can
be granted, the lock manager sends a message back to the initiator indicating that
it has granted the lock request.

We discuss several alternative ways of dealing with replication of data items
in Sections 19.5.1.3 to 19.5.1.6.

The distributed-lock-manager scheme has the advantage of simple imple-
mentation, and reduces the degree to which the coordinator is a bottleneck. It
has a reasonably low overhead, requiring two message transfers for handling
lock requests, and one message transfer for handling unlock requests. However,
deadlock handling is more complex, since the lock and unlock requests are no
longer made at a single site: There may be intersite deadlocks even when there
is no deadlock within a single site. The deadlock-handling algorithms discussed
in Chapter 15 must be modified, as we shall discuss in Section 19.5.4, to detect
global deadlocks.

19.5.1.3 Primary Copy

When a system uses data replication, we can choose one of the replicas as the
primary copy. For each data item Q, the primary copy of Q must reside in precisely
one site, which we call the primary site of Q.

When a transaction needs to lock a data item Q, it requests a lock at the
primary site of Q. As before, the response to the request is delayed until it can
be granted. The primary copy enables concurrency control for replicated data
to be handled like that for unreplicated data. This similarity allows for a simple
implementation. However, if the primary site of Q fails, Q is inaccessible, even
though other sites containing a replica may be accessible.

19.5.1.4 Majority Protocol

The majority protocol works this way: If data item Q is replicated in n different
sites, then a lock-request message must be sent to more than one-half of the n
sites in which Q is stored. Each lock manager determines whether the lock can be
granted immediately (as far as it is concerned). As before, the response is delayed
until the request can be granted. The transaction does not operate on Q until it
has successfully obtained a lock on a majority of the replicas of Q.

We assume for now that writes are performed on all replicas, requiring all sites
containing replicas to be available. However, the major benefit of the majority

19.5 Concurrency Control in Distributed Databases 841

protocol is that it can be extended to deal with site failures, as we shall see in
Section 19.6.1. The protocol also deals with replicated data in a decentralized
manner, thus avoiding the drawbacks of central control. However, it suffers from
these disadvantages:

• Implementation. The majority protocol is more complicated to implement
than are the previous schemes. It requires at least 2(n/2 + 1) messages for
handling lock requests and at least (n/2 + 1) messages for handling unlock
requests.

• Deadlock handling. In addition to the problem of global deadlocks due to
the use of a distributed-lock-manager approach, it is possible for a deadlock
to occur even if only one data item is being locked. As an illustration, consider
a system with four sites and full replication. Suppose that transactions T1 and
T2 wish to lock data item Q in exclusive mode. Transaction T1 may succeed
in locking Q at sites S1 and S3, while transaction T2 may succeed in locking
Q at sites S2 and S4. Each then must wait to acquire the third lock; hence, a
deadlock has occurred. Luckily, we can avoid such deadlocks with relative
ease, by requiring all sites to request locks on the replicas of a data item in
the same predetermined order.

19.5.1.5 Biased Protocol

The biased protocol is another approach to handling replication. The difference
from the majority protocol is that requests for shared locks are given more favor-
able treatment than requests for exclusive locks.

• Shared locks. When a transaction needs to lock data item Q, it simply requests
a lock on Q from the lock manager at one site that contains a replica of Q.

• Exclusive locks. When a transaction needs to lock data item Q, it requests a
lock on Q from the lock manager at all sites that contain a replica of Q.

As before, the response to the request is delayed until it can be granted.
The biased scheme has the advantage of imposing less overhead on read

operations than does the majority protocol. This savings is especially significant
in common cases in which the frequency of read is much greater than the fre-
quency of write. However, the additional overhead on writes is a disadvantage.
Furthermore, the biased protocol shares the majority protocol’s disadvantage of
complexity in handling deadlock.

19.5.1.6 Quorum Consensus Protocol

The quorum consensus protocol is a generalization of the majority protocol. The
quorum consensus protocol assigns each site a nonnegative weight. It assigns
read and write operations on an item x two integers, called read quorum Qr and
write quorum Qw, that must satisfy the following condition, where S is the total
weight of all sites at which x resides:

842 Chapter 19 Distributed Databases

Qr + Qw > S and 2 ∗ Qw > S

To execute a read operation, enough replicas must be locked that their total
weight is at least r . To execute a write operation, enough replicas must be locked
so that their total weight is at least w.

A benefit of the quorum consensus approach is that it can permit the cost of
either read or write locking to be selectively reduced by appropriately defining
the read and write quorums. For instance, with a small read quorum, reads need
to obtain fewer locks, but the write quorum will be higher, hence writes need to
obtain more locks. Also, if higher weights are given to some sites (for example,
those less likely to fail), fewer sites need to be accessed for acquiring locks. In fact,
by setting weights and quorums appropriately, the quorum consensus protocol
can simulate the majority protocol and the biased protocols.

Like the majority protocol, quorum consensus can be extended to work even
in the presence of site failures, as we shall see in Section 19.6.1.

19.5.2 Timestamping

The principal idea behind the timestamping scheme in Section 15.4 is that each
transaction is given a unique timestamp that the system uses in deciding the
serialization order. Our first task, then, in generalizing the centralized scheme to
a distributed scheme is to develop a scheme for generating unique timestamps.
Then, the various protocols can operate directly to the nonreplicated environment.

There are two primary methods for generating unique timestamps, one cen-
tralized and one distributed. In the centralized scheme, a single site distributes
the timestamps. The site can use a logical counter or its own local clock for this
purpose.

In the distributed scheme, each site generates a unique local timestamp by
using either a logical counter or the local clock. We obtain the unique global
timestamp by concatenating the unique local timestamp with the site identifier,
which also must be unique (Figure 19.3). The order of concatenation is important!
We use the site identifier in the least significant position to ensure that the global
timestamps generated in one site are not always greater than those generated in
another site. Compare this technique for generating unique timestamps with the
one that we presented in Section 19.2.3 for generating unique names.

site
identifier

global unique
identifier

local unique
timestamp

Figure 19.3 Generation of unique timestamps.

19.5 Concurrency Control in Distributed Databases 843

We may still have a problem if one site generates local timestamps at a rate
faster than that of the other sites. In such a case, the fast site’s logical counter
will be larger than that of other sites. Therefore, all timestamps generated by
the fast site will be larger than those generated by other sites. What we need
is a mechanism to ensure that local timestamps are generated fairly across the
system. We define within each site Si a logical clock (LCi), which generates the
unique local timestamp. The logical clock can be implemented as a counter that is
incremented after a new local timestamp is generated. To ensure that the various
logical clocks are synchronized, we require that a site Si advance its logical clock
whenever a transaction Ti with timestamp <x,y> visits that site and x is greater
than the current value of LCi . In this case, site Si advances its logical clock to the
value x + 1.

If the system clock is used to generate timestamps, then timestamps will be
assigned fairly, provided that no site has a system clock that runs fast or slow.
Since clocks may not be perfectly accurate, a technique similar to that for logical
clocks must be used to ensure that no clock gets far ahead of or behind another
clock.

19.5.3 Replication with Weak Degrees of Consistency

Many commercial databases today support replication, which can take one of
several forms. With master–slave replication, the database allows updates at
a primary site, and automatically propagates updates to replicas at other sites.
Transactions may read the replicas at other sites, but are not permitted to update
them.

An important feature of such replication is that transactions do not obtain
locks at remote sites. To ensure that transactions running at the replica sites see
a consistent (but perhaps outdated) view of the database, the replica should
reflect a transaction-consistent snapshot of the data at the primary; that is, the
replica should reflect all updates of transactions up to some transaction in the
serialization order, and should not reflect any updates of later transactions in the
serialization order.

The database may be configured to propagate updates immediately after they
occur at the primary, or to propagate updates only periodically.

Master–slave replication is particularly useful for distributing information,
for instance from a central office to branch offices of an organization. Another use
for this form of replication is in creating a copy of the database to run large queries,
so that queries do not interfere with transactions. Updates should be propagated
periodically—every night, for example—so that update propagation does not
interfere with query processing.

The Oracle database system supports a create snapshot statement, which can
create a transaction-consistent snapshot copy of a relation, or set of relations,
at a remote site. It also supports snapshot refresh, which can be done either
by recomputing the snapshot or by incrementally updating it. Oracle supports
automatic refresh, either continuously or at periodic intervals.

844 Chapter 19 Distributed Databases

With multimaster replication (also called update-anywhere replication) up-
dates are permitted at any replica of a data item, and are automatically propa-
gated to all replicas. This model is the basic model used to manage replicas in
distributed databases. Transactions update the local copy and the system updates
other replicas transparently.

One way of updating replicas is to apply immediate update with two-phase
commit, using one of the distributed concurrency-control techniques we have
seen. Many database systems use the biased protocol, where writes have to lock
and update all replicas and reads lock and read any one replica, as their currency-
control technique.

Many database systems provide an alternative form of updating: They update
at one site, with lazy propagation of updates to other sites, instead of immedi-
ately applying updates to all replicas as part of the transaction performing the
update. Schemes based on lazy propagation allow transaction processing (in-
cluding updates) to proceed even if a site is disconnected from the network, thus
improving availability, but, unfortunately, do so at the cost of consistency. One of
two approaches is usually followed when lazy propagation is used:

• Updates at replicas are translated into updates at a primary site, which are
then propagated lazily to all replicas. This approach ensures that updates
to an item are ordered serially, although serializability problems can occur,
since transactions may read an old value of some other data item and use it
to perform an update.

• Updates are performed at any replica and propagated to all other replicas.
This approach can cause even more problems, since the same data item may
be updated concurrently at multiple sites.

Some conflicts due to the lack of distributed concurrency control can be detected
when updates are propagated to other sites (we shall see how in Section 25.5.4),
but resolving the conflict involves rolling back committed transactions, and dura-
bility of committed transactions is therefore not guaranteed. Further, human in-
tervention may be required to deal with conflicts. The above schemes should
therefore be avoided or used with care.

19.5.4 Deadlock Handling

The deadlock-prevention and deadlock-detection algorithms in Chapter 15 can be
used in a distributed system, provided that modifications are made. For example,
we can use the tree protocol by defining a global tree among the system data
items. Similarly, the timestamp-ordering approach could be directly applied to a
distributed environment, as we saw in Section 19.5.2.

Deadlock prevention may result in unnecessary waiting and rollback. Fur-
thermore, certain deadlock-prevention techniques may require more sites to be
involved in the execution of a transaction than would otherwise be the case.

If we allow deadlocks to occur and rely on deadlock detection, the main
problem in a distributed system is deciding how to maintain the wait-for graph.

19.5 Concurrency Control in Distributed Databases 845

T2 T4T1 T2

T5 T3 T3

site S1 site S2

Figure 19.4 Local wait-for graphs.

Common techniques for dealing with this issue require that each site keep a local
wait-for graph. The nodes of the graph correspond to all the transactions (local as
well as nonlocal) that are currently either holding or requesting any of the items
local to that site. For example, Figure 19.4 depicts a system consisting of two sites,
each maintaining its local wait-for graph. Note that transactions T2 and T3 appear
in both graphs, indicating that the transactions have requested items at both sites.

These local wait-for graphs are constructed in the usual manner for local
transactions and data items. When a transaction Ti on site S1 needs a resource in
site S2, it sends a request message to site S2. If the resource is held by transaction
Tj , the system inserts an edge Ti → Tj in the local wait-for graph of site S2.

Clearly, if any local wait-for graph has a cycle, deadlock has occurred. On the
other hand, the fact that there are no cycles in any of the local wait-for graphs does
not mean that there are no deadlocks. To illustrate this problem, we consider the
local wait-for graphs of Figure 19.4. Each wait-for graph is acyclic; nevertheless,
a deadlock exists in the system because the union of the local wait-for graphs
contains a cycle. This graph appears in Figure 19.5.

In the centralized deadlock detection approach, the system constructs and
maintains a global wait-for graph (the union of all the local graphs) in a single
site: the deadlock-detection coordinator. Since there is communication delay in
the system, we must distinguish between two types of wait-for graphs. The real
graph describes the real but unknown state of the system at any instance in
time, as would be seen by an omniscient observer. The constructed graph is an

T1 T4

T5

T2

T3

Figure 19.5 Global wait-for graph for Figure 19.4.

846 Chapter 19 Distributed Databases

T1

T2

T2

T1

T3

S2

T1

T3

coordinator

S1

Figure 19.6 False cycles in the global wait-for graph.

approximation generated by the controller during the execution of the controller’s
algorithm. Obviously, the controller must generate the constructed graph in such
a way that, whenever the detection algorithm is invoked, the reported results are
correct. Correct means in this case that, if a deadlock exists, it is reported promptly,
and if the system reports a deadlock, it is indeed in a deadlock state.

The global wait-for graph can be reconstructed or updated under these con-
ditions:

• Whenever a new edge is inserted in or removed from one of the local wait-for
graphs.

• Periodically, when a number of changes have occurred in a local wait-for
graph.

• Whenever the coordinator needs to invoke the cycle-detection algorithm.

When the coordinator invokes the deadlock-detection algorithm, it searches
its global graph. If it finds a cycle, it selects a victim to be rolled back. The
coordinator must notify all the sites that a particular transaction has been selected
as victim. The sites, in turn, roll back the victim transaction.

This scheme may produce unnecessary rollbacks if:

• False cycles exist in the global wait-for graph. As an illustration, consider a
snapshot of the system represented by the local wait-for graphs of Figure 19.6.
Suppose that T2 releases the resource that it is holding in site S1, resulting
in the deletion of the edge T1 → T2 in S1. Transaction T2 then requests a

19.6 Availability 847

resource held by T3 at site S2, resulting in the addition of the edge T2 → T3 in
S2. If the insert T2 → T3 message from S2 arrives before the remove T1 → T2
message from S1, the coordinator may discover the false cycle T1 → T2 → T3
after the insert (but before the remove). Deadlock recovery may be initiated,
although no deadlock has occurred.

Note that the false-cycle situation could not occur under two-phase locking.
The likelihood of false cycles is usually sufficiently low that they do not cause
a serious performance problem.

• A deadlock has indeed occurred and a victim has been picked, while one of the
transactions was aborted for reasons unrelated to the deadlock. For example,
suppose that site S1 in Figure 19.4 decides to abort T2. At the same time, the
coordinator has discovered a cycle, and has picked T3 as a victim. Both T2 and
T3 are now rolled back, although only T2 needed to be rolled back.

Deadlock detection can be done in a distributed manner, with several sites
taking on parts of the task, instead of it being done at a single site. However, such
algorithms are more complicated and more expensive. See the bibliographical
notes for references to such algorithms.

19.6 Availability

One of the goals in using distributed databases is high availability; that is, the
database must function almost all the time. In particular, since failures are more
likely in large distributed systems, a distributed database must continue func-
tioning even when there are various types of failures. The ability to continue
functioning even during failures is referred to as robustness.

For a distributed system to be robust, it must detect failures, reconfigure the
system so that computation may continue, and recover when a processor or a link
is repaired.

The different types of failures are handled in different ways. For example,
message loss is handled by retransmission. Repeated retransmission of a message
across a link, without receipt of an acknowledgment, is usually a symptom of a
link failure. The network usually attempts to find an alternative route for the
message. Failure to find such a route is usually a symptom of network partition.

It is generally not possible, however, to differentiate clearly between site
failure and network partition. The system can usually detect that a failure has
occurred, but it may not be able to identify the type of failure. For example,
suppose that site S1 is not able to communicate with S2. It could be that S2 has
failed. However, another possibility is that the link between S1 and S2 has failed,
resulting in network partition. The problem is partly addressed by using multiple
links between sites, so that even if one link fails the sites will remain connected.
However, multiple link failure can still occur, so there are situations where we
cannot be sure whether a site failure or network partition has occurred.

848 Chapter 19 Distributed Databases

Suppose that site S1 has discovered that a failure has occurred. It must then
initiate a procedure that will allow the system to reconfigure, and to continue
with the normal mode of operation.

• If transactions were active at a failed/inaccessible site at the time of the
failure, these transactions should be aborted. It is desirable to abort such
transactions promptly, since they may hold locks on data at sites that are
still active; waiting for the failed/inaccessible site to become accessible again
may impede other transactions at sites that are operational. However, in
some cases, when data objects are replicated it may be possible to proceed
with reads and updates even though some replicas are inaccessible. In this
case, when a failed site recovers, if it had replicas of any data object, it must
obtain the current values of these data objects, and must ensure that it receives
all future updates. We address this issue in Section 19.6.1.

• If replicated data are stored at a failed/inaccessible site, the catalog should
be updated so that queries do not reference the copy at the failed site. When
a site rejoins, care must be taken to ensure that data at the site are consistent,
as we shall see in Section 19.6.3.

• If a failed site is a central server for some subsystem, an election must be
held to determine the new server (see Section 19.6.5). Examples of central
servers include a name server, a concurrency coordinator, or a global deadlock
detector.

Since it is, in general, not possible to distinguish between network link failures
and site failures, any reconfiguration scheme must be designed to work correctly
in case of a partitioning of the network. In particular, these situations must be
avoided to ensure consistency:

• Two or more central servers are elected in distinct partitions.

• More than one partition updates a replicated data item.

Although traditional database systems place a premium on consistency, there
are many applications today that value availability more than consistency. The
design of replication protocols is different for such systems, and is discussed in
Section 19.6.6.

19.6.1 Majority-Based Approach

The majority-based approach to distributed concurrency control in Section 19.5.1.4
can be modified to work in spite of failures. In this approach, each data object
stores with it a version number to detect when it was last written. Whenever a
transaction writes an object it also updates the version number in this way:

• If data object a is replicated in n different sites, then a lock-request message
must be sent to more than one-half of the n sites at which a is stored. The

19.6 Availability 849

transaction does not operate on a until it has successfully obtained a lock on
a majority of the replicas of a.

• Read operations look at all replicas on which a lock has been obtained, and
read the value from the replica that has the highest version number. (Op-
tionally, they may also write this value back to replicas with lower version
numbers.) Writes read all the replicas just like reads to find the highest ver-
sion number (this step would normally have been performed earlier in the
transaction by a read, and the result can be reused). The new version number
is one more than the highest version number. The write operation writes all
the replicas on which it has obtained locks, and sets the version number at
all the replicas to the new version number.

Failures during a transaction (whether network partitions or site failures) can be
tolerated as long as (1) the sites available at commit contain a majority of replicas
of all the objects written to and (2) during reads, a majority of replicas are read
to find the version numbers. If these requirements are violated, the transaction
must be aborted. As long as the requirements are satisfied, the two-phase commit
protocol can be used, as usual, on the sites that are available.

In this scheme, reintegration is trivial; nothing needs to be done. This is
because writes would have updated a majority of the replicas, while reads will
read a majority of the replicas and find at least one replica that has the latest
version.

The version numbering technique used with the majority protocol can also be
used to make the quorum consensus protocol work in the presence of failures. We
leave the (straightforward) details to the reader. However, the danger of failures
preventing the system from processing transactions increases if some sites are
given higher weights.

19.6.2 Read One, Write All Available Approach

As a special case of quorum consensus, we can employ the biased protocol by
giving unit weights to all sites, setting the read quorum to 1, and setting the
write quorum to n (all sites). In this special case, there is no need to use version
numbers; however, if even a single site containing a data item fails, no write to
the item can proceed, since the write quorum will not be available. This protocol
is called the read one, write all protocol since all replicas must be written.

To allow work to proceed in the event of failures, we would like to be able
to use a read one, write all available protocol. In this approach, a read operation
proceeds as in the read one, write all scheme; any available replica can be read,
and a read lock is obtained at that replica. A write operation is shipped to all
replicas; and write locks are acquired on all the replicas. If a site is down, the
transaction manager proceeds without waiting for the site to recover.

While this approach appears very attractive, there are several complications.
In particular, temporary communication failure may cause a site to appear to
be unavailable, resulting in a write not being performed, but when the link is
restored, the site is not aware that it has to perform some reintegration actions to

850 Chapter 19 Distributed Databases

catch up on writes it has lost. Further, if the network partitions, each partition may
proceed to update the same data item, believing that sites in the other partitions
are all dead.

The read one, write all available scheme can be used if there is never any
network partitioning, but it can result in inconsistencies in the event of network
partitions.

19.6.3 Site Reintegration

Reintegration of a repaired site or link into the system requires care. When a
failed site recovers, it must initiate a procedure to update its system tables to
reflect changes made while it was down. If the site had replicas of any data items,
it must obtain the current values of these data items and ensure that it receives all
future updates. Reintegration of a site is more complicated than it may seem to
be at first glance, since there may be updates to the data items processed during
the time that the site is recovering.

An easy solution is to halt the entire system temporarily while the failed site
rejoins it. In most applications, however, such a temporary halt is unacceptably
disruptive. Techniques have been developed to allow failed sites to reintegrate
while concurrent updates to data items proceed concurrently. Before a read or
write lock is granted on any data item, the site must ensure that it has caught up
on all updates to the data item. If a failed link recovers, two or more partitions can
be rejoined. Since a partitioning of the network limits the allowable operations
by some or all sites, all sites should be informed promptly of the recovery of the
link. See the bibliographical notes for more information on recovery in distributed
systems.

19.6.4 Comparison with Remote Backup

Remote backup systems, which we studied in Section 16.9, and replication in dis-
tributed databases are two alternative approaches to providing high availability.
The main difference between the two schemes is that with remote backup sys-
tems, actions such as concurrency control and recovery are performed at a single
site, and only data and log records are replicated at the other site. In particular, re-
mote backup systems help avoid two-phase commit, and its resultant overheads.
Also, transactions need to contact only one site (the primary site), and thus avoid
the overhead of running transaction code at multiple sites. Thus remote backup
systems offer a lower-cost approach to high availability than replication.

On the other hand, replication can provide greater availability by having
multiple replicas available and using the majority protocol.

19.6.5 Coordinator Selection

Several of the algorithms that we have presented require the use of a coordinator.
If the coordinator fails because of a failure of the site at which it resides, the system
can continue execution only by restarting a new coordinator on another site. One

19.6 Availability 851

way to continue execution is by maintaining a backup to the coordinator, which
is ready to assume responsibility if the coordinator fails.

A backup coordinator is a site that, in addition to other tasks, maintains
enough information locally to allow it to assume the role of coordinator with
minimal disruption to the distributed system. All messages directed to the co-
ordinator are received by both the coordinator and its backup. The backup co-
ordinator executes the same algorithms and maintains the same internal state
information (such as, for a concurrency coordinator, the lock table) as does the
actual coordinator. The only difference in function between the coordinator and
its backup is that the backup does not take any action that affects other sites. Such
actions are left to the actual coordinator.

In the event that the backup coordinator detects the failure of the actual coor-
dinator, it assumes the role of coordinator. Since the backup has all the information
available to it that the failed coordinator had, processing can continue without
interruption.

The prime advantage to the backup approach is the ability to continue pro-
cessing immediately. If a backup were not ready to assume the coordinator’s re-
sponsibility, a newly appointed coordinator would have to seek information from
all sites in the system so that it could execute the coordination tasks. Frequently,
the only source of some of the requisite information is the failed coordinator. In
this case, it may be necessary to abort several (or all) active transactions, and to
restart them under the control of the new coordinator.

Thus, the backup-coordinator approach avoids a substantial amount of delay
while the distributed system recovers from a coordinator failure. The disadvan-
tage is the overhead of duplicate execution of the coordinator’s tasks. Further-
more, a coordinator and its backup need to communicate regularly to ensure that
their activities are synchronized.

In short, the backup-coordinator approach incurs overhead during normal
processing to allow fast recovery from a coordinator failure.

In the absence of a designated backup coordinator, or in order to handle
multiple failures, a new coordinator may be chosen dynamically by sites that are
live. Election algorithms enable the sites to choose the site for the new coordinator
in a decentralized manner. Election algorithms require that a unique identification
number be associated with each active site in the system.

The bully algorithm for election works as follows: To keep the notation
and the discussion simple, assume that the identification number of site Si is i
and that the chosen coordinator will always be the active site with the largest
identification number. Hence, when a coordinator fails, the algorithm must elect
the active site that has the largest identification number. The algorithm must send
this number to each active site in the system. In addition, the algorithm must
provide a mechanism by which a site recovering from a crash can identify the
current coordinator. Suppose that site Si sends a request that is not answered
by the coordinator within a prespecified time interval T. In this situation, it is
assumed that the coordinator has failed, and Si tries to elect itself as the site for
the new coordinator.

852 Chapter 19 Distributed Databases

Site Si sends an election message to every site that has a higher identification
number. Site Si then waits, for a time interval T, for an answer from any one
of these sites. If it receives no response within time T, it assumes that all sites
with numbers greater than i have failed, and it elects itself as the site for the
new coordinator and sends a message to inform all active sites with identification
numbers lower than i that it is the site at which the new coordinator resides.

If Si does receive an answer, it begins a time interval T ′, to receive a message
informing it that a site with a higher identification number has been elected.
(Some other site is electing itself coordinator, and should report the results within
time T ′.) If Si receives no message within T ′, then it assumes the site with a higher
number has failed, and site Si restarts the algorithm.

After a failed site recovers, it immediately begins execution of the same algo-
rithm. If there are no active sites with higher numbers, the recovered site forces
all sites with lower numbers to let it become the coordinator site, even if there is
a currently active coordinator with a lower number. It is for this reason that the
algorithm is termed the bully algorithm. If the network partitions, the bully algo-
rithm elects a separate coordinator in each partition; to ensure that at most one
coordinator is elected, winning sites should additionally verify that a majority of
the sites are in their partition.

19.6.6 Trading Off Consistency for Availability

The protocols we have seen so far require a (weighted) majority of sites be in
a partition for updates to proceed. Sites that are in a minority partition cannot
process updates; if a network failure results in more than two partitions, no
partition may have a majority of sites. Under such a situation, the system would
be completely unavailable for updates, and depending on the read-quorum, may
even become unavailable for reads. The write-all-available protocol which we
saw earlier provides availability, but not consistency.

Ideally, we would like to have consistency and availability, even in the face
of partitions. Unfortunately, this is not possible, a fact that is crystallized in the
so-called CAP theorem, which states that any distributed database can have at
most two of the following three properties:

• Consistency.

• Availability.

• Partition-tolerance.

The proof of the CAP theorem uses the following definition of consistency, with
replicated data: an execution of a set of operations (reads and writes) on replicated
data is said to be consistent if its result is the same as if the operations were
executed on a single site, in some sequential order, and the sequential order is
consistent with the ordering of operations issued by each process (transaction).

19.6 Availability 853

The notion of consistency is similar to atomicity of transactions, but with each
operation treated as a transaction, and is weaker than the atomicity property of
transactions.

In any large-scale distributed system, partitions cannot be prevented, and as
a result either of availability or consistency has to be sacrificed. The schemes we
have seen earlier sacrifice availability for consistency in the face of partitions.

Consider a Web-based social-networking system that replicates its data on
three servers, and a network partition occurs that prevents the servers from
communicating with each other. Since none of the partitions has a majority, it
would not be possible to execute updates on any of the partitions. If one of these
servers is in the same partition as a user, the user actually has access to data,
but would be unable to update the data, since another user may be concurrently
updating the same object in another partition, which could potentially lead to
inconsistency. Inconsistency is not as great a risk in a social-networking system
as in a banking database. A designer of such a system may decide that a user
who can access the system should be allowed to perform updates on whatever
replicas are accessible, even at the risk of inconsistency.

In contrast to systems such as banking databases that require the ACID prop-
erties, systems such as the social-networking system mentioned above are said to
require the BASE properties:

• Basically available.

• Soft state.

• Eventually consistent.

The primary requirement is availability, even at the cost of consistency. Updates
should be allowed, even in the event of partitioning, following for example the
write-all-available protocol (which is similar to multimaster replication described
in Section 19.5.3). Soft state refers to the property that the state of the database may
not be precisely defined, with each replica possibly having a somewhat different
state due to partitioning of the network. Eventually consistent is the requirement
that once a partitioning is resolved, eventually all replicas will become consistent
with each other.

This last step requires that inconsistent copies of data items be identified; if
one is an earlier version of the other, the earlier version can be replaced by the later
version. It is possible, however, that the two copies were the result of independent
updates to a common base copy. A scheme for detecting such inconsistent updates,
called the version-vector scheme, is described in Section 25.5.4.

Restoring consistency in the face of inconsistent updates requires that the
updates be merged in some way that is meaningful to the application. This step
cannot be handled by the database; instead the database detects and informs
the application about the inconsistency, and the application then decides how to
resolve the inconsistency.

854 Chapter 19 Distributed Databases

19.7 Distributed Query Processing

In Chapter 13, we saw that there are a variety of methods for computing the
answer to a query. We examined several techniques for choosing a strategy for
processing a query that minimize the amount of time that it takes to compute the
answer. For centralized systems, the primary criterion for measuring the cost of
a particular strategy is the number of disk accesses. In a distributed system, we
must take into account several other matters, including:

• The cost of data transmission over the network.

• The potential gain in performance from having several sites process parts of
the query in parallel.

The relative cost of data transfer over the network and data transfer to and from
disk varies widely depending on the type of network and on the speed of the
disks. Thus, in general, we cannot focus solely on disk costs or on network costs.
Rather, we must find a good trade-off between the two.

19.7.1 Query Transformation

Consider an extremely simple query: “Find all the tuples in the account relation.”
Although the query is simple—indeed, trivial—processing it is not trivial, since
the account relation may be fragmented, replicated, or both, as we saw in Sec-
tion 19.2. If the account relation is replicated, we have a choice of replica to make.
If no replicas are fragmented, we choose the replica for which the transmission
cost is lowest. However, if a replica is fragmented, the choice is not so easy to
make, since we need to compute several joins or unions to reconstruct the account
relation. In this case, the number of strategies for our simple example may be
large. Query optimization by exhaustive enumeration of all alternative strategies
may not be practical in such situations.

Fragmentation transparency implies that a user may write a query such as:

�branch name = “Hillside” (account)

Since account is defined as:

account1 ∪ account2

the expression that results from the name translation scheme is:

�branch name = “Hillside” (account1 ∪ account2)

Using the query-optimization techniques of Chapter 13, we can simplify the
preceding expression automatically. The result is the expression:

19.7 Distributed Query Processing 855

�branch name = “Hillside” (account1) ∪ �branch name = “Hillside” (account2)

which includes two subexpressions. The first involves only account1, and thus
can be evaluated at the Hillside site. The second involves only account2, and thus
can be evaluated at the Valleyview site.

There is a further optimization that can be made in evaluating:

�branch name = “Hillside” (account1)

Since account1 has only tuples pertaining to the Hillside branch, we can eliminate
the selection operation. In evaluating:

�branch name = “Hillside” (account2)

we can apply the definition of the account2 fragment to obtain:

�branch name = “Hillside” (�branch name = “Valleyview” (account))

This expression is the empty set, regardless of the contents of the account relation.
Thus, our final strategy is for the Hillside site to return account1 as the result

of the query.

19.7.2 Simple Join Processing

As we saw in Chapter 13, a major decision in the selection of a query-processing
strategy is choosing a join strategy. Consider the following relational-algebra
expression:

account � depositor � branch

Assume that the three relations are neither replicated nor fragmented, and that
account is stored at site S1, depositor at S2, and branch at S3. Let SI denote the site
at which the query was issued. The system needs to produce the result at site SI .
Among the possible strategies for processing this query are these:

• Ship copies of all three relations to site SI . Using the techniques of Chapter
13, choose a strategy for processing the entire query locally at site SI .

• Ship a copy of the account relation to site S2, and compute temp1 = account �

depositor at S2. Ship temp1 from S2 to S3, and compute temp2 = temp1 � branch
at S3. Ship the result temp2 to SI .

• Devise strategies similar to the previous one, with the roles of S1, S2, S3
exchanged.

No one strategy is always the best one. Among the factors that must be
considered are the volume of data being shipped, the cost of transmitting a block

856 Chapter 19 Distributed Databases

of data between a pair of sites, and the relative speed of processing at each site.
Consider the first two strategies listed. Suppose indices present at S2 and S3 are
useful for computing the join. If we ship all three relations to SI , we would need to
either re-create these indices at SI , or use a different, possibly more expensive, join
strategy. Re-creation of indices entails extra processing overhead and extra disk
accesses. With the second strategy a potentially large relation (account � depositor)
must be shipped from S2 to S3. This relation repeats the name of a customer once
for each account that the customer has. Thus, the second strategy may result in
extra network transmission compared to the first strategy.

19.7.3 Semijoin Strategy

Suppose that we wish to evaluate the expression r1 � r2, where r1 and r2 are
stored at sites S1 and S2, respectively. Let the schemas of r1 and r2 be R1 and R2.
Suppose that we wish to obtain the result at S1. If there are many tuples of r2 that
do not join with any tuple of r1, then shipping r2 to S1 entails shipping tuples that
fail to contribute to the result. We want to remove such tuples before shipping
data to S1, particularly if network costs are high.

A possible strategy to accomplish all this is:

1. Compute temp1 ← �R1 ∩ R2 (r1) at S1.

2. Ship temp1 from S1 to S2.

3. Compute temp2 ← r2 � temp1 at S2.

4. Ship temp2 from S2 to S1.

5. Compute r1 � temp2 at S1. The resulting relation is the same as r1 � r2.

Before considering the efficiency of this strategy, let us verify that the strategy
computes the correct answer. In step 3, temp2 has the result of r2 � �R1 ∩ R2 (r1).
In step 5, we compute:

r1 � r2 � �R1 ∩ R2 (r1)

Since join is associative and commutative, we can rewrite this expression as:

(r1 � �R1 ∩ R2 (r1)) � r2

Since r1 � �(R1 ∩ R2) (r1) = r1, the expression is, indeed, equal to r1 � r2, the
expression we are trying to evaluate.

This strategy is particularly advantageous when relatively few tuples of r2
contribute to the join. This situation is likely to occur if r1 is the result of a
relational-algebra expression involving selection. In such a case, temp2 may have
significantly fewer tuples than r2. The cost savings of the strategy result from
having to ship only temp2, rather than all of r2, to S1. Additional cost is incurred
in shipping temp1 to S2. If a sufficiently small fraction of tuples in r2 contribute

19.8 Heterogeneous Distributed Databases 857

to the join, the overhead of shipping temp1 will be dominated by the savings of
shipping only a fraction of the tuples in r2.

This strategy is called a semijoin strategy, after the semijoin operator of the
relational algebra, denoted �. The semijoin of r1 with r2, denoted r1 � r2, is:

�R1 (r1 � r2)

Thus, r1 � r2 selects those tuples of relation r1 that contributed to r1 � r2. In step
3, temp2 = r2 � r1.

For joins of several relations, this strategy can be extended to a series of
semijoin steps. A substantial body of theory has been developed regarding the
use of semijoins for query optimization. Some of this theory is referenced in the
bibliographical notes.

19.7.4 Join Strategies that Exploit Parallelism

Consider a join of four relations:

r1 � r2 � r3 � r4

where relation ri is stored at site Si . Assume that the result must be presented
at site S1. There are many possible strategies for parallel evaluation. (We studied
the issue of parallel processing of queries in detail in Chapter 18.) In one such
strategy, r1 is shipped to S2, and r1 � r2 computed at S2. At the same time, r3 is
shipped to S4, and r3 � r4 computed at S4. Site S2 can ship tuples of (r1 � r2)
to S1 as they are produced, rather than wait for the entire join to be computed.
Similarly, S4 can ship tuples of (r3 � r4) to S1. Once tuples of (r1 � r2) and (r3 � r4)
arrive at S1, the computation of (r1 � r2) � (r3 � r4) can begin, with the pipelined
join technique of Section 12.7.2.2. Thus, computation of the final join result at
S1 can be done in parallel with the computation of (r1 � r2) at S2, and with the
computation of (r3 � r4) at S4.

19.8 Heterogeneous Distributed Databases

Many new database applications require data from a variety of preexisting
databases located in a heterogeneous collection of hardware and software en-
vironments. Manipulation of information located in a heterogeneous distributed
database requires an additional software layer on top of existing database sys-
tems. This software layer is called a multidatabase system. The local database
systems may employ different logical models and data-definition and data-
manipulation languages, and may differ in their concurrency-control and trans-
action-management mechanisms. A multidatabase system creates the illusion of
logical database integration without requiring physical database integration.

Full integration of heterogeneous systems into a homogeneous distributed
database is often difficult or impossible:

858 Chapter 19 Distributed Databases

• Technical difficulties. The investment in application programs based on ex-
isting database systems may be huge, and the cost of converting these appli-
cations may be prohibitive.

• Organizational difficulties. Even if integration is technically possible, it may
not be politically possible, because the existing database systems belong to
different corporations or organizations. In such cases, it is important for
a multidatabase system to allow the local database systems to retain a high
degree of autonomy over the local database and transactions running against
that data.

For these reasons, multidatabase systems offer significant advantages that
outweigh their overhead. In this section, we provide an overview of the challenges
faced in constructing a multidatabase environment from the standpoint of data
definition and query processing.

19.8.1 Unified View of Data

Each local database management system may use a different data model. For
instance, some may employ the relational model, whereas others may employ
older data models, such as the network model (see Appendix D) or the hierarchical
model (see Appendix E).

Since the multidatabase system is supposed to provide the illusion of a single,
integrated database system, a common data model must be used. A commonly
used choice is the relational model, with SQL as the common query language.
Indeed, there are several systems available today that allow SQL queries to a
nonrelational database-management system.

Another difficulty is the provision of a common conceptual schema. Each
local system provides its own conceptual schema. The multidatabase system must
integrate these separate schemas into one common schema. Schema integration
is a complicated task, mainly because of the semantic heterogeneity.

Schema integration is not simply straightforward translation between data-
definition languages. The same attribute names may appear in different local
databases but with different meanings. The data types used in one system may not
be supported by other systems, and translation between types may not be simple.
Even for identical data types, problems may arise from the physical representation
of data: One system may use 8-bit ASCII, another 16-bit Unicode, and yet another
EBCDIC; floating-point representations may differ; integers may be represented
in big-endian or little-endian form. At the semantic level, an integer value for
length may be inches in one system and millimeters in another, thus creating an
awkward situation in which equality of integers is only an approximate notion
(as is always the case for floating-point numbers). The same name may appear
in different languages in different systems. For example, a system based in the
United States may refer to the city “Cologne,” whereas one in Germany refers to
it as “Köln.”

All these seemingly minor distinctions must be properly recorded in the com-
mon global conceptual schema. Translation functions must be provided. Indices

19.8 Heterogeneous Distributed Databases 859

must be annotated for system-dependent behavior (for example, the sort order of
nonalphanumeric characters is not the same in ASCII as in EBCDIC). As we noted
earlier, the alternative of converting each database to a common format may not
be feasible without obsoleting existing application programs.

19.8.2 Query Processing

Query processing in a heterogeneous database can be complicated. Some of the
issues are:

• Given a query on a global schema, the query may have to be translated
into queries on local schemas at each of the sites where the query has to be
executed. The query results have to be translated back into the global schema.

The task is simplified by writing wrappers for each data source, which
provide a view of the local data in the global schema. Wrappers also translate
queries on the global schema into queries on the local schema, and translate
results back into the global schema. Wrappers may be provided by individual
sites, or may be written separately as part of the multidatabase system.

Wrappers can even be used to provide a relational view of nonrelational
data sources, such as Web pages (possibly with forms interfaces), flat files,
hierarchical and network databases, and directory systems.

• Some data sources may provide only limited query capabilities; for instance,
they may support selections, but not joins. They may even restrict the form of
selections, allowing selections only on certain fields; Web data sources with
form interfaces are an example of such data sources. Queries may therefore
have to be broken up, to be partly performed at the data source and partly at
the site issuing the query.

• In general, more than one site may need to be accessed to answer a given
query. Answers retrieved from the sites may have to be processed to remove
duplicates. Suppose one site contains account tuples satisfying the selection
balance < 100, while another contains account tuples satisfying balance > 50.
A query on the entire account relation would require access to both sites and
removal of duplicate answers resulting from tuples with balance between 50
and 100, which are replicated at both sites.

• Global query optimization in a heterogeneous database is difficult, since
the query execution system may not know what the costs are of alternative
query plans at different sites. The usual solution is to rely on only local-level
optimization, and just use heuristics at the global level.

Mediator systems are systems that integrate multiple heterogeneous data
sources, providing an integrated global view of the data and providing query
facilities on the global view. Unlike full-fledged multidatabase systems, mediator
systems do not bother about transaction processing. (The terms mediator and
multidatabase are often used in an interchangeable fashion, and systems that are
called mediators may support limited forms of transactions.) The term virtual

860 Chapter 19 Distributed Databases

database is used to refer to multidatabase/mediator systems, since they provide
the appearance of a single database with a global schema, although data exist on
multiple sites in local schemas.

19.8.3 Transaction Management in Multidatabases

A multidatabase system supports two types of transactions:

1. Local transactions. These transactions are executed by each local database
system outside of the multidatabase system’s control.

2. Global transactions. These transactions are executed under the multidata-
base system’s control.

The multidatabase system is aware of the fact that local transactions may run at
the local sites, but it is not aware of what specific transactions are being executed,
or of what data they may access.

Ensuring the local autonomy of each database system requires that no changes
be made to its software. A database system at one site thus is not able to commu-
nicate directly with one at any other site to synchronize the execution of a global
transaction active at several sites.

Since the multidatabase system has no control over the execution of local
transactions, each local system must use a concurrency-control scheme (for exam-
ple, two-phase locking or timestamping) to ensure that its schedule is serializable.
In addition, in case of locking, the local system must be able to guard against the
possibility of local deadlocks.

The guarantee of local serializability is not sufficient to ensure global serial-
izability. As an illustration, consider two global transactions T1 and T2, each of
which accesses and updates two data items, A and B, located at sites S1 and S2,
respectively. Suppose that the local schedules are serializable. It is still possible
to have a situation where, at site S1, T2 follows T1, whereas, at S2, T1 follows T2,
resulting in a nonserializable global schedule. Indeed, even if there is no concur-
rency among global transactions (that is, a global transaction is submitted only
after the previous one commits or aborts), local serializability is not sufficient to
ensure global serializability (see Practice Exercise 19.14).

Depending on the implementation of the local database systems, a global
transaction may not be able to control the precise locking behavior of its local
subtransactions. Thus, even if all local database systems follow two-phase lock-
ing, it may be possible only to ensure that each local transaction follows the rules
of the protocol. For example, one local database system may commit its subtrans-
action and release locks, while the subtransaction at another local system is still
executing. If the local systems permit control of locking behavior and all systems
follow two-phase locking, then the multidatabase system can ensure that global
transactions lock in a two-phase manner and the lock points of conflicting transac-
tions would then define their global serialization order. If different local systems
follow different concurrency-control mechanisms, however, this straightforward
sort of global control does not work.

19.9 Cloud-Based Databases 861

There are many protocols for ensuring consistency despite concurrent execu-
tion of global and local transactions in multidatabase systems. Some are based on
imposing sufficient conditions to ensure global serializability. Others ensure only
a form of consistency weaker than serializability, but achieve this consistency by
less restrictive means. Section 26.6 describes approaches to consistency without
serializability; other approaches are cited in the bibliographical notes.

Early multidatabase systems restricted global transactions to be read only.
They thus avoided the possibility of global transactions introducing inconsistency
to the data, but were not sufficiently restrictive to ensure global serializability. It
is indeed possible to get such global schedules and to develop a scheme to ensure
global serializability, and we ask you to do both in Practice Exercise 19.15.

There are a number of general schemes to ensure global serializability in an
environment where update as well as read-only transactions can execute. Several
of these schemes are based on the idea of a ticket. A special data item called
a ticket is created in each local database system. Every global transaction that
accesses data at a site must write the ticket at that site. This requirement ensures
that global transactions conflict directly at every site they visit. Furthermore, the
global transaction manager can control the order in which global transactions are
serialized, by controlling the order in which the tickets are accessed. References
to such schemes appear in the bibliographical notes.

If we want to ensure global serializability in an environment where no direct
local conflicts are generated in each site, some assumptions must be made about
the schedules allowed by the local database system. For example, if the local
schedules are such that the commit order and serialization order are always
identical, we can ensure serializability by controlling only the order in which
transactions commit.

A related problem in multidatabase systems is that of global atomic commit.
If all local systems follow the two-phase commit protocol, that protocol can be
used to achieve global atomicity. However, local systems not designed to be part
of a distributed system may not be able to participate in such a protocol. Even if a
local system is capable of supporting two-phase commit, the organization owning
the system may be unwilling to permit waiting in cases where blocking occurs. In
such cases, compromises may be made that allow for lack of atomicity in certain
failure modes. Further discussion of these matters appears in the literature (see
the bibliographical notes).

19.9 Cloud-Based Databases

Cloud computing is a relatively new concept in computing that emerged in
the late 1990s and the 2000s, first under the name software as a service. Initial
vendors of software services provided specific customizable applications that
they hosted on their own machines. The concept of cloud computing developed
as vendors began to offer generic computers as a service on which clients could
run software applications of their choosing. A client can make arrangements
with a cloud-computing vendor to obtain a certain number of machines of a

862 Chapter 19 Distributed Databases

certain capacity as well as a certain amount of data storage. Both the number of
machines and the amount of storage can grow and shrink as needed. In addition
to providing computing services, many vendors also provide other services such
as data storage services, map services, and other services that can be accessed
using a Web-service application programming interface.

Many enterprises are finding the model of cloud computing and services
beneficial. It saves client enterprises the need to maintain a large system-support
staff and allows new enterprises to begin operation without having to make a
large, up-front capital investment in computing systems. Further, as the needs
of the enterprise grow, more resources (computing and storage) can be added
as required; the cloud-computing vendor generally has very large clusters of
computers, making it easy for the vendor to allocate resources on demand.

A variety of vendors offer cloud services. They include traditional computing
vendors as well as companies, such as Amazon and Google, that are seeking to
leverage the large infrastructure they have in place for their core businesses.

Web applications that need to store and retrieve data for very large numbers
of users (ranging from millions to hundreds of millions) have been a major driver
of cloud-based databases. The needs of these applications differ from those of
traditional database applications, since they value availability and scalability over
consistency. Several cloud-based data-storage systems have been developed in
recent years to serve the needs of such applications. We discuss issues in building
such data-storage systems on the cloud in Section 19.9.1.

In Section 19.9.2, we consider issues in running traditional database systems
on a cloud. Cloud-based databases have features of both homogeneous and het-
erogeneous systems. Although the data are owned by one organization (the client)
and are part of one unified distributed database, the underlying computers are
owned and operated by another organization (the service vendor). The comput-
ers are remote from the client’s location(s) and are accessed over the Internet. As a
result, some of the challenges of heterogeneous distributed systems remain, par-
ticularly as regards transaction processing. However, many of the organizational
and political challenges of heterogeneous systems are avoided.

Finally, in Section 19.9.3, we discuss several technical as well as nontechnical
challenges that cloud databases face today.

19.9.1 Data Storage Systems on the Cloud

Applications on the Web have extremely high scalability requirements. Popular
applications have hundreds of millions of users, and many applications have seen
their load increase manyfold within a single year, or even within a few months. To
handle the data management needs of such applications, data must be partitioned
across thousands of processors.

A number of systems for data storage on the cloud have been developed
and deployed over the past few years to address data management requirements
of such applications; these include Bigtable from Google, Simple Storage Service
(S3) from Amazon, which provides a Web interface to Dynamo, which is a key-
value storage system, Cassandra, from FaceBook, which is similar to Bigtable, and

19.9 Cloud-Based Databases 863

Sherpa/PNUTS from Yahoo!, the data storage component of the Azure environment
from Microsoft, and several other systems.

In this section, we provide an overview of the architecture of such data-
storage systems. Although some people refer to these systems as distributed
database systems, they do not provide many of the features which are viewed as
standard on database systems today, such as support for SQL, or for transactions
with the ACID properties.

19.9.1.1 Data Representation

As an example of data management needs of Web applications, consider the pro-
file of a user, which needs to be accessible to a number of different applications that
are run by an organization. The profile contains a variety of attributes, and there
are frequent additions to the attributes stored in the profile. Some attributes may
contain complex data. A simple relational representation is often not sufficient
for such complex data.

Some cloud-based data-storage systems support XML (described in Chap-
ter 23) for representing such complex data. Others support the JavaScript Object
Notation (JSON) representation, which has found increasing acceptance for repre-
senting complex data. The XML and JSON representations provide flexibility in the
set of attributes that a record contains, as well as the types of these attributes. Yet
others, such as Bigtable, define their own data model for complex data including
support for records with a very large number of optional columns. We revisit the
Bigtable data model later in this section.

Further, many such Web applications either do not need extensive query
language support, or at least, can manage without such support. The primary
mode of data access is to store data with an associated key, and to retrieve data
with that key. In the above user profile example, the key for user-profile data
would be the user’s identifier. There are applications that conceptually require
joins, but implement the joins by a form of view materialization. For example,
in a social-networking application, each user should be shown new posts from
all her friends. Unfortunately, finding the set of friends and then querying each
one to find their posts may lead to a significant amount of delay when the data
are distributed across a large number of machines. An alternative is as follows:
whenever a user makes a post, a message is sent to all friends of that user, and
the data associated with each of the friends is updated with a summary of the
new post. When that user checks for updates, all required data are available in
one place and can be retrieved quickly.

Thus, cloud data-storage systems are, at their core, based on two primitive
functions, put(key, value), used to store values with an associated key, and get(key),
which retrieves the stored value associated with the specified key. Some systems
such as Bigtable additionally provide range queries on key values.

In Bigtable, a record is not stored as a single value, but is instead split into
component attributes that are stored separately. Thus, the key for an attribute
value conceptually consists of (record-identifier, attribute-name). Each attribute
value is just a string as far as Bigtable is concerned. To fetch all attributes of a

864 Chapter 19 Distributed Databases

JSON

JavaScript Object Notation, or JSON, is a textual representation of complex data
types which is widely used for transmitting data between applications, as well
as to store complex data. JSON supports the primitive data types integer, real and
string, as well as arrays, and “objects”, which are a collection of (attribute-name,
value) pairs. An example of a JSON object is:

{
"ID": "22222",
"name": {

"firstname: "Albert",
"lastname: "Einstein"

},
"deptname": "Physics",
"children": [

{ "firstname": "Hans", "lastname": "Einstein" },
{ "firstname": "Eduard", "lastname": "Einstein" }

]
}

The above example illustrates objects, which contain (attribute-name, value)
pairs, as well as arrays, delimited by square brackets. JSON can be viewed as a
simplified form of XML; XML is covered in Chapter 23.

Libraries have been developed to transform data between the JSON represen-
tation and the object representation used in the JavaScript and PHP scripting
languages, as well as other programming languages.

record, a range query, or more precisely a prefix-match query consisting of just the
record identifier, is used. The get() function returns the attribute names along with
the values. For efficient retrieval of all attributes of a record, the storage system
stores entries sorted by the key, so all attribute values of a particular record are
clustered together.

In fact, the record identifier can itself be structured hierarchically, although
to Bigtable itself the record identifier is just a string. For example, an application
that stores pages retrieved from a web crawl could map a URL of the form:

www.cs.yale.edu/people/silberschatz.html

to the record identifier:

edu.yale.cs.www/people/silberschatz.html

so that pages are clustered in a useful order. As another example, the record shown

19.9 Cloud-Based Databases 865

in the JSON example (see example box on JSON) can be represented by a record
with identifier “22222”, with multiple attribute names such as “name.firstname”,
“deptname”, “children[1].firstname” or “children[2].lastname”.

Further, a single instance of Bigtable can store data for multiple applications,
with multiple tables per application, by simply prefixing the application name
and table name to the record identifier.

Data-storage systems typically allow multiple versions of data items to be
stored. Versions are often identified by timestamp, but may be alternatively iden-
tified by an integer value that is incremented whenever a new version of a data
item is created. Lookups can specify the required version of a data item, or can
pick the version with the highest version number. In Bigtable, for example, a key
actually consists of three parts: (record-identifier, attribute-name, timestamp).

19.9.1.2 Partitioning and Retrieving Data

Partitioning of data is, of course, the key to handling extremely large scale in
data-storage systems. Unlike regular parallel databases, it is usually not possible
to decide on a partitioning function ahead of time. Further, if load increases, more
servers need to be added and each server should be able to take on parts of the
load incrementally.

To solve both these problems, data-storage systems typically partition data
into relatively small units (small on such systems may mean of the order of
hundreds of megabytes). These partitions are often called tablets, reflecting the
fact that each tablet is a fragment of a table. The partitioning of data should be
done on the search key, so that a request for a specific key value is directed to a
single tablet; otherwise each request would require processing at multiple sites,
increasing the load on the system greatly. Two approaches are used: either range
partitioning is used directly on the key, or a hash function is applied on the key,
and range partitioning is applied on the result of the hash function.

The site to which a tablet is assigned acts as the master site for that tablet. All
updates are routed through this site, and updates are then propagated to replicas
of the tablet. Lookups are also sent to the same site, so that reads are consistent
with writes.

The partitioning of data into tablets is not fixed up front, but happens dy-
namically. As data are inserted, if a tablet grows too big, it is broken into smaller
parts. Further, even if a tablet is not large enough to merit being broken up, if the
load (get/put operations) on that tablet are excessive, the tablet may be broken
into smaller tablets, which can be distributed across two or more sites to share
the load. Usually the number of tablets is much larger than the number of sites,
for the same reason that virtual partitioning is used in parallel databases.

It is important to know which site in the overall system is responsible for a
particular tablet. This can be done by having a tablet controller site which tracks
the partitioning function, to map a get() request to one or more tablets, and a
mapping function from tablets to sites, to find which site were responsible for
which tablet. Each request coming into the system must be routed to the correct
site; if a single tablet controller site is responsible for this task, it would soon

866 Chapter 19 Distributed Databases

Routers

Requests Requests Requests

Tablets

Tablets servers

Tablets
controlle

Master copy of
partition table/
tablet mapping

Figure 19.7 Architecture of a cloud data storage system.

get overloaded. Instead, the mapping information can be replicated on a set of
router sites, which route requests to the site with the appropriate tablet. Protocols
to update mapping information when a tablet is split or moved are designed in
such a way that no locking is used; a request may as a result end up at a wrong
site. The problem is handled by detecting that the site is no longer responsible for
the key specified by the request, and rerouting the request based on up-to-date
mapping information.

Figure 19.7 depicts the architecture of a cloud data-storage system, based
loosely on the PNUTS architecture. Other systems provide similar functionality,
although their architecture may vary. For example, Bigtable does not have sepa-
rate routers; the partitioning and tablet-server mapping information is stored in
the Google file system, and clients read the information from the file system, and
decide where to send their requests.

19.9.1.3 Transactions and Replication

Data-storage systems on the cloud typically do not fully support ACID trans-
actions. The cost of two-phase commit is too high, and two-phase commit can
lead to blocking in the event of failures, which is not acceptable to typical Web
applications. This means that such systems typically do not even support a trans-
actionally consistent secondary index: the secondary index would be partitioned
on a different attribute from the key used for storing the data, and an insert or
update would then need to update two sites, which would require two-phase
commit. At best, such systems support transactions on data within a single tablet,
which is controlled by a a single master site. Sherpa/PNUTS also provides a test-

19.9 Cloud-Based Databases 867

and-set function, which allows an update to a data item to be conditional on the
current version of the data item being the same as a specified version number. If
the current version number of the data item is more recent than the specified ver-
sion number, the update is not performed. The test-and-set function can be used
by applications to implement a limited form of validation-based concurrency
control, with validation restricted to data items in a single tablet.

In a system with thousands of sites, at any time it is almost guaranteed that
several of the sites will be down. A data-storage system on the cloud must be
able to continue normal processing even with many sites down. Such systems
replicate data (such as tablets) to multiple machines in a cluster, so that a copy of
the data is likely to be available even if some machines of a cluster are down. (A
cluster is a collection of machines in a data center.) For example, the Google File
System (GFS), which is a distributed fault-tolerant file system, replicates all file
system blocks at three or more nodes in a cluster. Normal operation can continue
as long as at least one copy of the data is available (key system data, such as
the mapping of files to nodes, is replicated at more nodes, a majority of which
need to be available). In addition, replication is also used across geographically
distributed clusters, for reasons that we shall see shortly.

Since each tablet is controlled by a single master site, if the site fails the tablet
should be reassigned to a different site that has a copy of the tablet, which becomes
the new master site for the tablet. Updates to a tablet are logged, and the log is
itself replicated. When a site fails, the tablets at the site are assigned to other sites;
the new master site of each tablet is responsible for performing recovery actions
using the log to bring its copy of the tablet to an up-to-date consistent state, after
which updates and lookups can be performed on the tablet.

In Bigtable, as an example, mapping information is stored in an index struc-
ture, and the index as well as the actual tablet data are stored in the file system.
Tablet data updates are not flushed immediately, but log data are. The file system
ensures that the file system data are replicated and will be available even in the
face of failure of a few nodes in the cluster. Thus, when a tablet is reassigned,
the new master site for the tablet has access to up-to-date log data. Yahoo!’s
Sherpa/PNUTS system, on the other hand, explicitly replicates tablets to multiple
nodes in a cluster, instead of using a distributed file system, and uses a reliable
distributed-messaging system to implement a highly available log.

Unfortunately, it is not uncommon for an entire data center to become unavail-
able-for example, due to natural disasters or fires. Replication at a remote site is
therefore essential for high availability. For many Web applications, round-trip
delays across a long-distance network can affect performance significantly, a
problem that is increasing with the use of Ajax applications that require multiple
rounds of communication between the browser and the application. To deal with
this problem, users are connected with application servers that are closest to them
geographically, and data are replicated at multiple data centers so that one of the
replicas is likely to be close to the application server.

However, the danger of partitioning of the network is increased as a result.
Given that most Web applications place a greater premium on availability than on
consistency, data-storage systems on the cloud usually allow updates to proceed

868 Chapter 19 Distributed Databases

even in the event of a partitioning, and provide support for restoring consis-
tency later, as discussed earlier in Section 19.6.6. Multimaster replication with
lazy propagation of updates, which we saw in Section 19.5.3, is typically used
for processing updates. Lazy propagation implies that updates are not propa-
gated to replicas as part of the updating transaction, although they are typically
propagated as soon as possible, typically using a messaging infrastructure.

In addition to propagating updates to replicas of a data item, updates to
secondary indices, or to certain kinds of materialized views (such as the updates
from friends, in a social-networking application we saw earlier in Section 19.9.1.1),
can be sent using the messaging infrastructure. Secondary indices are basically
tables, partitioned just like regular tables, based on the index search key; an
update of a record in a table can be mapped to updates of one or more tablets in a
secondary index on the table. There is no transactional guarantee on the updates
of such secondary indices or materialized views, and only a best-effort guarantee
in terms of when the updates reach their destination.

19.9.2 Traditional Databases on the Cloud

We now consider the issue of implementing a traditional distributed database
system, supporting ACID properties and queries, on a cloud.

The concept of computing utilities is an old one, envisioned back in the 1960s.
The first manifestation of the concept was in timesharing systems in which several
users shared access to a single mainframe computer. Later, in the late 1960s, the
concept of virtual machines was developed, in which a user was given the illusion
of having a private computer, while in reality a single computer simulated several
virtual machines.

Cloud computing makes extensive use of the virtual-machine concept to pro-
vide computing services. Virtual machines provide great flexibility since clients
may choose their own software environment including not only the application
software but also the operating system. Virtual machines of several clients can
run on a single physical computer, if the computing needs of the clients are low.
On the other hand, an entire computer can be allocated to each virtual machine
of a client whose virtual machines have a high load. A client may request several
virtual machines over which to run an application. This makes it easy to add or
subtract computing power as workloads grow and shrink simply by adding or
releasing virtual machines.

Having a set of virtual machines works well for applications that are easily
parallelized. Database systems, as we have seen, fall into this category. Each
virtual machine can run database system code locally and behave in a manner
similar to a site in a homogeneous distributed database system.

19.9.3 Challenges with Cloud-Based Databases

Cloud-based databases certainly have several important advantages compared
to building a computing infrastructure from scratch, and are in fact essential for
certain applications.

19.9 Cloud-Based Databases 869

However, cloud-based database systems also have several disadvantages that
we shall now explore. Unlike purely computational applications in which parallel
computations run largely independently, distributed database systems require
frequent communication and coordination among sites for:

• access to data on another physical machine, either because the data are owned
by another virtual machine or because the data are stored on a storage server
separate from the computer hosting the virtual machine.

• obtaining locks on remote data.

• ensuring atomic transaction commit via two-phase commit.

In our earlier study of distributed databases, we assumed (implicitly) that
the database administrator had control over the physical location of data. In a
cloud system, the physical location of data is under the control of the vendor,
not the client. As a result, the physical placement of data may be suboptimal in
terms of communication cost, and this may result in a large number of remote
lock requests and large transfers of data across virtual machines. Effective query
optimization requires that the optimizer have accurate cost measures for opera-
tions. Lacking knowledge of the physical placement of data, the optimizer has
to rely on estimates that may be highly inaccurate, resulting in poor execution
strategies. Because remote accesses are relatively slow compared to local access,
these issues can have a significant impact on performance.

The above issues are a particular challenge for implementing traditional
database applications on the cloud, although less challenging for simple data-
storage systems. The next few challenges we discuss apply equally to both appli-
cation scenarios.

The matter of replication further complicates cloud-based data management.
Cloud systems replicate client data for availability. Indeed many contracts have
clauses imposing penalties on the vendor if a certain level of availability is not
maintained. This replication is done by the vendor without specific knowledge
of the application. Since replication is under control of the cloud and not under
the control of the database system, care must be used when the database system
accesses data so as to ensure that the latest versions of the data are read. Failure
to take these issues properly into account can result in a loss of the atomicity or
isolation properties. In many current cloud database applications, the application
itself may need to take some responsibility for consistency.

Users of cloud computing must be willing to accept that their data are held
by another organization. This may present a variety of risks in terms of security
and legal liability. If the cloud vendor suffers a security breach, client data may
be divulged, causing the client to face legal challenges from its customers. Yet
the client has no direct control over cloud-vendor security. These issues become
more complex if the cloud vendor chooses to store data (or replicas of data) in
a foreign country. Various legal jurisdictions differ in their privacy laws. So, for
example, if a German company’s data are replicated on a server in New York,
then the privacy laws of the United States rather than those of Germany or the

870 Chapter 19 Distributed Databases

European Union apply. The cloud vendor might be required to release client data
to the U.S. government even though the client never knew that its data would
wind up under U.S. jurisdiction.

Specific cloud vendors offer their clients varying degrees of control over how
their data are distributed and replicated. Some vendors offer database services
directly to their clients rather than require clients to contract for raw storage and
virtual machines over which to run their own database systems.

The market for cloud services continues to evolve rapidly, but it is clear that
a database administrator who is contracting for cloud services has to consider
a wide variety of technical, economic, and legal issues in order to ensure the
privacy and security of data, guarantees of the ACID properties (or an acceptable
approximation thereof), and adequate performance despite the likelihood of data
being distributed over a wide geographic area. The bibliographical notes provide
some of the current thinking on these topics. Much new literature is likely to
appear in the next few years, and many of the current issues in cloud databases
are being addressed by the research community.

19.10 Directory Systems

Consider an organization that wishes to make data about its employees avail-
able to a variety of people in the organization; examples of the kinds of data
include name, designation, employee-id, address, email address, phone number,
fax number, and so on. In the precomputerization days, organizations would cre-
ate physical directories of employees and distribute them across the organization.
Even today, telephone companies create physical directories of customers.

In general, a directory is a listing of information about some class of objects
such as persons. Directories can be used to find information about a specific object,
or in the reverse direction to find objects that meet a certain requirement. In the
world of physical telephone directories, directories that satisfy lookups in the
forward direction are called white pages, while directories that satisfy lookups
in the reverse direction are called yellow pages.

In today’s networked world, the need for directories is still present and, if
anything, even more important. However, directories today need to be available
over a computer network, rather than in a physical (paper) form.

19.10.1 Directory Access Protocols

Directory information can be made available through Web interfaces, as many
organizations, and phone companies in particular, do. Such interfaces are good
for humans. However, programs too need to access directory information. Direc-
tories can be used for storing other types of information, much like file system
directories. For instance, Web browsers can store personal bookmarks and other
browser settings in a directory system. A user can thus access the same settings
from multiple locations, such as at home and at work, without having to share a
file system.

19.10 Directory Systems 871

Several directory access protocols have been developed to provide a stan-
dardized way of accessing data in a directory. The most widely used among them
today is the Lightweight Directory Access Protocol (LDAP).

Obviously all the types of data in our examples can be stored without much
trouble in a database system, and accessed through protocols such as JDBC or
ODBC. The question then is, why come up with a specialized protocol for accessing
directory information? There are at least two answers to the question.

• First, directory access protocols are simplified protocols that cater to a limited
type of access to data. They evolved in parallel with the database access
protocols.

• Second, and more important, directory systems provide a simple mecha-
nism to name objects in a hierarchical fashion, similar to file system directory
names, which can be used in a distributed directory system to specify what
information is stored in each of the directory servers. For example, a partic-
ular directory server may store information for Bell Laboratories employees
in Murray Hill, while another may store information for Bell Laboratories
employees in Bangalore, giving both sites autonomy in controlling their lo-
cal data. The directory access protocol can be used to obtain data from both
directories across a network. More important, the directory system can be
set up to automatically forward queries made at one site to the other site,
without user intervention.

For these reasons, several organizations have directory systems to make or-
ganizational information available online through a directory access protocol.
Information in an organizational directory can be used for a variety of purposes,
such as to find addresses, phone numbers, or email addresses of people, to find
which departments people are in, and to track department hierarchies. Directories
are also used to authenticate users: applications can collect authentication infor-
mation such as passwords from users and authenticate them using the directory.

As may be expected, several directory implementations find it beneficial to
use relational databases to store data, instead of creating special-purpose storage
systems.

19.10.2 LDAP: Lightweight Directory Access Protocol

In general a directory system is implemented as one or more servers, which service
multiple clients. Clients use the application programmer interface defined by the
directory system to communicate with the directory servers. Directory access
protocols also define a data model and access control.

The X.500 directory access protocol, defined by the International Organiza-
tion for Standardization (ISO), is a standard for accessing directory information.
However, the protocol is rather complex, and is not widely used. The Lightweight
Directory Access Protocol (LDAP) provides many of the X.500 features, but with
less complexity, and is widely used. In the rest of this section, we shall outline the
data model and access protocol details of LDAP.

872 Chapter 19 Distributed Databases

19.10.2.1 LDAP Data Model

In LDAP, directories store entries, which are similar to objects. Each entry must
have a distinguished name (DN), which uniquely identifies the entry. A DN is
in turn made up of a sequence of relative distinguished names (RDNs). For
example, an entry may have the following distinguished name:

cn=Silberschatz, ou=Computer Science, o=Yale University, c=USA

As you can see, the distinguished name in this example is a combination of a
name and (organizational) address, starting with a person’s name, then giving
the organizational unit (ou), the organization (o), and country (c). The order of
the components of a distinguished name reflects the normal postal address order,
rather than the reverse order used in specifying path names for files. The set of
RDNs for a DN is defined by the schema of the directory system.

Entries can also have attributes. LDAP provides binary, string, and time types,
and additionally the types tel for telephone numbers, and PostalAddress for
addresses (lines separated by a “$” character). Unlike those in the relational model,
attributes are multivalued by default, so it is possible to store multiple telephone
numbers or addresses for an entry.

LDAP allows the definition of object classes with attribute names and types.
Inheritance can be used in defining object classes. Moreover, entries can be spec-
ified to be of one or more object classes. It is not necessary that there be a single
most-specific object class to which an entry belongs.

Entries are organized into a directory information tree (DIT), according to
their distinguished names. Entries at the leaf level of the tree usually represent
specific objects. Entries that are internal nodes represent objects such as orga-
nizational units, organizations, or countries. The children of a node have a DN
containing all the RDNs of the parent, and one or more additional RDNs. For in-
stance, an internal node may have a DN c=USA, and all entries below it have the
value USA for the RDN c.

The entire distinguished name need not be stored in an entry. The system can
generate the distinguished name of an entry by traversing up the DIT from the
entry, collecting the RDN=value components to create the full distinguished name.

Entries may have more than one distinguished name—for example, an entry
for a person in more than one organization. To deal with such cases, the leaf level
of a DIT can be an alias, which points to an entry in another branch of the tree.

19.10.2.2 Data Manipulation

Unlike SQL, LDAP does not define either a data-definition language or a data-
manipulation language. However, LDAP defines a network protocol for carrying
out data definition and manipulation. Users of LDAP can either use an application
programming interface or use tools provided by various vendors to perform
data definition and manipulation. LDAP also defines a file format called LDAP
Data Interchange Format (LDIF) that can be used for storing and exchanging
information.

19.10 Directory Systems 873

The querying mechanism in LDAP is very simple, consisting of just selections
and projections, without any join. A query must specify the following:

• A base—that is, a node within a DIT—by giving its distinguished name (the
path from the root to the node).

• A search condition, which can be a Boolean combination of conditions on
individual attributes. Equality, matching by wild-card characters, and ap-
proximate equality (the exact definition of approximate equality is system
dependent) are supported.

• A scope, which can be just the base, the base and its children, or the entire
subtree beneath the base.

• Attributes to return.

• Limits on number of results and resource consumption.

The query can also specify whether to automatically dereference aliases; if alias
dereferences are turned off, alias entries can be returned as answers.

One way of querying an LDAP data source is by using LDAP URLs. Examples
of LDAP URLs are:

ldap:://codex.cs.yale.edu/o=Yale University,c=USA
ldap:://codex.cs.yale.edu/o=Yale University,c=USA??sub?cn=Silberschatz

The first URL returns all attributes of all entries at the server with organization
being Yale University, and country being USA. The second URL executes a search
query (selection) cn=Silberschatz on the subtree of the node with distinguished
name o=Yale University, c=USA. The question marks in the URL separate different
fields. The first field is the distinguished name, here o=Yale University,c=USA.
The second field, the list of attributes to return, is left empty, meaning return
all attributes. The third attribute, sub, indicates that the entire subtree is to be
searched. The last parameter is the search condition.

A second way of querying an LDAP directory is by using an application
programming interface. Figure 19.8 shows a piece of C code used to connect
to an LDAP server and run a query against the server. The code first opens a
connection to an LDAP server by ldap open and ldap bind. It then executes a
query by ldap search s. The arguments to ldap search s are the LDAP connection
handle, the DN of the base from which the search should be done, the scope of
the search, the search condition, the list of attributes to be returned, and an
attribute called attrsonly, which, if set to 1, would result in only the schema of the
result being returned, without any actual tuples. The last argument is an output
argument that returns the result of the search as an LDAPMessage structure.

The first for loop iterates over and prints each entry in the result. Note that an
entry may have multiple attributes, and the second for loop prints each attribute.
Since attributes in LDAP may be multivalued, the third for loop prints each value
of an attribute. The calls ldap msgfree and ldap value free free memory that is

874 Chapter 19 Distributed Databases

#include <stdio.h>

#include <ldap.h>

main() {
LDAP *ld;
LDAPMessage *res, *entry;
char *dn, *attr, *attrList[] = {“telephoneNumber”, NULL};
BerElement *ptr;
int vals, i;
ld = ldap open(“codex.cs.yale.edu”, LDAP PORT);
ldap simple bind(ld, “avi”, “avi-passwd”) ;
ldap search s(ld, “o=Yale University, c=USA”, LDAP SCOPE SUBTREE,

“cn=Silberschatz”, attrList, /*attrsonly*/ 0, &res);
printf(“found %d entries”, ldap count entries(ld, res));
for (entry=ldap first entry(ld, res); entry != NULL;

entry = ldap next entry(ld, entry))
{

dn = ldap get dn(ld, entry);
printf(“dn: %s”, dn);
ldap memfree(dn);
for (attr = ldap first attribute(ld, entry, &ptr);

attr ! NULL;
attr = ldap next attribute(ld, entry, ptr))

{
printf(“%s: ”, attr);
vals = ldap get values(ld, entry, attr);
for (i=0; vals[i] != NULL; i++)

printf(“%s, ”, vals[i]);
ldap value free(vals);

}
}
ldap msgfree(res);
ldap unbind(ld);

}

Figure 19.8 Example of LDAP code in C.

allocated by the LDAP libraries. Figure 19.8 does not show code for handling error
conditions.

The LDAP API also contains functions to create, update, and delete entries, as
well as other operations on the DIT. Each function call behaves like a separate
transaction; LDAP does not support atomicity of multiple updates.

19.10.2.3 Distributed Directory Trees

Information about an organization may be split into multiple DITs, each of which
stores information about some entries. The suffix of a DIT is a sequence of

19.11 Summary 875

RDN=value pairs that identify what information the DIT stores; the pairs are con-
catenated to the rest of the distinguished name generated by traversing from the
entry to the root. For instance, the suffix of a DIT may be o=Lucent, c=USA, while
another may have the suffix o=Lucent, c=India. The DITs may be organizationally
and geographically separated.

A node in a DIT may contain a referral to another node in another DIT; for
instance, the organizational unit Bell Labs under o=Lucent, c=USA may have its
own DIT, in which case the DIT for o=Lucent, c=USA would have a node ou=Bell
Labs representing a referral to the DIT for Bell Labs.

Referrals are the key component that help organize a distributed collection
of directories into an integrated system. When a server gets a query on a DIT, it
may return a referral to the client, which then issues a query on the referenced
DIT. Access to the referenced DIT is transparent, proceeding without the user’s
knowledge. Alternatively, the server itself may issue the query to the referred DIT
and return the results along with locally computed results.

The hierarchical naming mechanism used by LDAP helps break up control
of information across parts of an organization. The referral facility then helps
integrate all the directories in an organization into a single virtual directory.

Although it is not an LDAP requirement, organizations often choose to break
up information either by geography (for instance, an organization may maintain
a directory for each site where the organization has a large presence) or by orga-
nizational structure (for instance, each organizational unit, such as department,
maintains its own directory).

Many LDAP implementations support master–slave and multimaster repli-
cation of DITs, although replication is not part of the current LDAP version 3
standard. Work on standardizing replication in LDAP is in progress.

19.11 Summary

• A distributed database system consists of a collection of sites, each of which
maintains a local database system. Each site is able to process local transac-
tions: those transactions that access data in only that single site. In addition, a
site may participate in the execution of global transactions: those transactions
that access data in several sites. The execution of global transactions requires
communication among the sites.

• Distributed databases may be homogeneous, where all sites have a common
schema and database system code, or heterogeneous, where the schemas and
system codes may differ.

• There are several issues involved in storing a relation in the distributed data-
base, including replication and fragmentation. It is essential that the system
minimize the degree to which a user needs to be aware of how a relation is
stored.

• A distributed system may suffer from the same types of failure that can afflict
a centralized system. There are, however, additional failures with which we

876 Chapter 19 Distributed Databases

need to deal in a distributed environment, including the failure of a site,
the failure of a link, loss of a message, and network partition. Each of these
problems needs to be considered in the design of a distributed recovery
scheme.

• To ensure atomicity, all the sites in which a transaction T executed must agree
on the final outcome of the execution. T either commits at all sites or aborts at
all sites. To ensure this property, the transaction coordinator of T must execute
a commit protocol. The most widely used commit protocol is the two-phase
commit protocol.

• The two-phase commit protocol may lead to blocking, the situation in which
the fate of a transaction cannot be determined until a failed site (the coordi-
nator) recovers. We can use the three-phase commit protocol to reduce the
probability of blocking.

• Persistent messaging provides an alternative model for handling distributed
transactions. The model breaks a single transaction into parts that are exe-
cuted at different databases. Persistent messages (which are guaranteed to
be delivered exactly once, regardless of failures), are sent to remote sites
to request actions to be taken there. While persistent messaging avoids the
blocking problem, application developers have to write code to handle vari-
ous types of failures.

• The various concurrency-control schemes used in a centralized system can
be modified for use in a distributed environment.

◦ In the case of locking protocols, the only change that needs to be incor-
porated is in the way that the lock manager is implemented. There are
a variety of different approaches here. One or more central coordinators
may be used. If, instead, a distributed-lock-manager approach is taken,
replicated data must be treated specially.

◦ Protocols for handling replicated data include the primary copy, majority,
biased, and quorum consensus protocols. These have different trade-offs
in terms of cost and ability to work in the presence of failures.

◦ In the case of timestamping and validation schemes, the only needed
change is to develop a mechanism for generating unique global times-
tamps.

◦ Many database systems support lazy replication, where updates are prop-
agated to replicas outside the scope of the transaction that performed the
update. Such facilities must be used with great care, since they may result
in nonserializable executions.

• Deadlock detection in a distributed-lock-manager environment requires co-
operation between multiple sites, since there may be global deadlocks even
when there are no local deadlocks.

19.11 Summary 877

• To provide high availability, a distributed database must detect failures, re-
configure itself so that computation may continue, and recover when a pro-
cessor or a link is repaired. The task is greatly complicated by the fact that it
is hard to distinguish between network partitions and site failures.

The majority protocol can be extended by using version numbers to permit
transaction processing to proceed even in the presence of failures. While the
protocol has a significant overhead, it works regardless of the type of failure.
Less-expensive protocols are available to deal with site failures, but they
assume network partitioning does not occur.

• Some of the distributed algorithms require the use of a coordinator. To pro-
vide high availability, the system must maintain a backup copy that is ready to
assume responsibility if the coordinator fails. Another approach is to choose
the new coordinator after the coordinator has failed. The algorithms that de-
termine which site should act as a coordinator are called election algorithms.

• Queries on a distributed database may need to access multiple sites. Several
optimization techniques are available to identify the best set of sites to access.
Queries can be rewritten automatically in terms of fragments of relations and
then choices can be made among the replicas of each fragment. Semijoin
techniques may be employed to reduce data transfer involved in joining
relations (or fragments or relicas thereof) across distinct sites.

• Heterogeneous distributed databases allow sites to have their own schemas
and database system code. A multidatabase system provides an environment
in which new database applications can access data from a variety of pre-
existing databases located in various heterogeneous hardware and software
environments. The local database systems may employ different logical mod-
els and data-definition and data-manipulation languages, and may differ in
their concurrency-control and transaction-management mechanisms. A mul-
tidatabase system creates the illusion of logical database integration, without
requiring physical database integration.

• A large number of data-storage systems on the cloud have been built in
recent years, in response to data storage needs of extremely large-scale Web
applications. These data-storage systems allow scalability to thousands of
nodes, with geographic distribution, and high availability. However, they do
not support the usual ACID properties, and they achieve availability during
partitions at the cost of consistency of replicas. Current data-storage systems
also do not support SQL, and provide only a simple put()/get() interface.
While cloud computing is attractive even for traditional databases, there are
several challenges due to lack of control on data placement and geographic
replication.

• Directory systems can be viewed as a specialized form of database, where
information is organized in a hierarchical fashion similar to the way files are
organized in a file system. Directories are accessed by standardized directory
access protocols such as LDAP. Directories can be distributed across multiple

878 Chapter 19 Distributed Databases

sites to provide autonomy to individual sites. Directories can contain referrals
to other directories, which help build an integrated view whereby a query
is sent to a single directory, and it is transparently executed at all relevant
directories.

Review Terms

• Homogeneous distributed
database

• Heterogeneous distributed
database

• Data replication
• Primary copy
• Data fragmentation

◦ Horizontal fragmentation

◦ Vertical fragmentation

• Data transparency

◦ Fragmentation transparency

◦ Replication transparency

◦ Location transparency

• Name server
• Aliases
• Distributed transactions

◦ Local transactions

◦ Global transactions

• Transaction manager
• Transaction coordinator
• System failure modes
• Network partition
• Commit protocols
• Two-phase commit protocol (2PC)

◦ Ready state

◦ In-doubt transactions

◦ Blocking problem

• Three-phase commit protocol
(3PC)

• Persistent messaging
• Concurrency control
• Single lock manager
• Distributed lock manager
• Protocols for replicas

◦ Primary copy

◦ Majority protocol

◦ Biased protocol

◦ Quorum consensus protocol

• Timestamping
• Master–slave replication
• Multimaster (update-anywhere)

replication
• Transaction-consistent snapshot
• Lazy propagation
• Deadlock handling

◦ Local wait-for graph

◦ Global wait-for graph

◦ False cycles

• Availability
• Robustness

◦ Majority-based approach

◦ Read one, write all

◦ Read one, write all available

◦ Site reintegration

• Coordinator selection

Practice Exercises 879

• Backup coordinator
• Election algorithms
• Bully algorithm
• Distributed query processing
• Semijoin strategy
• Multidatabase system

◦ Autonomy

◦ Mediators

◦ Local transactions

◦ Global transactions

◦ Ensuring global serializability

◦ Ticket

• Cloud computing

• Cloud data storage
• Tablet
• Directory systems
• LDAP: Lightweight Directory

Access Protocol

◦ Distinguished name (DN)

◦ Relative distinguished names
(RDNs)

◦ Directory information
tree (DIT)

• Distributed directory trees

◦ DIT suffix

◦ Referral

Practice Exercises

19.1 How might a distributed database designed for a local-area network differ
from one designed for a wide-area network?

19.2 To build a highly available distributed system, you must know what kinds
of failures can occur.

a. List possible types of failure in a distributed system.

b. Which items in your list from part a are also applicable to a central-
ized system?

19.3 Consider a failure that occurs during 2PC for a transaction. For each pos-
sible failure that you listed in Practice Exercise 19.2a, explain how 2PC
ensures transaction atomicity despite the failure.

19.4 Consider a distributed system with two sites, A and B. Can site A distin-
guish among the following?

• B goes down.

• The link between A and B goes down.

• B is extremely overloaded and response time is 100 times longer than
normal.

What implications does your answer have for recovery in distributed
systems?

880 Chapter 19 Distributed Databases

19.5 The persistent messaging scheme described in this chapter depends on
timestamps combined with discarding of received messages if they are too
old. Suggest an alternative scheme based on sequence numbers instead
of timestamps.

19.6 Give an example where the read one, write all available approach leads
to an erroneous state.

19.7 Explain the difference between data replication in a distributed system
and the maintenance of a remote backup site.

19.8 Give an example where lazy replication can lead to an inconsistent database
state even when updates get an exclusive lock on the primary (master)
copy.

19.9 Consider the following deadlock-detection algorithm. When transaction
Ti , at site S1, requests a resource from Tj , at site S3, a request message with
timestamp n is sent. The edge (Ti , Tj , n) is inserted in the local wait-for
graph of S1. The edge (Ti , Tj , n) is inserted in the local wait-for graph of
S3 only if Tj has received the request message and cannot immediately
grant the requested resource. A request from Ti to Tj in the same site is
handled in the usual manner; no timestamps are associated with the edge
(Ti , Tj). A central coordinator invokes the detection algorithm by sending
an initiating message to each site in the system.

On receiving this message, a site sends its local wait-for graph to the
coordinator. Note that such a graph contains all the local information that
the site has about the state of the real graph. The wait-for graph reflects
an instantaneous state of the site, but it is not synchronized with respect
to any other site.

When the controller has received a reply from each site, it constructs a
graph as follows:

• The graph contains a vertex for every transaction in the system.

• The graph has an edge (Ti , Tj) if and only if:

◦ There is an edge (Ti , Tj) in one of the wait-for graphs.

◦ An edge (Ti , Tj , n) (for some n) appears in more than one wait-for
graph.

Show that, if there is a cycle in the constructed graph, then the system is
in a deadlock state, and that, if there is no cycle in the constructed graph,
then the system was not in a deadlock state when the execution of the
algorithm began.

19.10 Consider a relation that is fragmented horizontally by plant number:

employee (name, address, salary, plant number)

Practice Exercises 881

Assume that each fragment has two replicas: one stored at the New York
site and one stored locally at the plant site. Describe a good processing
strategy for the following queries entered at the San Jose site.

a. Find all employees at the Boca plant.

b. Find the average salary of all employees.

c. Find the highest-paid employee at each of the following sites: Toronto,
Edmonton, Vancouver, Montreal.

d. Find the lowest-paid employee in the company.

19.11 Compute r � s for the relations of Figure 19.9.

19.12 Give an example of an application ideally suited for the cloud and another
that would be hard to implement successfully in the cloud. Explain your
answer.

19.13 Given that the LDAP functionality can be implemented on top of a database
system, what is the need for the LDAP standard?

19.14 Consider a multidatabase system in which it is guaranteed that at most
one global transaction is active at any time, and every local site ensures
local serializability.

a. Suggest ways in which the multidatabase system can ensure that
there is at most one active global transaction at any time.

b. Show by example that it is possible for a nonserializable global
schedule to result despite the assumptions.

19.15 Consider a multidatabase system in which every local site ensures local
serializability, and all global transactions are read only.

a. Show by example that nonserializable executions may result in such
a system.

b. Show how you could use a ticket scheme to ensure global serializ-
ability.

r

A B C

s

C D E
1 2 3 3 4 5
4 5 6 3 6 8
1 2 4 2 3 2
5 3 2 1 4 1
8 9 7 1 2 3

Figure 19.9 Relations for Practice Exercise 19.11.

882 Chapter 19 Distributed Databases

Exercises

19.16 Discuss the relative advantages of centralized and distributed databases.

19.17 Explain how the following differ: fragmentation transparency, replication
transparency, and location transparency.

19.18 When is it useful to have replication or fragmentation of data? Explain
your answer.

19.19 Explain the notions of transparency and autonomy. Why are these notions
desirable from a human-factors standpoint?

19.20 If we apply a distributed version of the multiple-granularity protocol of
Chapter 15 to a distributed database, the site responsible for the root of
the DAG may become a bottleneck. Suppose we modify that protocol as
follows:

• Only intention-mode locks are allowed on the root.

• All transactions are given all possible intention-mode locks on the
root automatically.

Show that these modifications alleviate this problem without allowing
any nonserializable schedules.

19.21 Study and summarize the facilities that the database system you are using
provides for dealing with inconsistent states that can be reached with lazy
propagation of updates.

19.22 Discuss the advantages and disadvantages of the two methods that we
presented in Section 19.5.2 for generating globally unique timestamps.

19.23 Consider the relations:

employee (name, address, salary, plant number)
machine (machine number, type, plant number)

Assume that the employee relation is fragmented horizontally by plant
number, and that each fragment is stored locally at its corresponding

plant site. Assume that the machine relation is stored in its entirety at the
Armonk site. Describe a good strategy for processing each of the following
queries.

a. Find all employees at the plant that contains machine number 1130.

b. Find all employees at plants that contain machines whose type is
“milling machine.”

c. Find all machines at the Almaden plant.

d. Find employee � machine.

Bibliographical Notes 883

19.24 For each of the strategies of Exercise 19.23, state how your choice of a
strategy depends on:

a. The site at which the query was entered.

b. The site at which the result is desired.

19.25 Is the expression ri � r j necessarily equal to r j � ri ? Under what
conditions does ri � r j = r j � ri hold?

19.26 If a cloud data-storage service is used to store two relations r and s and
we need to join r and s, why might it be useful to maintain the join
as a materialized view? In your answer, be sure to distinguish among
various meanings of “useful”: overall throughput, efficient use of space,
and response time to user queries.

19.27 Why do cloud-computing services support traditional database systems
best by using a virtual machine instead of running directly on the service
provider’s actual machine?

19.28 Describe how LDAP can be used to provide multiple hierarchical views of
data, without replicating the base-level data.

Bibliographical Notes

Textbook discussions of distributed databases are offered by Ozsu and Valduriez
[1999]. Breitbart et al. [1999b] presents an overview of distributed databases.

The implementation of the transaction concept in a distributed database is
presented by Gray [1981] and Traiger et al. [1982]. The 2PC protocol was developed
by Lampson and Sturgis [1976]. The three-phase commit protocol is from Skeen
[1981]. Mohan and Lindsay [1983] discusses two modified versions of 2PC, called
presume commit and presume abort, that reduce the overhead of 2PC by defining
default assumptions regarding the fate of transactions.

The bully algorithm in Section 19.6.5 is from Garcia-Molina [1982]. Distributed
clock synchronization is discussed in Lamport [1978]. Distributed concurrency
control is covered by Bernstein and Goodman [1981].

The transaction manager of R* is described in Mohan et al. [1986]. Valida-
tion techniques for distributed concurrency-control schemes are described by
Schlageter [1981] and Bassiouni [1988].

The problem of concurrent updates to replicated data was revisited in the
context of data warehouses by Gray et al. [1996]. Anderson et al. [1998] dis-
cusses issues concerning lazy replication and consistency. Breitbart et al. [1999a]
describes lazy update protocols for handling replication.

The user manuals of various database systems provide details of how they
handle replication and consistency. Huang and Garcia-Molina [2001] addresses
exactly-once semantics in a replicated messaging system.

Knapp [1987] surveys the distributed deadlock-detection literature. Practice
Exercise 19.9 is from Stuart et al. [1984].

884 Chapter 19 Distributed Databases

Distributed query processing is discussed in Epstein et al. [1978] and Hevner
and Yao [1979]. Daniels et al. [1982] discusses the approach to distributed query
processing taken by R*.

Dynamic query optimization in multidatabases is addressed by Ozcan et al.
[1997]. Adali et al. [1996] and Papakonstantinou et al. [1996] describe query-
optimization issues in mediator systems.

Transaction processing in multidatabase systems is discussed in Mehrotra
et al. [2001]. The ticket scheme is presented in Georgakopoulos et al. [1994]. 2LSR
is introduced in Mehrotra et al. [1991].

A collection of papers on data management on cloud systems is in Ooi and
S. Parthasarathy [2009]. The implementation of Google’s Bigtable is described in
Chang et al. [2008], while Cooper et al. [2008] describe Yahoo!’s PNUTS system.
Experience in building a database using Amazon’s S3 cloud-based storage is
described in Brantner et al. [2008]. An approach to making transactions work
correctly in cloud systems is discussed in Lomet et al. [2009]. The CAP theorem
was conjectured by Brewer [2000], and was formalized and proved by Gilbert
and Lynch [2002].

Howes et al. [1999] provides textbook coverage of LDAP.

	PART FIVE: SYSTEM ARCHITECTURE
	Chapter 17 Database-System Architectures
	17.1 Centralized and Client–Server Architectures
	17.2 Server System Architectures
	17.3 Parallel Systems
	17.4 Distributed Systems
	17.5 Network Types
	17.6 Summary
	Exercises
	Bibliographical Notes

	Chapter 18 Parallel Databases
	18.1 Introduction
	18.2 I/O Parallelism
	18.3 Interquery Parallelism
	18.4 Intraquery Parallelism
	18.5 Intraoperation Parallelism
	18.6 Interoperation Parallelism
	18.7 Query Optimization
	18.8 Design of Parallel Systems
	18.9 Parallelism on Multicore Processors
	18.10 Summary
	Exercises
	Bibliographical Notes

	Chapter 19 Distributed Databases
	19.1 Homogeneous and Heterogeneous Databases
	19.2 Distributed Data Storage
	19.3 Distributed Transactions
	19.4 Commit Protocols
	19.5 Concurrency Control in Distributed Databases
	19.6 Availability
	19.7 Distributed Query Processing
	19.8 Heterogeneous Distributed Databases
	19.9 Cloud-Based Databases
	19.10 Directory Systems
	19.11 Summary
	Exercises
	Bibliographical Notes

