
Dooley

US $49.99

Shelve in
Software Engineering/
Software Development

User level:
Beginning–Advanced

www.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Software Development and
Professional Practice
Make your code work harder! Software Development and Professional Practice will
show you how you can improve your coding practices and write better programs. It
teaches you:

• Characteristics of good programs
• Coding standards and how to apply them to real coding
• Debugging, unit testing, and modularity
• Object-oriented programming (OOP) design principles and great coding

Software Development and Professional Practice will help you to understand the prin-
ciples of good software design and, in turn, how to write great code. You’ll learn:

• What methods and processes are available to help you design great software
• How to apply software engineering principles to your daily coding practice
• How to apply the principles you’ve learned to specific and real-world
 coding problems
• How to construct professional standard code

Software Development and Professional Practice covers many of the topics described
for the ACM Computing Curricula 2001 course C292c Software Development and
Professional Practice. Making it both an ideal textbook and authoritative manual for
the working professional.

RELATED

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

Software Development
and Professional Practice

John Dooley

Software Development and Professional Practice

Copyright © 2011 by John Dooley

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-3801-0

ISBN-13 (electronic): 978-1-4302-3802-7

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Dominic Shakeshaft
Technical Reviewer: John Zukowski
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan Gennick,

Jonathan Hassell, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey
Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt
Wade, Tom Welsh

Coordinating Editor: Adam Heath
Copy Editor: Tracy Brown
Compositor: Bytheway Publishing Services
Indexer: Toma Mulligan
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

For Diane, who is always there;

for Patrick, the best son a guy could have; and

for Margaret Teresa Hume Dooley (1926–1976),

the first one is for you, Mom.

iv

 Contents at a Glance

 About the Author.. xiv
 About the Technical Reviewer .. xv
 Acknowledgments ... xvi
 Preface.. xvii
 Chapter 1: Introduction to Software Development ...1
 Chapter 2: Process Life Cycle Models...7
 Chapter 3: Project Management Essentials..27
 Chapter 4: Requirements ..37
 Chapter 5: Software Architecture ...47
 Chapter 6: Design Principles ..59
 Chapter 7: Structured Design ...71
 Chapter 8: Object-Oriented Analysis and Design—An Overview87
 Chapter 9: Object-Oriented Analysis and Design ...99
 Chapter 10: Object-Oriented Design Principles ..115
 Chapter 11: Design Patterns ...137
 Chapter 12: Code Construction ...159
 Chapter 13: Debugging ...181
 Chapter 14: Unit Testing ...193
 Chapter 15: Walkthroughs, Code Reviews, and Inspections..............................209
 Chapter 16: Wrapping It all Up..221
 Index ...227

v

Contents

 About the Author.. xiv

 About the Technical Reviewer .. xv

 Acknowledgments ... xvi

 Preface.. xvii

 Chapter 1: Introduction to Software Development ...1

What We’re Doing ..2
So, How to Develop Software? ..2

Conclusion ...4
References...5

 Chapter 2: Process Life Cycle Models...7

A Model That’s not a Model At All: Code and Fix ...8

Cruising over the Waterfall ..9
Backing Up the Waterfall ...11

Loops Are Your Friend ...12
Evolving the Incremental Model ..13
Agile Is as Agile Does ..14

eXtreme Programming (XP) ...15
XP Overview...15

XP Motivation...16
The Four Variables...16

 CONTENTS

vi

The Four Values ...17
The 15 Principles ...17

The Four Basic Activities ...19
Implementing XP: The 12 Practices...20

The XP Life Cycle ...22
Scrum, mate ..23
Conclusion ...25

References...25

 Chapter 3: Project Management Essentials..27

Project Planning...27

Project Organization ..28
Risk Analysis..28
Resource Requirements ..30

Work Breakdown and Task Estimates ...31
Project Schedule..31

Project Oversight ...34
Status Reviews and Presentations ..34
Defects...35

The Post-Mortem...35
Conclusion ...36

References...36

 Chapter 4: Requirements ..37

What Types of Requirements Are We Talking About Here?...37
Functional Specification? ..38

But I Don’t Like Writing!...38

 CONTENTS

vii

That Natural Language Thing ..38
Outline of a Functional Specification ...39

Overview..39
Disclaimer..39

Author’s Name ...39
Scenarios of Typical Usage..40
Detailed Screen-By-Screen Specifications..40

Non-requirements..40
Open Issues ...41

Design and Feature Ideas ..41
Backlog..41
One More Thing ...42

Types of Requirements..42
User Requirements ..42

Domain Requirements ...42
Non-functional Requirements..43
Non-requirements..43

Requirements Digging ...43
Why Requirements Digging Is Hard ...44

Analyzing the Requirements..45
Conclusion ...46
References...46

 Chapter 5: Software Architecture ...47

General Architectural Patterns...48
Pipe-and-filter Architecture...48

 CONTENTS

viii

An Object-Oriented Architectural Pattern ..49
An MVC Example: Let’s Hunt! ..51

The Problem...51
Model...52

View...52
Controller ...53
Model...53

The Client-Server Architectural Pattern...53
The Layered Approach...54

The Main Program: Subroutine Architectural Pattern..56
Conclusion ...57
References...58

 Chapter 6: Design Principles ..59

The Design Process ...62
Desirable Design Characteristics (Things Your Design Should Favor).............................63

Design Heuristics...64
Designers and Creativity..66
Conclusion ...67

References...68

 Chapter 7: Structured Design ...71

Structured Programming ...71

Stepwise Refinement...72
Example of Stepwise Refinement: The Eight-Queens Problem .. 73

Modular Decomposition...79
Example: Keyword in Context: Indexes for You and Me ... 80

 CONTENTS

ix

Top-Down Decomposition ...81
Conclusion ...83

References...83
Appendix: The Complete Non-Recursive Eight-Queens Program84

 Chapter 8: Object-Oriented Analysis and Design—An Overview87

An Object-Oriented Analysis and Design Process ...88
Doing the Process..90

The Problem Statement.. 90
The Feature List.. 91
Use Cases ... 91
Decompose the Problem .. 92
Class Diagrams... 92
Code Anyone?... 93

Conclusion ...97

References...97

 Chapter 9: Object-Oriented Analysis and Design ..99

PRELUDE: In Which We Set the Scene...100

ACT ONE, Scene 1: In Which We Enquire into Analysis..100
ACT ONE, Scene 2: In Which We Deign to Design..103
ACT TWO, Scene 1: Change in the Right Direction ..105

Songbirds Forever .. 105
ACT TWO, Scene 2: In Which the Design Will also Change, for the Better....................107

ACT THREE, Scene 1: In Which We Do Design ...108
ACT FOUR, Scene 1: In Which We Philosophize on Abstraction.....................................110

Conclusion ...112
References...113

 CONTENTS

x

 Chapter 10: Object-Oriented Design Principles ..115

Our List of Fundamental Object-Oriented Design Principles ...115
Encapsulate Things in Your Design That Are Likely to Change116

Code to an Interface Rather Than to an Implementation ...117
The Open-Closed Principle (OCP)...119

Don’t Repeat Yourself Principle (DRY) ...121
The Single Responsibility Principle (SRP) ..122
Liskov Substitution Principle (LSP) ..123

The Dependency Inversion Principle (DIP) ...130
The Interface Segregation Principle (ISP) ..132

The Principle of Least Knowledge (PLK) ..133
Class Design Guidelines for Fun and Enjoyment ...134
Conclusion ...135

References...135

 Chapter 11: Design Patterns ...137

Design Patterns and the Gang of Four...138
The Classic Design Patterns ... 139

Patterns We Can Use ...140
Creational Patterns ... 140
Structural Patterns ... 146
Behavioral Patterns .. 148

Conclusion ...157
References...157

 Chapter 12: Code Construction ...159

A coding example ..161
Functions and Methods and Size, Oh My! ...162

 CONTENTS

xi

Formatting, Layout, and Style..163
General Layout Issues and Techniques ...163

White Space...165
Block and Statement Style Guidelines...166

Declaration Style Guidelines..167
Commenting Style Guidelines..168
Identifier Naming Conventions ..170

Defensive Programming ..172
Assertions Can Be Your Friend ..173

Exceptions and Error Handling ..174
Error Handling... 174
Exceptions in Java.. 176

The Last Word on Coding...178
References...179

 Chapter 13: Debugging ...181

What’s an Error, Anyway? ...182
What Not To Do..183

An Approach to Debugging ..184
Reproduce the Problem Reliably .. 184
Find the Source of the Error ... 185
Fix the Error (Just That One)!.. 188
Test the Fix ... 189
Look for More Errors... 189

Source Code Control ..189
Using Lock-Modify-Unlock ... 190
Using Copy-Modify-Merge.. 190

 CONTENTS

xii

One Last Thought on Coding and Debugging – Pair Programming................................191
Conclusion ...191

References...192

 Chapter 14: Unit Testing ...193

The Problem with Testing..194

That Testing Mindset ...195
When to Test?..195
What to Test?...196

Code Coverage: Test Every Statement ... 196
Data Coverage: Bad Data Is Your Friend?... 197

Characteristics of Tests ...198
How to Write a Test ...199

The Story .. 199
The Tasks ... 199
The Tests .. 200

JUnit: A Testing Framework ..204

Testing Is Good ..208
Conclusion ...208
References...208

 Chapter 15: Walkthroughs, Code Reviews, and Inspections..............................209

Walkthroughs, Reviews, and Inspections – Oh My!...211
Walkthroughs...211

Code Reviews ..211
Code Inspections ...212

Inspection Roles ... 213
Inspection Phases and Procedures .. 214

 CONTENTS

xiii

Summary of Review Methodologies ..217
Defect Tracking Systems...218

Conclusion ...219
References...219

 Chapter 16: Wrapping It all Up..221

What Have You Learned?...222
What to Do Next? ...223
References...225

 Index ...227

xiv

About the Author

 John Dooley wrote his first program 40 years ago – on punch cards in Fortran
IV. Since then, he’s spent more than 18 years in industry, working for companies
such as Bell Labs, IBM, McDonnell Douglas, and Motorola, along with the
obligatory stint at a start-up. He’s also spent 17 years teaching computer science
to undergraduates, including at Knox College in Galesburg, Illinois, where he is
chair of the Computer Science Department and has taught for the last 10 years.
As a software professional, he has written everything from device drivers to
compilers to embedded phone software to financial applications. He has also
managed teams of from 5 to 30 developers in companies large and small. He
holds degrees in mathematics, computer science, and electrical engineering.

xv

About the Technical Reviewer

 John Zukowski has been developing software professionally for over 20 years
now. He first started programming in BASIC on a Commodore Vic-20, before
moving on to a Commodore 64. He’s developed with FORTRAN on a VAX/VMS
system, in C and C++ on early Sun3/4 Solaris boxes, and, for the past 15 years,
with the Java platform on micro-devices, desktops, and servers. John is also the
author of ten books related to Java technologies, from his first, Java AWT
Reference (O’Reilly, 1997) to his most recent, Java 6 Platform Revealed (Apress,
2006). In his spare time, you may find John enjoying Mob Wars on Facebook or
entering contests on Twitter (@JavaJohnZ).

xvi

Acknowledgments

I'd like to thank Dominic Shakeshaft of Apress for encouraging me and making this book possible. The
staff at Apress, especially Adam Heath, Matthew Moodie, and Tracy Brown have been very helpful and
gracious. The book is much better for their reviews, comments, and edits.

I owe huge debt of gratitude to Professor Dominic Soda, who taught me most of the
mathematics I know and shared his deep love of learning with me while I was his student and, later, his
colleague.

Thanks also to all my students in CS 292 over the last four years who have put up with
successive versions of the course notes that became this book. And to Knox College for giving me the
time and resources to finish this book.

Finally, I owe everything to Diane who hates that I work nights, but loves that I can work at
home.

xvii

Preface

What’s this book all about? Well, it’s about how to develop software, from a personal perspective. We’ll
look at what it means for you to take a problem and produce a program to solve it from beginning to
end. That said, this book focuses a lot on design. How do you design software? What things do you take
into account? What makes a good design? What methods and processes are there to designing software?
Is designing small programs different from designing large ones? How can you tell a good design from a
bad one?

Next, it’s about code construction. How do you write programs and make them work? “What,”
you say? “I’ve already written eight gazillion programs! Of course I know how to write code!” Well, in this
book, we’ll explore what you already do, and we’ll investigate ways to improve on that. We’ll spend some
time on coding standards, debugging, unit testing, modularity, and characteristics of good programs.
We’ll also talk about reading code and what makes a program readable. Can good, readable code replace
documentation? How much documentation do you really need?

Third, it’s a bit about software engineering, which is usually defined as “the application of
engineering principles to the development of software.” What are “engineering principles?” Well, first,
all engineering efforts follow a defined process. So we’ll be spending a bit of time talking about how you
run a software development project and what phases there are to a project. All engineering work has a
basis in the application of science and mathematics to real-world problems. So does software
development. As I said already, we’ll be spending a lot of time examining how to design and implement
programs that solve specific problems.

By the way, there’s at least one person (besides me) who thinks software development is not an
engineering discipline. I’m referring to Alistair Cockburn, and you can read his paper, “The End of
Software Engineering and the Start of Economic-Cooperative Gaming” at
http://alistair.cockburn.us/The+end+of+software+engineering+and+the+start+of+economic-
cooperative+gaming.

Finally, this book is about professional practice, the ethics and the responsibilities of being a
software developer, social issues, privacy, how to write secure and robust code, and the like. In short,
those fuzzy other things one needs in order to be a professional software developer.

This book covers many of the topics described for the ACM Computing Curricula 2001 course
C292c Software Development and Professional Practice (www.acm.org/education/education/curricula-
recommendations). It is designed to be both a textbook and a manual for the working professional.
Although the chapter order generally follows the standard software development sequence, one can read
the chapters independently and out of order. I’m assuming that you already know how to program and
that you are conversant with at least one of Java, C, or C++. I’m also assuming you are familiar with basic
data structures, including lists, queues, stacks, maps, and trees, along with the algorithms to manipulate
them.

I use this book in a junior-level course in software development. It has grown out of the notes
I’ve developed for that class over the past five years. I developed my own notes because I couldn’t find a
book that covered all the topics I thought were necessary for a course in software development as
opposed to one in software engineering. Software engineering books tend to focus more on process and

http://alistair.cockburn.us/The+end+of+software+engineering+and+the+start+of+economic-cooperative+gaming
http://alistair.cockburn.us/The+end+of+software+engineering+and+the+start+of+economic-cooperative+gaming
http://alistair.cockburn.us/The+end+of+software+engineering+and+the+start+of+economic-cooperative+gaming
http://www.acm.org/education/education/curricula-recommendations
http://www.acm.org/education/education/curricula-recommendations

 PREFACE

xviii

project management than on design and actual development. I wanted to focus on the design and
writing of real code rather than on how to run a large project. Before beginning to teach, I spent over 18
years in the computer industry, working for large and small companies, writing software, and managing
other people who wrote software. This book is my perspective on what it takes to be a software developer
on a small- to medium-sized team and help develop great software.

I hope that by the end of the book you will have a much better idea of what the design of good
programs is like, what makes an effective and productive developer, and how to develop larger pieces of
software. You’ll know a lot more about design issues. You’ll have thought about working in a team to
deliver a product to a written schedule. You’ll begin to understand project management, know some
metrics, know how to review work products, and understand configuration management. I’ll not cover
everything in software development by a long stretch, and we’ll only be giving a cursory look at the
management side of software engineering, but you’ll be in a much better position to visualize, design,
implement, and test software of many sizes, either by yourself, or in a team.

C H A P T E R 1

1

Introduction to Software
Development

“Not only are there no silver bullets now in view, the very nature of software makes it
unlikely that there will be any — no inventions that will do for software productivity,
reliability, and simplicity what electronics, transistors, and large-scale integration did
for computer hardware. We cannot expect ever to see twofold gains every two years.”

— Frederick J. Brooks, Jr.1

So, you’re asking yourself, why is this book called Software Development and Professional Practice? Why
isn’t it called All About Programming or Software Engineering? After all, isn’t that what software
development is? Well, no. Programming is a part of software development, but it’s certainly not all of it.
Likewise, software development is a part of software engineering, but it’s not all of it.

Here’s the definition of software development that we’ll use in this book: software development is
the process of taking a set of requirements from a user (a problem statement), analyzing them, designing
a solution to the problem, and then implementing that solution on a computer.

Well, isn’t that programming, you ask? Well, no. Programming is really the implementation part, or
possibly the design and implementation part, of software development. Programming is central to
software development, but it’s not the whole thing.

Well, then, isn’t it software engineering? Again, no. Software engineering also involves a process and
includes software development, but it also includes the entire management side of creating a computer
program that people will use. Software engineering includes project management, configuration
management, scheduling and estimation, baseline building and scheduling, managing people, and
several other things. Software development is the fun part of software engineering.

So software development is a narrowing of the focus of software engineering to just that part
concerned with the creation of the actual software. And it’s a broadening of the focus of programming to
include analysis, design and release issues.

1 Brooks, Frederick. “No Silver Bullet.” IEEE Computer (1987). 20(4): 10-19.

CHAPTER 1 INTRODUCTION TO SOFTWARE DEVELOPMENT

2

What We’re Doing
It turns out that, after 60 or so years of using computers, we’ve discovered that developing software is
hard. Learning how to develop software correctly, efficiently, and beautifully is also hard. You’re not
born knowing how to do it, and most people, even those who take programming courses and work in the
industry for years, don’t do it particularly well. It’s a skill you need to pick up and practice – a lot. You
don’t learn programming and development by reading books – not even this one. You learn it by doing
it. That, of course, is the attraction; working on interesting and difficult problems. The challenge is to
work on something you’ve never done before, something you might not even know if you can solve.
That’s what has you coming back to create new programs again and again.

There are probably several ways to learn software development. But I think that all of them involve
reading excellent designs, reading a lot of code, writing a lot of code, and thinking deeply about how you
approach a problem and design a solution for it. Reading a lot of code, especially really beautiful and
efficient code, gives you lots of good examples about how to think about problems and approach their
solution in a particular style. Writing a lot of code lets you experiment with the styles and examples
you’ve seen in your reading. Thinking deeply about problem solving lets you examine how you work and
how you do design, and lets you extract from your labors those patterns that work for you; it makes your
programming more intentional.

So, How to Develop Software?
Well, the first thing you should do is read this book. It certainly won’t tell you everything, but it will give
you a good introduction into what software development is all about and what you need to do to write
great code. It has its own perspective, but that’s a perspective based on 20 years writing code
professionally and another 16 years trying to figure out how to teach others to do it.

Despite the fact that software development is only part of software engineering, software
development is the heart of every software project. After all, at the end of the day what you deliver to the
user is working code. That code is usually created by a team of developers working in concert. So to start,
maybe we should look at a software project from the outside and ask what does that team need to do to
make that project a success?

In order to do software development well you need the following

A small, well integrated team. Small teams have fewer lines of communication than
larger ones. It’s easier to get to know your teammates on a small team. You can get
to know your teammates’ strengths and weaknesses, who knows what, and who is
the “go to guy” for particular problems or particular tools. Well-integrated teams
have usually worked on several projects together. Keeping a team together across
several projects is a major job of the team’s manager. Well-integrated teams are
more productive, they are better at holding to a schedule, and they produce code
with fewer defects at release. The key to keeping a team together is to give them
interesting work to do and then leave them alone.

Good communication among team members. Constant communication among
team members is critical to day-to-day progress and successful project completion.
Teams that are co-located are better at communicating and communicate more
than teams that are distributed geographically (even if they’re just on different
floors or wings of a building). This is a major issue with larger companies that have
software development sites scattered across the globe.

CHAPTER 1 INTRODUCTION TO SOFTWARE DEVELOPMENT

3

Good communication between the team and the customer. Communication with the
customer is essential to controlling requirements and requirements churn during a
project. On-site or close-by customers allow for constant interaction with the
development team. Customers can give immediate feedback on new releases and
be involved in creating system and acceptance tests for the product. The Extreme
Programming agile development methodology requires that a customer be part of
the development team and be on site daily. See Chapter 2 for a quick introduction
to Extreme Programming.

A process that everyone buys into. Every project, no matter how big or small, follows
a process. Larger projects and larger teams tend to be more plan-driven and follow
processes with more rules and documentation required. Larger projects do require
more coordination and tighter controls on communication and configuration
management. Smaller projects and smaller teams will, these days, tend to follow
more agile development processes, with more flexibility and less documentation
required. This certainly doesn’t mean there is no process in an agile project, it just
means you do what makes sense for the project you’re writing so that you can
satisfy all the requirements, meet the schedule, and produce a quality product. See
Chapter 2 for more details on process and software life cycles.

The ability to be flexible about that process. No project ever proceeds as you think it
will on the first day. Requirements change, people come and go, tools don’t work
out, and so on. This point is all about handling risk in your project. If you identify
risks, plan to mitigate them, and then have a contingency plan to address the event
where the risk actually occurs, you’ll be in much better shape. Chapter 4 talks
about requirements and risk.

A plan that every one buys into. You wouldn’t write a sorting program without an
algorithm, so you shouldn’t launch a software development project without a plan.
The project plan encapsulates what you’re going to do to implement your project.
It talks about process, risks, resources, tools, requirements management,
estimates, schedules, configuration management, and delivery. It doesn’t have to
be long and it doesn’t need to contain all the minute details of the everyday life of
the project, but everyone on the team needs to have input into it, they need to
understand it, and they need to agree with it. Unless everyone buys into the plan,
you’re doomed. See Chapter 3 for more details on project plans.

To know where you are at all times. It’s that communication thing again. Most
projects have regular status meetings so that the developers can “sync up” on their
current status and get a feel for the status of the entire project. This works very well
for smaller teams (say, up to about 20 developers). Many small teams will have
daily meetings to sync up at the beginning of each day. Different process models
handle this “spot” meeting differently. Many plan-driven models don’t require
these meetings, depending on the team managers to communicate with each
other. Agile processes often require daily meetings to improve communications
among team members and to create a sense of camaraderie within the team.

CHAPTER 1 INTRODUCTION TO SOFTWARE DEVELOPMENT

4

To be brave enough to say, “hey, we’re behind!” Nearly all software projects have
schedules that are too optimistic at the start. It’s just the way we are. Software
developers are an optimistic bunch, generally, and it shows in their estimates of
work. “Sure, I can get that done in a week!” “I’ll have it to you by the end of the
day.” “Tomorrow? Not a problem.” No, no, no, no, no. Just face it. At some point
you’ll be behind. And the best thing to do about it is to tell your manager right
away. Sure, she might be angry. But she’ll be angrier when you end up a month
behind and she didn’t know it. Fred Brooks’ famous answer to the question of how
software projects get so far behind is “one day at a time.” The good news, though, is
that the earlier you figure out you’re behind, the more options you have. These
include lengthening the schedule (unlikely, but it does happen), moving some
requirements to a future release, getting additional help, etc. The important part is
to keep your manager informed.

The right tools and the right practices for this project. One of the best things about
software development is that every project is different. Even if you’re doing version
8.0 of an existing product, things change. One implication of this is that for every
project one needs to examine and pick the right set of development tools for this
particular project. Picking tools that are inappropriate is like trying to hammer
nails with a screwdriver; you might be able to do it eventually, but is sure isn’t easy
or pretty, and you can drive a lot more nails in a shorter period of time with a
hammer than with a screwdriver. The three most important factors in choosing
tools are the application type you are writing, the target platform, and the
development platform. You usually can’t do anything about any of these three
things, so once you know what they are, you can pick tools that improve your
productivity. A fourth and nearly as important factor in tool choice is the
composition and experience of the development team. If your team are all
experienced developers with facility on multiple platforms tool choice is much
easier. If, on the other hand, you have a bunch of fresh-outs and your target
platform is new to all of you, you’ll need to be careful about tool choice and fold in
time for training and practice with the new tools.

To realize that you don’t know everything you need to know at the beginning of the
project. Software development projects just don’t work this way. You’ll always
uncover new requirements; other requirements will be discovered to be not nearly
as important as the customer thought; still others that were targeted for the next
release are all of a sudden requirement number 1. Managing requirements churn
during a project is one of the single most important skills a software developer can
have. If you are using new development tools (say that new web development
framework) you’ll uncover limitations you weren’t aware of and side-effects that
cause you to have to learn, for example, three other tools to understand them.
(That web development tool is Python based, requires a specific relational database
system to run, and needs a particular configuration of Apache to work correctly.)

Conclusion
Software development is the heart of every software project, and it is the heart of software engineering.
Its objective is to deliver excellent, defect-free code to users on time and within budget –all in the face of
constantly changing requirements. That makes development a particularly hard job to do. But finding a

CHAPTER 1 INTRODUCTION TO SOFTWARE DEVELOPMENT

5

solution to a difficult problem and getting your code to work correctly is just about the coolest feeling in
the world.

“[Programming is] the only job I can think of where I get to be both an engineer and
an artist. There’s an incredible, rigorous, technical element to it, which I like because
you have to do very precise thinking. On the other hand, it has a wildly creative side
where the boundaries of imagination are the only real limitation. The marriage of
those two elements is what makes programming unique. You get to be both an artist
and a scientist. I like that. I love creating the magic trick at the center that is the real
foundation for writing the program. Seeing that magic trick, that essence of your
program, working correctly for the first time, is the most thrilling part of writing a
program.”

— Andy Hertzfeld (designer of the first Mac OS)2

References
Brooks, Frederick. “No Silver Bullet.” IEEE Computer (1987). 20(4): 10-19.

Lammers, Susan. Programmers at Work. (Redmond, WA: Microsoft Press, 1986).

2 Lammers, Susan. Programmers at Work. (Redmond, WA: Microsoft Press, 1986).

C H A P T E R 2

7

Process Life Cycle Models

If you don’t know where you’re going, any road will do.
If you don’t know where you are, a map won’t help.

- Watts Humphrey

Every program has a life cycle. It doesn’t matter how large or small the program is, or how many people
are working on the project – all programs go through the same steps:

1. Conception

2. Requirements gathering/exploration/modeling

3. Design

4. Coding and debugging

5. Testing

6. Release

7. Maintenance/software evolution

8. Retirement

One’s program may compress some of these steps, or combine two or more steps into a single piece
of work, but all programs go through all steps.

Although every program has a life cycle, there are many different process variations that encompass
these steps. Every life cycle model, however, is a variation on two fundamental types. In the first type,
the project team will generally do a complete life cycle – at least steps 2 through 7 – before they go back
and start on the next version of the product. In the second type, which is more prevalent these days, the
project team will generally do a partial life cycle – usually steps 3 through 5 – and iterate through those
steps several times before proceeding to the release step.

CHAPTER 2 PROCESS LIFE CYCLE MODELS

8

These days the management of software development projects generally fall into two different
types, traditional plan-driven models,1 and the newer agile development models.2 In the plan-driven
models, the process tends to be stricter in terms of process steps and when releases happen. Plan-driven
models have more clearly defined phases, and more requirements for sign-off on completion of a phase
before moving on to the next phase. Plan-driven models require more documentation of each phase and
verification of completion of each work product. These tend to work well for government contracts for
new software with well-defined deliverables. The agile models are inherently incremental, and make the
assumption that small, frequent releases produce a more robust product than larger, less frequent ones.
Phases in agile models tend to blur together more than in plan-driven models, and there tends to be less
documentation of work products required, the basic idea being that code is what is being produced and
so documentation efforts should focus there. See the Agile Manifesto web page at
http://agilemanifesto.org to get a good feel for the agile development model and goals.

We’ll take a look at several life cycle models, both plan-driven and agile, and compare them. There is
no one best process for developing software. Each project must decide on the model that works best for
its particular application and base that decision on the project domain, the size of the project, the
experience of the team, and the timeline of the project.

A Model That’s not a Model At All: Code and Fix
The first model of software development we’ll talk about isn’t really a model at all. But it is what most of
us do when we’re working on small projects by ourselves, or maybe with a single partner. It’s the code
and fix Model.

The code and fix model, shown in Figure 2-1, is often used in lieu of actual project management. In
this model there are no formal requirements, no required documentation, no quality assurance or
formal testing, and release is haphazard at best. Don’t even think about effort estimates or schedules
when using this model.

Code and fix says take a minimal amount of time to understand the problem and then start coding.
Compile your code and try it out. If it doesn’t work, fix the first problem you see and try it again.
Continue this cycle of type-compile-run-fix until the program does what you want with no fatal errors
and then ship it.

Every programmer knows this model. We’ve all used it way more than once, and it actually works in
certain circumstances: for quick, disposable tasks. For example, it works well for proof-of-concept
programs. There’s no maintenance involved and the model works well for small, single-person
programs. It is, however, a very dangerous model for any other kind of program.

With no real mention of configuration management, little in the way of testing, no architectural
planning, and probably little more than a desk check of the program for a code review this model is good
for quick and dirty prototypes and really nothing more. Software created using this model will be small,
short on user interface niceties, and idiosyncratic.

1Paulk, M. C. The Capability Maturity Model: Guidelines for Improving the Software Process. (Reading,

MA: Addison-Wesley, 1995.)

2Martin, R. C. Agile Software Development, Principles, Patterns, and Practices. (Upper Saddle River, NJ:

Prentice Hall, 2003.)

http://agilemanifesto.org

CHAPTER 2 PROCESS LIFE CYCLE MODELS

9

That said, this is a terrific way to do quick and dirty prototypes and short, one-off programs. It’s
useful to validate architectural decisions and to show a quick version of a user interface design. Use it to
understand the larger problem you’re working on.

Figure 2-1. The code and fix process (non) model

Cruising over the Waterfall
The first and most traditional of the plan-driven process models is the waterfall model. Shown in Figure
2-2, it was created in 1970 by Winston Royce,3 and addresses all of the standard life cycle phases. It
progresses nicely through requirements gathering and analysis, to architectural design, detailed design,
coding, debugging, system testing, release, and maintenance. It requires detailed documentation at each
stage, along with reviews, archiving of the documents, sign-offs at each process phase, configuration
management, and close management of the entire project. It’s a model of the plan-driven process.

3 Royce, W. W. Managing the Development of Large Software Systems. Proceedings of IEEE WESCON,

IEEE Press. (1970)

CHAPTER 2 PROCESS LIFE CYCLE MODELS

10

Figure 2-2. The waterfall process model

It also doesn’t work.
There are two fundamental and related problems with the waterfall model that hamper its

acceptance and make it very difficult to implement. First, it generally requires that you finish phase N
before you continue on to phase N+1. In the simplest example, this means that you must nail down all
your requirements before you start your architectural design, and finish your coding and debugging
before you start anything but unit testing, etc. In theory, this is great. You’ll have a complete set of
requirements, you’ll understand exactly what the customer wants, and everything the customer wants,
so you can then confidently move on to designing the system.

In practice, this never happens though. I’ve never worked on a project where all the requirements
were nailed down at the beginning of the work. I’ve never seen a project where big things didn’t change
somewhere during development. So finishing one phase before the other begins is problematic.

The second problem with the waterfall is that, as stated, it has no provision for backing up. It is
fundamentally based on an assembly-line mentality for developing software. The nice little diagram
shows no way to go back and rework your design if you find a problem during implementation. This is
similar to the first problem above. The implications are that you really have to nail down one phase and
review everything in detail before you move on. In practice this is just not – practical. The world doesn’t
work this way. You never know everything you need to know at exactly the time you need to know it. This
is why software is a wicked problem.

All this being said, the waterfall is a terrific theoretical model. It isolates the different phases of the
life cycle and forces you to think about what you really do need to know before you move on. It’s also a

CHAPTER 2 PROCESS LIFE CYCLE MODELS

11

good way to start thinking about very large projects; it gives managers a warm fuzzy because it lets them
think they know what’s going on (they don’t, but that’s another story). It's also a good model for
inexperienced teams working on a well-defined, new project because it leads them through the life cycle.

So because the waterfall is not a good practical model, it immediately morphs into a slightly
different one.

Backing Up the Waterfall
The first thing that happens to the waterfall model is that it changes into the waterfall with feedback,
shown in Figure 2-3. This is an admission that a straight-line waterfall doesn’t work and that you need
the ability to back up to a previous phase when you discover a problem in the current phase.

Figure 2-3. Waterfall with feedback process model

The waterfall with feedback model recognizes that you have to start work with incomplete
requirements, design, test plan, and so on. It also explicitly builds in the idea that you will have to go
back to previous process steps as new information about your project is uncovered. The new
information can be new requirements, updated requirements, design flaws, defects in testing plans, and
the like. Any of these will require that you revisit a previous process step to rectify the problem.

This process model is still quite rigid, and it still has the same advantages of a waterfall model when
it comes to very large, new projects and inexperienced teams. The two main disadvantages with the
waterfall with feedback model are that it really messes with your scheduling big time, and it makes it

CHAPTER 2 PROCESS LIFE CYCLE MODELS

12

harder to know when you’re finished. It messes with your schedule because in any phase there can be
unexpected moves back to a previous phase of development. This also means it's harder to know when
you are done.

Because of these disadvantages, the waterfall with feedback model also morphs into a new model,
one that attempts to address the scheduling and uncertainty issues.

Loops Are Your Friend

The best practice is to iterate and deliver incrementally, treating each iteration as a
closed-end “mini-project,” including complete requirements, design, coding
integration, testing, and internal delivery. On the iteration deadline, deliver the (fully-
tested, fully-integrated) system thus far to internal stakeholders. Solicit their feedback
on that work, and fold that feedback into the plan for the next iteration.

(from “How Agile Projects Succeed”4)

While the waterfall with feedback model recognizes that all the requirements aren’t typically known
in advance, and that mistakes will be made in architectural design and detailed design, it doesn’t go far
enough in taking those realizations into the process. Iterative process models make this required change
in process steps more explicit and create process models that build products a piece at a time.

In most iterative process models, you’ll take the known requirements – you’ll take a snapshot of the
requirements at some time early in the process – and prioritize them, typically based on the customer’s
ranking of what features are most important to deliver first.

You then pick the highest priority requirements and plan a series of iterations, where each iteration
is a complete project. For each iteration, you’ll add a set of the next highest priority requirements
(including some you may have discovered during the previous iteration) and repeat the project. By doing
a complete project with a subset of the requirements every time at the end of each iteration you end up
with a complete, working, and robust product, albeit with fewer features than the final product will have.

According to Tom DeMarco, these iterative processes follow one basic rule:

Your project, the whole project, has a binary deliverable. On the scheduled completion
day, the project has either delivered a system that is accepted by the user, or it hasn’t.
Everyone knows the result on that day.
The object of building a project model is to divide the project into component pieces,
each of which has this same characteristic: each activity must be defined by a
deliverable with objective completion criteria. The deliverables are demonstrably done
or not done.” 5

So what happens if you estimate wrong? What if you decide to include too many new features in an
iteration? What if there are unexpected delays?

4 www.adaptionsoft.com/on_time.html
5 DeMarco, T. Controlling Software Projects: Management, Measurement and Estimation. (Upper Saddle

River, NJ: Yourdon Press, 1983.)

http://www.adaptionsoft.com/on_time.html

CHAPTER 2 PROCESS LIFE CYCLE MODELS

13

Well, if it looks as if you won’t make your iteration deadline there are only two realistic alternatives:
move the deadline, or remove features. We’ll come back to this problem when we talk about estimation
and scheduling.

The key to iterative development is “live a balanced life – learn some and think some and draw and
paint and sing and dance and play and work every day some,”6 or in the software development world,
analyze some and design some and code some and test some every day. We’ll revisit this idea when we
talk about the agile development models.

Evolving the Incremental Model
The traditional way of implementing the incremental model is known as evolutionary prototyping .7 In
evolutionary prototyping, one prioritizes requirements as they are received and produces a succession
of increasingly feature-rich versions of the product. Each version is refined using customer feedback and
the results of integration and system testing. This is an excellent model for an environment of changing
or ambiguous requirements, or a poorly understood application domain. This is the model that evolved
into the modern agile development processes. See Figure 2-4.

Figure 2-4. Evolutionary prototyping process model

6Fulghum, R. All I Really Need to Know I Learned in Kindergarten. Revised Edition. (New York, NY:
Ballantine Books, 2004.)
7McConnell, S. Rapid Development: Taming Wild Software Schedules. (Redmond, WA: Microsoft Press,

1996.)

CHAPTER 2 PROCESS LIFE CYCLE MODELS

14

Evolutionary prototyping recognizes that it’s very hard to plan the full project from the start and
that feedback is a critical element of good analysis and design. It’s somewhat risky from a scheduling
point of view, but when compared to any variation of the waterfall model it has a very good track record.
Evolutionary prototyping provides improved progress visibility for both the customer and project
management. It also provides good customer and end user input to product requirements and does a
good job of prioritizing those requirements.

On the downside, evolutionary prototyping leads to the danger of unrealistic schedules, budget
overruns, and overly optimistic progress expectations. These can happen because the limited number of
requirements implemented in a prototype can give the impression of real progress for a small amount of
work. On the flip side, putting too many requirements in a prototype can result is schedule slippages,
because of overly optimistic estimation. This is a tricky balance to maintain. Because the design evolves
over time as the requirements change, there is the possibility of a bad design, unless there’s the
provision of re-designing – something that becomes harder and harder to do as the project progresses
and your customer is more heavily invested in a particular version of the product. There is also the
possibility of low maintainability, again because the design and code evolve as requirements change.
This may lead to lots of re-work, a busted schedule, and increased difficulty in fixing bugs post-release.

Evolutionary prototyping works best with tight, experienced teams who have worked on several
projects together. This type of cohesive team is productive and dexterous, able to focus on each iteration
and usually producing the coherent, extensible designs that a series of prototypes requires. This model is
not generally recommended for inexperienced teams.

Agile Is as Agile Does
Starting in the mid 1990s, a group of process mavens began advocating a new model for software
development. As opposed to the heavyweight plan-driven models mentioned above and espoused by
groups like the Software Engineering Institute (SEI) at Carnegie Mellon,8 this new process model was
lightweight. It required less documentation and fewer process controls. It was targeted at small to
medium-sized software projects and smaller teams of developers. It was intended to allow these teams
of developers to quickly adjust to changing requirements and customer demands, and it proposed to
release completed software much more quickly than the plan-driven models. It was, in a word, agile.9

Agile development works from the proposition that the goal of any software development project is
working code. And because the focus is on working software, then the development team should spend
most of their time writing code, not writing documents. This gives these processes the name lightweight.

Lightweight methodologies have several characteristics. They tend to emphasize writing tests before
code, frequent product releases, significant customer involvement in development, common code
ownership, and refactoring – rewriting code to make it simpler and easier to maintain. Lightweight
methodologies also suffer from several myths. The two most pernicious are probably that lightweight
processes are only good for very small projects, and that you don’t have to have any process discipline in
a lightweight project.

The truth is that lightweight methodologies have been successfully used in many small and
medium-sized projects – say up to about 500K lines of code. Lightweight methodologies also require
process discipline, especially in the beginning of a project when initial requirements and an iteration
cycle are created and in the test-driven-development used as the heart of the coding process.

8Paulk, M. C. (1995)
9Cockburn, A. Agile Software Development. (Boston, MA: Addison-Wesley, 2002.)

CHAPTER 2 PROCESS LIFE CYCLE MODELS

15

We’ll look at two lightweight/agile methodologies, eXtreme Programming, and Scrum.

eXtreme Programming (XP)
eXtreme Programming was created around 1995 by Kent Beck and Ward Cunningham. XP is a
“lightweight, efficient, low-risk, flexible, predictable, scientific, and fun way to develop software.”10

XP Overview
XP relies on the following four fundamental ideas:

• Heavy customer involvement: XP requires that a customer representative be part of
the development team and be on site at all times. The customer representative
works with the team to create the contents of each iteration of the product, and
she creates all the acceptance tests for each interim release.

• Continuous unit testing (also known as test-driven development [TDD]): XP calls
for developers to write the unit tests for any new features before any of the code is
written. In this way the tests will, of course, initially all fail, but it gives a developer
a clear metric for success. When all the unit tests pass, you’ve finished
implementing the feature.

• Pair programming: XP requires that all code be written by pairs of developers. In a
nutshell, pair programming requires two programmers – a driver and a navigator –
who share a single computer. The driver is actually writing the code while the
navigator watches, catching typos, making suggestions, thinking about design and
testing, and so on. The pair switches places periodically (every 30 minutes or so, or
when one of them thinks he has a better way of implementing a piece of code).
Pair programming works on the “two heads are better than one” theory. While a
pair of programmers is not quite as productive as two individual programmers
when it comes to number of lines of code written per unit of time, their code
usually contains fewer defects, and they have a set of unit tests to show that it
works. This makes them more productive overall. Pair programming also provides
the team an opportunity to re-factor existing code – to re-design it to make it as
simple as possible while still meeting the customer’s requirements. Pair
programming is not exclusive to XP, but XP was the first discipline to use it
exclusively.

10This is a very short description of how XP works; for a much more eloquent and detailed explanation,

really the bible of XP, see:

Beck, K. Extreme Programming Explained: Embrace Change. (Boston, MA: Addison-Wesley, 2000.)

CHAPTER 2 PROCESS LIFE CYCLE MODELS

16

• Short iteration cycles and frequent releases: XP typically uses release cycles in the
range of just a few months and each release is composed of several iterations, each
on the order of 4–6 weeks. The combination of frequent releases and an on-site
customer representative allows the XP team to get immediate feedback on new
features and to uncover design and requirements issues early. XP also requires
constant integration and building of the product. Whenever a programming pair
finishes a feature and it passes all their unit tests, they immediately integrate and
build the entire product. They then use all the unit tests as a regression test suite
to make sure the new feature hasn’t broken anything already checked in. If it does
break something, they fix it immediately. So in an XP project, integrations and
builds can happen several times a day. This process gives the team a good feel for
where they are in the release cycle every day and gives the customer a completed
build on which to run the acceptance tests.

XP Motivation
Risk is the most basic problem in software. Risk manifests itself in many ways: schedule slips, project
cancelation, increased defect rates, misunderstanding of the business problem, false feature rich (you’ve
added features the customer really doesn’t want or need), and staff turnover. Managing risk is a very
difficult and time-consuming management problem. Minimizing and handling risk are the key areas of
risk management. XP seeks to minimize risk by controlling the four variables of software development.

The Four Variables
The four variables of software development projects are as follows:

• Cost

• Time

• Features

• Quality

Cost is probably the most constrained; you can’t spend your way to quality or schedule, and as a
developer you have very limited control over cost. Cost also is where Brooks’ law gets invoked (adding
programmers to a late project just makes it later).

Time is your delivery schedule and is unfortunately usually imposed on you from the outside. For
example, most consumer products (be they hardware or software) will have a delivery date in late
summer or early fall in order to hit the holiday buying season. You can’t move Christmas. If you are late,
the only way to fix your problem is to drop features or lessen quality; neither of which is pretty.

Quality is the number and severity of defects you are willing to release with. You can make short-
term gains in delivery schedules by sacrificing quality, but the cost is enormous. It will take more time to
fix the next release and your credibility is pretty well shot.

Features (also called scope) is what the product actually does. This is what developers should always
focus on. It’s the most important of the variables from the customer’s perspective and it is also the one
you as a developer have the most control over. Controlling scope allows you to provide managers and
customers control over quality, time, and cost.

XP recognizes that to minimize risk, developers need to control as many of the variables as possible,
but especially they need to control the scope of the project. XP uses the metaphor of “learning to drive.”
Learning to drive is not pointing the car in the right direction. It’s pointing the car, constantly paying

CHAPTER 2 PROCESS LIFE CYCLE MODELS

17

attention and making the constant minor corrections necessary to keep the car on the road. In
programming, the only constant is change. If you pay attention and cope with change as it occurs, you
can keep the cost of change manageable.

The Four Values
In order for XP to be a viable discipline of development everyone who is involved in an XP project needs
to buy into a common set of values that will permeate all the rules that make up the discipline. In XP
there are the following four core values that enable it to work:

• Communication

• Simplicity

• Feedback

• Courage

Communication really means spreading the collective knowledge of the group around to all the
members. Keeping the XP team small facilitates communication by keeping the number of lines of
communication small. Pair programming and collective ownership of the code also facilitate
communication by spreading the knowledge of the entire code base around the entire team. XP
developers are encouraged to fix bugs they find and to redesign features to make them simpler (see
below); this spreads knowledge of the code widely among the team.

Simplicity is key. XP focuses on developing the simplest piece of software that solves today’s task. XP
developers bet that “...it is better to do a simple thing today and pay a little more tomorrow to change it if
it needs it, than to do a more complicated thing today that may never be used anyway.” All developers
on an XP team are allowed and encouraged to redesign code to make it simpler at any time. This practice
is called “refactoring.” “Concrete feedback about the current state of the system is absolutely priceless.
Optimism is an occupational hazard of programming. Feedback is the treatment.”11 XP programmers are
required to write tests before they write the code, so that they always have immediate feedback about
their code and its impact on the system. Also, the customer is writing functional (acceptance) tests so
those are available to measure how well the system is adhering to the “stories” used to develop it.

XP developers must have courage. They must be willing to make changes at any time when the
design no longer fits. They need to be prepared to throw code away if it doesn’t work. Simplicity
supports courage because you’re less likely to break a simple system. XP team members track the
schedule daily and involve the customer in re-prioritizing features as soon as needed.

The 15 Principles
From the four values described above XP derives some basic principles. The list looks like the following:

Rapid feedback: Get feedback, interpret it, and put it back into the system as
quickly as possible. Automated tests are crucial here because you can run unit
tests all the time and you can run the entire regression suite whenever you want
to integrate your changes.

11Beck, K. (2000)

CHAPTER 2 PROCESS LIFE CYCLE MODELS

18

Assume simplicity: Focus on today’s task and solve it in the simplest way
possible. This also means that you should be looking for ways to simplify the
code whenever you’re making changes. Refactoring keeps the code as simple as
possible and reduces defects.

Incremental change: Integrate your new code into the system every day. In fact,
integrate whenever you finish a task. This allows you to find interface and
interaction errors quickly and gives the customer a new baseline to examine at
least once a day.

Embracing change: It’s gonna happen, so be prepared for it. The whole basis of
agile methodologies like XP is that change is a constant in software
development and the more your discipline accommodates change, the better
your development process will be.

Quality work: Quality isn’t free; strive for defect-free code. Pair programming
gives you the two heads are better than one gift and test-driven development
focuses your code on satisfying requirements. Both of these help lead to fewer
defects in your code.

Teach learning: Teach how to learn to do testing, refactoring, and coding better
rather than set down a set of rules that say, “you must test this way.”

Small initial investment: The emphasis here is on small teams, particularly at
the beginning of a project to manage the resources carefully and conservatively.
If you start with fewer resources and a tight budget, it will focus your thinking
on lean design and code. This reinforces simplicity.

Play to win: As opposed to playing not to lose. If you don’t worry about
schedules, or requirements churn, your days will be more relaxed, you’ll be able
to focus on the problems at hand (and not on the next deadline) and your code
will be cleaner, you’ll be more relaxed and more productive. Just relax and win.

Concrete experiments: Every abstract decision (requirements or design) should
be tested. In XP and in other agile methodologies, you’re encouraged to
produce something called a spike. A spike is a quick and dirty proof-of-concept
piece of code that implements at least the outline of your decision so you can
see if you’re actually right. Or, if you’re wrong, you’ve not wasted lots of time
figuring that out.

Open, honest communication: You have to be able to criticize constructively
and be able to deliver bad news as well as good. This is the foundation of a good
design or code review. The culture of the team must be that you can offer
constructive criticism at any time. The idea is two-fold; first, you’re all trying to
improve the code, so criticism is a good thing, and second, common code
ownership means that everyone is entitled to make changes without fear of
hurting someone else’s feelings.

Work with people’s instincts, not against them: People generally like to win, like
working with others, like being part of a team, and especially like seeing their
code work. Don’t do things that go against this.

Accepted responsibility: The team as a whole is responsible for the product.
Responsibility is accepted by the entire team and tasks are not assigned, they’re
requested. Common code ownership leads to common project ownership. XP

CHAPTER 2 PROCESS LIFE CYCLE MODELS

19

teams typically do not have managers that assign work; they have a coach to
help with the process and a project manager to take care of the administrative
tasks. The development team members themselves select tasks and make sure
they get done.

Local adaptation: Change XP to fit your local circumstances and project. This is
an application of accepted responsibility. The team owns the project, so the
team also owns the process and they reach consensus on adaptations.

Travel light: The team and process artifacts you maintain should be few, simple,
and valuable. This implies that you should be willing to change directions
quickly and jettison things (code, design) that aren’t working for ones that do.

Honest measurement: Measure at the right level of detail and only measure
what makes sense for your project. Remember the difference between accuracy
and precision.

The Four Basic Activities
In order for XP to take the values and principles just described and create a discipline out of them, we
need to describe the activities we’ll use as the foundation. XP describes four activities that are the
bedrock of the discipline.

• Coding: The code is where the knowledge of the system resides so it’s your main
activity. The fundamental difference between plan-driven models and agile
models is this emphasis on the code. In a plan-driven model, the emphasis is on
producing a set of work products that together represent the entire work of the
project with code being just one of the work products. In agile methodologies, the
code is the sole deliverable and so the emphasis is placed squarely there; in
addition, by structuring the code properly and keeping comments up to date, the
code becomes documentation for the project.

• Testing: The tests tell you when you are done coding. Test-driven development is
crucial to the idea of managing change. XP depends heavily on writing unit tests
before writing the code that they test and on using an automated testing
framework to run all the unit tests whenever changes are integrated.

• Listening: To your partner and to the customer. In any given software
development project there are two types of knowledge. The customer has
knowledge of the business application being written and what it is supposed to do.
This is the domain knowledge of the project. The developers have knowledge
about the target platform, the programming language(s), and the implementation
issues. This is the technical knowledge of the project. The customer doesn’t know
the technical side and the developers don’t have the domain knowledge, so
listening – on both sides – is a key activity in developing the product.

CHAPTER 2 PROCESS LIFE CYCLE MODELS

20

• Designing: Design while you code. “Designing is creating a structure that
organizes the logic in the system. Good design organizes the logic so that a change
in one part of the system doesn’t always require a change in another part of the
system. Good design ensures that every piece of logic in the system has one and
only one home. Good design puts the logic near the data it operates on. Good
design allows the extension of the system with changes in only one place.”12

Implementing XP: The 12 Practices
We (finally) get to the implementation of XP. Here are the rules that every XP team follows during their
project. The rules may vary depending on the team and the project, but in order to call yourselves an XP
team, you need to do some form of these things. The practices described here draw on everything
previously described: the four values, the 15 principles, and the four activities. This is really XP.

• The planning game: Develop the scope of the next release by combining business
priorities and technical estimates. The customer and the development team need
to decide on the stories (read features) that will be included in the next release, the
priority of each story, and when the release needs to be done. The developers are
responsible for breaking the stories up into a set of tasks and for estimating the
duration of each task. The sum of the durations tells the team what they really
think they can get done before the release delivery date. If necessary, stories are
moved out of a release if the numbers don’t add up. Notice that estimation is the
responsibility of the developers and not the customer or the manager. In XP only
the developers do estimation.

• Small releases: Put a simple system into production quickly, and then release new
versions on a very short cycle. Each release has to make sense from a business
perspective, so release size will vary. It is far better to plan releases in durations of
a month or two rather than six or twelve. The longer a release is, the harder it is to
estimate.

• Metaphor: “A simple shared story of how the whole system works.” The metaphor
replaces your architecture. It needs to be a coherent explanation of the system
that is decomposable into smaller bits – stories. Stories should always be
expressed in the vocabulary of the metaphor and the language of the metaphor
should be common to both the customer and the developers.

• Simple design: Keep the design as simple as you can each day. Re-design often to
keep it simple. According to Beck, a simple design (1) runs all the unit tests, (2) has
no duplicated code, (3) expresses what each story means in the code, and (4) has
the fewest number of classes and methods that make sense to implement the
stories so far.13

12Beck, K. (2000)
13Beck, K. (2000)

CHAPTER 2 PROCESS LIFE CYCLE MODELS

21

• Testing: Programmers constantly write unit tests. Tests must all pass before
integration. Beck takes the hard line that “Any program feature without an
automated test simply doesn’t exist.”14 Although this works for most acceptance
tests and should certainly work for all unit tests, this analogy breaks down in some
instances, notably in testing the user interface in a GUI. Even this can be made to
work automatically if your test framework can handle the events generated by a
GUI interaction. Beyond this, having a good set of written instructions will
normally fill the bill.

• Refactoring: Restructure the system “without changing its behavior” to make it
simpler – remove redundancy, eliminate unnecessary layers of code, or to add
flexibility. The key to refactoring is to identify areas of code that can be made
simpler and to do it while you’re there. Refactoring is closely related to collective
ownership and simple design. Collective ownership gives you permission to
change the code and simple design imposes on you the responsibility to make the
change when you see it needs to be made.

• Pair programming: All production code written in an XP project must be written
by two programmers at one machine. Any code written alone is thrown away. Pair
programming is a dynamic process. You may change partners as often as you
change tasks to implement. This has the effect of reinforcing collective ownership
by spreading the knowledge of the entire system around the entire team. It avoids
the “beer truck problem,” where the person who knows everything gets hit by a
beer truck and thus sets the project schedule back months.

• Collective ownership: The team owns everything, implying that anyone can change
anything at any time. In some places this is known as “ego-less programming.”
Programmers need to buy into the idea that anyone can change their code and
that collective ownership extends from code to the entire project; it’s a team
project, not an individual one.

• Continuous integration: Integrate and build every time a task is finished, possibly
several times a day (as long as the tests all pass). This helps to isolate problems in
the code base; if you’re integrating a single task change, then the most likely place
to look for a problem is right there.

• 40-hour week: Work a regular 40-hour week. Never work a second week in a row
with overtime. The XP philosophy has a lot in common with many of Tom
DeMarco’s Peopleware arguments. People are less productive if they’re working 60
or 70 hours a week than if they are working 40 hours. When you’re working
excessive amounts of overtime, several things happen. Because you don’t have
time to do chores and things related to your “life,” you do them during the
workday. Constantly being under deadline pressure and never getting a sustained
break also means you get tired and then make more mistakes, which somebody
then needs to fix. But being in control of the project and working 40-hours a week
(give or take a few) leaves you with time for a life, time to relax and recharge, and
time to focus on your work during the work-day, making you more productive, not
less.

14Beck, K. (2000)

CHAPTER 2 PROCESS LIFE CYCLE MODELS

22

• On-site customer: A customer is part of the team, is on-site, writes and executes
functional tests, and helps clarify requirements. The customer’s ability to give
immediate feedback to changes in the system also increases team confidence that
they are building the right system every day.

• Coding standards: The team has ‘em, follows ‘em, and uses 'em to improve
communication. Because of collective code ownership the team must have coding
standards and everyone must adhere to them. Without a sensible set of coding
guidelines, it would take much, much longer to do refactoring and it would
decrease the desire of developers to change code. Notice that I said sensible. Your
coding standards should make your code easier to read and maintain: they
shouldn’t constrict creativity.

The XP Life Cycle
The XP life cycle contains all the phases of the generic life cycle described at the start of the chapter, but
it compresses the middle three phases – design, code, and test – into a single implementation phase. A
productizing phase is added after implementation to allow the code to be stabilized before release. The
XP life cycle shows how producing code is the centerpiece of the methodology.

9. Exploration: Exploration is done when “the customer is confident that there is
more than enough material on the story cards to make a good first release and
the programmers are confident that they can’t estimate any better without
actually implementing the system.”15 During exploration, the team’s main goal
is to get as many requirements (story cards) written as they can. This is also the
time when they can explore the architecture possibilities by doing a quick
spike of the system. Estimate all tasks done during exploration to practice your
estimation skills. In most projects Exploration is the “fuzzy front-end” of the
project. You’re not quite sure how long it will take and you’re gathering
requirements and trying to figure out what the product will actually do.

10. Planning game: The Planning game is the tail end of your release exploration
phase. In the planning game you need to identify your top priority, high-value
stories and agree with the customer which ones will be in the next release.
Releases should be from two to six months duration each. Any shorter and
you’re not likely to get any significant work done and any longer is just plain
too hard to plan. Then you need to plan the first few iterations for the release;
iterations are 1 to 4 weeks each. Each iteration produces functional test cases
for each story scheduled for the iteration. The first iteration helps you nail
down your metaphor for the project and puts the architecture in place.
Subsequent iterations add new features based on the prioritized list of stories.
Reschedule as necessary.

11. Implement: Design, code, test, or actually, design, test, code. One task at a time
until all the tasks for a story are complete, and one story at a time until all the
stories for this iteration are complete. Need we say more?

15Beck, K. (2000)

CHAPTER 2 PROCESS LIFE CYCLE MODELS

23

12. Productizing: Occurs in the last iteration before your release is done. At this
point you should freeze new functionality and focus on stabilizing the product,
tuning performance, if necessary, and running acceptance tests.

13. Maintenance/evolution: Well, according to the agile philosophy, you’re always
in maintenance mode. Here though, you’ve released something the customer
will use and you now must “simultaneously produce new functionality, keep
the existing system running, incorporate new people into the team, and bid
farewell to members who move on.”16

14. Death: If the customer can’t come up with new stories, mothball the code. If
the system can’t deliver anymore, mothball the code and start over.

Scrum, mate
The second agile methodology we’ll look at is Scrum. Scrum derives its name from rugby, where a scrum
is a means of restarting play after a rules infraction. The scrum uses the eight forwards on a rugby team
(out of 15 players in the rugby union form of the game) to attempt to (re)gain control of the ball and
move it forward towards the opposing goal line. The idea in the agile Scrum methodology is that a small
team is unified around a single goal and gets together for sprints of development that move them
towards that goal.

Scrum is, in fact, older than XP, with the original process management idea coming from Takeuchi
and Nonaka’s 1986 paper, “The New New Product Development Game.”17 The first use of the term scrum
is attributed to DeGrace and Stahl’s 1990 book Wicked Problems, Righteous Solutions.18 Scrum is a
variation on the iterative development approach and incorporates many of the features of XP. Scrum is
more of a management approach than XP and doesn’t define many of the detailed development
practices (like pair programming or test-driven development) that XP does, although most scrum
projects will use these practices.

Scrum uses teams of no more than 10 developers. Just like other agile methodologies, scrum
emphasizes the efficacy of small teams and collective ownership.

Scrum is characterized by the sprint, an iteration of between one and four weeks. Sprints are time-
boxed in that they are of a fixed duration and the output of a sprint is what work the team can
accomplish during the sprint. The delivery date for the sprint does not move out. This means that
sometimes a sprint can finish early, and sometimes a sprint will finish with less functionality than was
proposed. A sprint always delivers a usable product.

Scrum requirements are encapsulated in two backlogs. The product backlog is the prioritized list of
all the requirements for the project; it is created by the scrum team and the product owner. The sprint
backlog is the prioritized list of requirements (say user stories) for the current sprint. Once the sprint
starts, only the development team may add items to the sprint backlog – these are usually bugs found
during testing. No outside entity may add items to the sprint backlog, only to the product backlog.

16Beck, K. (2000)
17Takeuchi, H. and I. Nonaka. “The New New Product Development Game.” Harvard Business Review

64(1): 137-146. (1986)

18DeGrace, P. and L. H. Stahl. Wicked Problems, Righteous Solutions: A Catalogue of Modern Software

Engineering Paradigms. (Englewood Cliffs, NJ: Yourdon Press, 1990.)

CHAPTER 2 PROCESS LIFE CYCLE MODELS

24

Scrum projects are facilitated by a ScrumMaster whose job it is to manage the backlogs, run the
daily Scrum meetings, and to protect the team from outside influences during the sprint. The scrum
master is usually not a developer.

Scrum projects have a daily scrum meeting, which is a stand-up meeting of 15–30 minutes duration
where the entire team discusses sprint progress. The daily Scrum meeting allows the team to share
information and track sprint progress. By having daily Scrum meetings, any slip in the schedule or any
problems in implementation are immediately obvious and can then be addressed by the team at once.
“The Scrum master ensures that everyone makes progress, records the decisions made at the meeting
and tracks action items, and keeps the Scrum meetings short and focused.”19

At the Scrum meeting, each team member answers the following three questions in turn:

1. What tasks have you finished since the last Scrum meeting?

2. Is anything getting in the way of your finishing your tasks?

3. What tasks are you planning to do between now and the next Scrum meeting?

Discussions other than responses to these three questions are deferred to other meetings. This
meeting type has several effects. It allows the entire team to visualize progress towards the sprint and
project completion every day. It reinforces team spirit by sharing progress – everyone can feel good
about tasks completed. And finally, it verbalizes problems – which can then be solved by the entire team.

The development team itself is self-organizing; the members of the Scrum team decide among
themselves who will work on what user stories and tasks, assume collective ownership of the project,
and decide on the development process they’ll use during the sprint. This organization is reinforced
every day at the Scrum meeting.

Before the first sprint starts, Scrum has an initial planning phase that creates the list of the initial
requirements, decides on an architecture for implementing the requirements, divides the user stories
into prioritized groups for the sprints, and breaks the first set of user stories into tasks to be estimated
and assigned. They stop when their estimates occupy all the time allowed for the sprint. Tasks in a sprint
should not be longer than one day of effort.

After each sprint, another planning meeting is held where the Scrum master and the team re-
prioritize the product backlog and create a backlog for the next sprint. With most Scrum teams,
estimates of tasks become better as the project progresses primarily because the team now has data on
how they have done estimating on previous sprints. This effect in Scrum is called “acceleration;” the
productivity of the team can actually increase during the project as they gel as a team and get better at
estimating tasks. This planning meeting is also where the organization can decide whether the project is
finished, or whether to finish the project at all.

After the last scheduled sprint, a final sprint is done to bring closure to the project. This sprint
implements no new functionality, but prepares the final deliverable for product release. It fixes any
existing bugs, finishes documentation, and generally productizes the code. Any requirements left in the
product backlog are transferred to the next release A Scrum retrospective is held before the next sprint
begins to ponder the previous sprint and see if there are any process improvements that can be
made.Scrum is a project management methodology and is typically silent on development processes.
Despite this, Scrum teams typically use many of the practices described above in the XP practices

19Rising, L. and N. S. Janoff. “The Scrum Software Development Process for Small Teams.” IEEE Software

17(4): 26-32. (2000)

CHAPTER 2 PROCESS LIFE CYCLE MODELS

25

section. Common code ownership, pair programming, small releases, simple design, test-driven
development, continuous integration and coding standards are all common practices in Scrum projects.

Conclusion
As can be seen from the methodologies described in this chapter, iteration is the key, whether you are
using an evolutionary plan-driven process or an agile development one. Recognize that the best way to
build a complex piece of software is incrementally. Learn that designing, writing, testing, and delivering
incrementally better code is your first step to writing great software.

References
Beck, K. Extreme Programming Explained: Embrace Change. (Boston, MA: Addison-Wesley, 2000.)

Cockburn, A. Agile Software Development. (Boston, MA: Addison-Wesley, 2002.)

DeGrace, P. and L. H. Stahl. Wicked Problems, Righteous Solutions: A Catalogue of Modern Software

Engineering Paradigms. (Englewood Cliffs, NJ: Yourdon Press, 1990.)

DeMarco, T. Controlling Software Projects: Management, Measurement and Estimation. (Upper Saddle

River, NJ: Yourdon Press, 1983.)

Martin, R. C. Agile Software Development, Principles, Patterns, and Practices. (Upper Saddle River, NJ:

Prentice Hall, 2003.)

McConnell, S. Rapid Development: Taming Wild Software Schedules. (Redmond, WA: Microsoft Press,

1996.)

Paulk, M. C. The Capability Maturity Model: Guidelines for Improving the Software Process. (Reading,

MA: Addison-Wesley, 1995.)

Rising, L. and N. S. Janoff. “The Scrum Software Development Process for Small Teams.” IEEE Software

17(4): 26-32. (2000)

Royce, W. W. Managing the Development of Large Software Systems. Proceedings of IEEE WESCON, IEEE

Press. (1970)

Takeuchi, H. and I. Nonaka. “The New New Product Development Game.” Harvard Business Review

64(1): 137-146. (1986)

C H A P T E R 3

27

Project Management Essentials

Quality, features, schedule – pick two.

Project management? Isn’t this a software development book?

 Yes, but working on a larger-than-one-person development project means working on a team; and
working on a team means being managed. So learning something about project management from both
sides is an essential part of learning software development.

Project management is an involved and complicated set of tasks. We’ll restrict ourselves to several
tasks that will impact you as a developer the most. They are the following:

• Project planning

• Estimation and scheduling

• Resource management

• Project oversight

• Project reviews and presentations

• The project post-mortem

Project Planning
Project planning is forever. By that I mean that project planning continues throughout the entire

duration of the project. “The Plan” is never really set in stone, because things in a typical software
project are usually in constant flux. In most projects, and especially in those that are using a plan-driven
process model, a project plan is an actual document that is written by the project manager, and that is
approved and signed off on by the development team and by upper management. It is, in effect, a
contract, albeit a rolling one, of what the team is going to do and how they are going to do it. It also says
how the project will be managed, and in the extreme plan-driven cases, even states how and when the
document itself will be modified.

What’s in the project plan? Generally a project plan consists of the following seven parts:

• Introduction and explanation of the project

• Project organization

CHAPTER 3 PROJECT MANAGEMENT ESSENTIALS

28

• Risk analysis

• Hardware, software, and human resource requirements

• Work breakdown and task estimates

• Project schedule

• Project monitoring and reporting mechanisms, collectively known as project oversight

Not all of these are necessary for all projects or project methodologies. In particular, plan-driven
projects will use all of them, while agile projects may use a few on a single page.

Project plans are a great tool for setting down what you think you’re doing, an outline of how it will
be done, and how you plan on executing the outline. The problem with a project plan is that it’s static.
Once it’s written and signed off on, upper management thinks the project will run exactly as stated in the
plan. But the reality of the project often thwarts the plan.

Project Organization
The project organization section of the plan contains the following three things:

• How you’re going to organize the team

• What process model the project will be using

• How will the project be run on a day-to-day basis

If you’re working with an experienced team, all this is already known to everyone, so your project
organization section can be, “We’ll do what we usually do.” However, this section is a necessity for
brand-new projects and inexperienced teams, because the organization section gives you something to
hang your hat on when you start the actual project work.

Risk Analysis
In the risk analysis section, you need to think about the bad things.1 What can possibly go wrong with
this project? What is the worst that could happen? What will we do if it does?

Some risks to watch out for are:

• Schedule slips: That task that you estimated would take three days has just taken
three weeks. In a plan-driven project, this can be an issue if you don’t have regular
status meetings. Waiting three weeks to tell your boss that you’re late is always
worse than telling her that you’ll be late as soon as you know it. In an agile project
this is unlikely, because most agile projects have a daily status meeting (see the
Scrum meeting section in Chapter 2).

1 McConnell, S. Rapid Development: Taming Wild Software Schedules. (Redmond, WA: Microsoft Press,

1996.)

CHAPTER 3 PROJECT MANAGEMENT ESSENTIALS

29

• Defect rate is excessive: Your testing is finding lots of bugs. What do you do,
continue to add new features or stop to fix the bugs? Again, this can be a real issue
in a project where integration builds happen according to a fixed schedule, say
once a week. In a project where integrations happen every day, you can keep up
with defects more easily. In either case, if you are experiencing a high defect rate,
the best thing to do is to stop, take a look around, and find the root cause of the
defects before adding more functionality. This can be very hard to do from a
project management standpoint, but you’ll thank yourself in the end.

• Requirements misunderstood: What you’re doing isn’t what the customer wanted.
This classic problem is the result of the fact that customers and developers live in
two different worlds. The customer lives in the application domain where he
understands from a user’s perspective what he wants the product to do. The
developer understands from a technical perspective how the product will work.
Occasionally, these worlds intersect and that’s good; but lots of times they don’t
and that is where you get a misunderstanding of requirements. The best way to
avoid this situation is to have the customer on site as often as possible and to
produce deliverable products as often as possible.

• Requirements churn: New features, altered features, deleted features … will the
misery never end? Requirements churn is probably the largest single reason for
missed delivery dates, high defect rates, and project failure. Churn happens when
the customer (or your own marketing folks, or the development team itself)
continues to change requirements while development is underway. It leads to
massive amounts of rework in the code, retesting of baselines, and delay after
delay. Managing requirements is the single most important job of the project
manager. In a plan-driven process this is usually accomplished by a change
control board (CCB) that examines each new requirement and decides whether to
add it to the list of features to be implemented. There may be a member of the
development team on the CCB, but that’s not required, so the danger here is that
the CCB will add new features without understanding all the scheduling and effort
ramifications. In agile processes, the development team usually keeps control of
the prioritized requirements list (called the product backlog in Scrum), and only
adjusts the list at set points in the project – after iterations in XP, and after each
sprint in Scrum.

CHAPTER 3 PROJECT MANAGEMENT ESSENTIALS

30

• Turnover: Your most experienced developer decides to join a start-up three weeks
before product delivery. The best way to reduce turnover is to (1) give your
developers interesting work, (2) have them work in a pleasant environment, and
(3) give them control over their own schedules. Oddly enough, money is not one of
the main motivators for software developers. This doesn’t mean they don’t want
to get paid well, but it does mean that throwing more money at them in order to
get them to work harder or to keep them from leaving doesn’t generally work. And
if, despite your best efforts, your best developer does leave, you just have to move
on. Trust me, it won’t be the end of the world. The best way to mitigate the effect
of turnover is to spread the knowledge of the project around all the members of
the development team. Principles like common code ownership and techniques
like pair programming work to invest all the team members in the product and
spreads the knowledge of the code across the entire team. One of the best books
on managing and keeping software developers is Peopleware by Tom DeMarco,
published by Dorset House.2

Once you’ve got a list of the risks to your project, you need to address each one and talk about two
things: avoidance and mitigation. For each risk, think about how you can avoid it. Build slack into your
schedule, do constant code reviews, freeze requirements early, do frequent releases, require pair
programming so you spread around the knowledge of the code, and the like. Then you need to think
about what you’ll do if the worst-case scenario does happen; this is mitigation. Remove features from a
release, stop work on new features and do a bug hunt, negotiate new features into a future release, and
so on. If a risk becomes a reality, you’ll have to do something about it; it’s better to have planned what
you’ll do beforehand.

Once you address avoidance and mitigation, you’ll have a plan on how to handle your identifiable
risks. This doesn’t completely let you off the hook, because there are bound to be risks you miss; but the
experience of addressing the risks you do think of will enable you to better handle new ones that surprise
you during the project. If your project is using an iterative process model, it’s a good idea to revisit your
risks after every iteration and see which ones have changes, identify any new ones, and remove any that
can no longer happen.

Resource Requirements
This section is a piece of cake. How many people do you need for the project? Do they all need to start at
once, or can their starting dates on the project be staggered as phases are initiated? How many
computers do you need? What software will you be using for development? What development
environment do you need? Is everyone trained in that environment? What support software and
hardware do you need? Yes, you do need a configuration management system and a stand-alone build
machine – no matter what process model you’re using.

Many of these resource questions are usually answered for you by the platform you’re targeting and
the application domain in which you are working. That’s the easy part. Questions about team size, start
dates, and phases of the project will likely not be able to be answered until you do a first cut at effort
estimation and scheduling.

2 DeMarco, T. and T. Lister. Peopleware: Productive Projects and Teams, Second Edition. (New York, NY:

Dorset House Publishing Company, 1999.)

CHAPTER 3 PROJECT MANAGEMENT ESSENTIALS

31

Work Breakdown and Task Estimates
The first step toward a project schedule is seeing what you’ll be doing and how long each step will take.
This is the classic chicken-egg problem. You can’t really do estimation until you have a fairly detailed
work breakdown into tasks. But your manager always wants effort estimates and schedule data before
you start doing the design. Resist this. Make design your top priority once you’ve got some idea of the
requirements. If you select a small set of high priority requirements, and then design a solution for that
feature set, then you can do an effort estimation of that iteration. Don’t worry that the requirements
might change – they will. You need a detailed breakdown of features into tasks before you can do effort
estimation.

Don’t ever believe anyone who tells you, “that feature will take six months to do.” That is a wild-
assed guess (WAG), and bears little to no relation to reality. You just can’t estimate something that big.
The best you can do is say, “I once implemented a feature like that in six months.” And even that only
helps a little.

You’ve got to get your work broken down into tasks that are no more than about a week in duration.
One or two days is a better bet. Even better, never do estimation in any unit except person-hours. That
way you’ll be more tempted to work with small increments of hours, and you’ll break your larger tasks
down into smaller ones that you may actually know how to do. Once you have a believable list of tasks,
you can start doing size and then effort estimation. Size always needs to come first, because you just
can’t figure out how long something will take until you have an idea of how big it is.

Size can be several things, depending on your work breakdown and your development model;
functional modules, number of classes, number of methods, number of function points, number of
object points, or that old standby, uncommented lines of code. Actually, no matter what you initially
measure size in, you’ll end up with estimates in terms of KLOC – thousands of uncommented lines of
code.

There are several techniques for getting effort estimates – COCOMO II [Boehm00], function point
analysis, and the Delphi method are just three. All, however, depend on being able to count things in
your design. The estimation mantra is size first, then effort and cost estimates, then schedule.

All other things being equal, the Delphi method is a quick and relatively efficient estimation
technique. Here’s one way it can work: find three of your most senior developers – these are the folks
who’ve got the most experience, and who should therefore be able to give you a good guess. Then give
them the task breakdown (assuming they weren’t already involved in doing the initial breakdown – the
ideal situation). Then ask them to give you three numbers for each task, the shortest amount of time it
should take, the longest amount of time it should take, and the “normal” amount of time it should take,
all in person-hours. Once you have these numbers, add them all up, the shortest together, the longest
together, and the “normal” together and take the mean. Those are your estimates for each task. The
averages of the best guess by your best developers for each task. Depending on your personality – and
how hard your boss is breathing down your neck – pick one of the three values for each task as the
official (for now) effort estimate and proceed to create a schedule.

Finally, you should have the right people – the developers who will do the work – do all the estimates
for the project. Managers should never do development estimates. Even if a manager has been a
developer in the past, unless one is deeply involved in the actual development work, one should not be
in the business of doing development estimates.

Project Schedule
Once you have estimates of the tasks in your first release or iteration and have people resource
estimates, you can create a schedule. There are several things to take into account before you can look at
that spiffy Gantt chart with the nice black diamond that marks the release date. Here’s a list:

CHAPTER 3 PROJECT MANAGEMENT ESSENTIALS

32

• Get your developers to tell you the dependencies between tasks. There will be
some tasks that can’t start before others finish. There may be tasks that can start
once others are half-finished. There will be some that can all start together. You
need to know because the task dependencies will push out your delivery date.

• Figure out what your duty cycle is. Out of each eight-hour day, how many hours
do your developers actually do development? You need to remember that reading
mail, attending meetings, doing code reviews, taking breaks, going to the
bathroom, all eat up time. You can’t assume that an hour-hour task will be done in
a single day. Realistically, out of each eight-hour day, two to four hours are eaten
up with other stuff, so your duty cycle can be as low as four hours a day. Duty
cycles can vary based on corporate culture, so you need to figure out what yours is
before you start to schedule.

• Take weekends, vacations, sick days, training, and slack into account when you’re
making the schedule. If your senior developer has a task on the critical path of
your project, you probably need to know that she’s taking that three-week
vacation in May.

• You can’t schedule a developer to work on two tasks at the same time. Most
project-scheduling software will not let you do this by default, but most of them
will also let you override this. Don’t. You will be tempted to do this so that your
schedule does not push out past whatever deadline your manager or marketing
team wants, but resist the temptation. You’ll only have to change the schedule
when you miss the date anyway.

Finally, use project-scheduling software to make your schedule. You don’t have to do this, just using
a simple spreadsheet technique like the one proposed in Chapter 9 of the Apress title, Joel on Software by
Joel Spolsky.3 can work for small projects. But using real project management software like Microsoft
Project, Fast Track Scheduling, or Merlin provide lots of features that make keeping the schedule up to
date much easier. The big thing that project management software can do that your spreadsheet can’t is
track dependencies. Joel doesn’t understand how Microsoft Project is useful in this; in fact, he says, “I’ve
found that with software, the dependencies are so obvious that it’s just not worth the effort to formally
keep track of them.”4 This might be true for small projects, but when your team gets to be 10 developers
or larger and you’re working on 100-plus tasks, knowing something about the dependencies of your
project can help manage who’s working on what, and when. Joel is right in that Project is overkill for
many projects, and for those you can use a spreadsheet approach that just lists the features and tasks
you can see right now (see Table 3-1); but project management software sure is handy to have around
when you need it.

3 Spolsky, J. Joel on Software. (Berkeley, CA: Apress, 2004.)
4 Spolksy, 2004.

CHAPTER 3 PROJECT MANAGEMENT ESSENTIALS

33

Table 3-1. Spolsky’s Painless Schedule (with Dooley’s Velocity addition)

1 2 3 4 5 6 7 8 9

Feature Task Priority Orig Est Curr Est Elapsed Remaining Developer Velocity

Spolsky’s painless schedule lists the following seven columns that should be in every schedule:

• Feature Name

• Tasks within the feature

• The Priority of the Task

• The Original Estimate (in person-hours)

• The Current Estimate (in person-hours)

• The Elapsed Time worked on the task (in person-hours)

• The Remaining Time on the task (also in person-hours)

Joel correctly emphasizes that tasks need to be fine-grained and small in terms of effort. Otherwise,
as noted previously, your estimates will most likely be wildly off. He also suggests that each developer
either has a separate spreadsheet, or, as shown here, you add an eighth column with the developer
assigned to the task. Having all the Tasks on the same sheet makes it more crowded, but easier to see all
the tasks at once. While not exactly “painless,” this method of keeping a schedule is useful for smaller
projects with a fairly limited number of tasks.

I suggest adding a ninth column to measure the velocity of each task. Velocity is a term from XP5 and
is defined as the estimated effort of a task, divided by the actual effort. In our case, we’d use the Original
Estimate of the task and the Elapsed Time. If you overestimate your task, your velocity will be greater
than one (your task took less time than you originally thought); if you underestimate, it will be less than
one (the task took you longer than you originally thought). Ideally, your velocity should be 1.0, but that
hardly ever happens.

The reason for using velocity is to give each developer and the project manager an idea of how
accurate the developer’s estimates are and to help do a better job of estimating next time. Ideally, as a
developer gains experience, her velocity will approach 1.0 on each task. Alternatively, if a developer’s
velocity jumps around a lot (one task is 0.6, another is 1.8, a third is 1.2), then a crash course in
estimation techniques might be appropriate. In my experience, a new developer’s velocity will start out
gyrating wildly, with most values well under 1.0 – the new developer is overly optimistic. But as time goes

5 Beck, K. Extreme Programming Explained: Embrace Change. (Boston, MA: Addison-Wesley 2000.)

CHAPTER 3 PROJECT MANAGEMENT ESSENTIALS

34

along velocities will settle into a range centered on 1.0, maybe from 0.85 to 1.15. As a developer gains a
history, the project manager can then start to depend more on their estimates, and the schedules will be
more accurate.

Project Oversight
Project oversight is what happens once you’ve got a schedule. Once your project begins, the work needs
to be managed. How this happens depends on the process you’re using. But regardless of the process
you need to manage the schedule, manage the developers, manage the process itself, and above all,
manage your manager.

A manager’s technique is critical to keeping a project on schedule. Fear is not a motivator.
Appealing to professional pride is, though. If your boss doesn’t support you, you’re doomed.

Without creative, supportive management, you’re doomed. If your people aren’t happy, you don’t
have a hope. Treat your developers as humans, not resources. Supporting your team and keeping them
insulated from distractions is your number one job. Remember, projects are cooperative, social events.6

Status Reviews and Presentations
Status reviews and presentations are an inescapable part of any project. The bigger the project, the more
formal the review. Remember that reporting status doesn’t fix problems, and that generally upper
management doesn’t like hearing about problems. Tough. When you give a project status report just tell
’em where your project is and where it’s going during the period before the next status report. Don’t
embellish and don’t make excuses; be honest about problems and where you are in the schedule. Just
providing good news is usually bad for your reputation; something will go wrong at some point, so it is
best to get it out of the way right away. You must communicate bad news about the project as soon as
possible. That’s the best way to mitigate the problem and get others involved in helping to find a
solution.

When giving a presentation, be it a status review or a technical presentation, make sure you know
your audience. Set your presentation to the level of the audience and keep the purpose of your
presentation in front of you and them at all times. PowerPoint is ubiquitous in industry so learn to use it
effectively. Keep your PowerPoint presentations short and to the point. Avoid cramming your slides with
lots of bullet points. Do not make your bullet points complete sentences, mostly because you’ll be
tempted to read them. This is the kiss of death for two reasons: it takes too long and takes attention away
from what you’re actually saying.

It insults the audience. Surely they do know how to read?
Your bullet points should be talking points that you can then expand upon. This lets your audience

focus on you, the speaker, rather than the slides. When you’re constructing a PowerPoint presentation,
use as few words as you can.

6 Cockburn, A. “The End of Software Engineering and The Start of Economic-Cooperative Gaming.”

Computer Science and Information Systems 1(1): 1 - 32. (2004)

CHAPTER 3 PROJECT MANAGEMENT ESSENTIALS

35

Defects
Inevitably, you’ll introduce defects (errors) into your program. Defects do not just appear; developers
put them there. As a developer, your aim is twofold

• Introduce as few defects as possible into the code you write.

• Find as many of them as you can before releasing the code.

 Note: By the way, I’m deliberately not using the word bug here, because it sounds both inoffensive and cute.
Defects are neither. They are errors in your code that you put there. See Chapter 13 for a more detailed discussion
on errors.

Despite your best efforts, though, you will release code with defects in it. It’s just inevitable. For a
program of any size, there are just too many possible paths through the program (called a combinatorial
explosion), and too many different ways to introduce bad data for there not to be defects. Your objective
is to release with as few defects as possible and to make those defects ones that don’t really impact the
product or its performance. To make this a reality, most development organizations have a set of defect
levels they use to characterize just how bad a defect really is. One set of levels looks like the following:

1. Fatal: Either this defect causes the product to crash, or a fundamental piece of
functionality doesn’t work.

2. Severe: A major piece of functionality doesn’t work, and there is no
workaround for it that the user can perform.

3. Serious: A piece of functionality doesn’t work, but there is a workaround for it
that the customer can perform.

4. Annoying: A minor defect or error in the documentation that may annoy the
user, but doesn’t affect how the program works.

5. New Feature Request: This isn’t a defect, but a request for the product to do
something new.

Whenever you find a defect in a piece of code, you will file a defect report (to keep track of how
many defects you’re finding, what types they are, and how severe they are), and you’ll characterize the
defect by severity level. When the developers are fixing defects, they start at level 1 and work their way
down.

In nearly all organizations, no product can release with known level 1 or level 2 defects in it. Most
organizations also try their best to remove all the level 3 defects as well.

The Post-Mortem
Most development teams will do a post-mortem after every project. A post-mortem is an opportunity to
reflect on the project just completed and answer a few questions. Typically, the questions will be like the
following:

CHAPTER 3 PROJECT MANAGEMENT ESSENTIALS

36

• What went right? Did our process work the way we anticipated? Did we meet our
schedule? Did we implement all the features required by the customer?

• What went wrong? Why did we have so many defects? Why did we need to work
60-hour weeks for the last month of the project?

• What process issues came up? Did we follow our process? If not, what parts were
problematic?

• What do we need to fix for next time? Given questions 1, 2, and 3, what do we need
to fix in our process, work habits, or environment for the next project?

• Who is responsible for the fixes? Someone has to be responsible for the changes to
our process; who is it? (Don’t make it a manager; the development team should
own the process.)

Conclusion
So where do we end up? We’ve gone through the general parts of managing projects and presented some
alternative ways of doing project management. The most important parts are the developers should own
the process and management should be supportive and listen to the developers – particularly where
schedules and estimates are concerned – and be the buffer between the developers and the world. If you
can work in an organization where those things are true, be a happy camper, because you’ll be able to
write great code.

References
Beck, K. Extreme Programming Explained: Embrace Change. (Boston, MA: Addison-Wesley 2000.)

Boehm, B., C. Abts, et. al. Software Cost Estimation with COCOMO II. (Englewood Cliffs, NJ: Prentice-

Hall, 2000.)

Cockburn, A. “The End of Software Engineering and The Start of Economic-Cooperative Gaming.”

Computer Science and Information Systems 1(1): 1 - 32. (2004)

DeMarco, T. and T. Lister. Peopleware: Productive Projects and Teams, Second Edition. (New York, NY:

Dorset House Publishing Company, 1999.)

McConnell, S. Rapid Development: Taming Wild Software Schedules. (Redmond, WA: Microsoft Press,

1996.)

Spolsky, J. Joel on Software. (Berkeley, CA: Apress, 2004.)

C H A P T E R 4

37

Requirements

The hardest single part of building a software system is deciding what to build. No
other part of the conceptual work is as difficult in establishing the detailed technical
requirements, including the interfaces to people, to machines, and to other software
systems. No other part of the work so cripples the results if done wrong. No other part
is more difficult to rectify later. Therefore, the most important function that the
software builder performs for the client is the iterative extraction and refinement of
the product requirements.

—Fred Brooks1

Before you start coding – yes, before you start coding – you need to know what it is you’re going to build.
That’s what requirements are: a list of stuff you have to implement in order to create your terrific
program. Most developers hate requirements. Really, all we’d like to do is sit down and start coding. All
of us have that super-programmer mentality; just give me the problem and I can sit down and design
and code it on the fly. Not! If you want to be a productive developer and make fewer errors and come up
with a good, clean design, you need requirements – the more detailed the better. A good set of
requirements tells you just what the program is supposed to do. It gives you the scaffolding around
which you’ll hang your design. You’ll do requirements anyway – it’s one of those steps in a standard
development lifecycle that you can’t avoid, but if you don’t make room for it in your project, you’ll create
a program that is pretty crappy. Being intentional about requirements forces you to think about the
details of the program, and it also lets you listen to the users so you have a better idea of what they really
want. So let’s talk about requirements.

What Types of Requirements Are We Talking About Here?
We’re really talking about functional requirements. That is, the list of features the user will see and be
able to use when they fire up your program. These are the “black box” requirements that show the

1Brooks, F. P. The Mythical Man-Month : Essays on Software Engineering, Silver Anniversary Edition.

(Boston, MA: Addison-Wesley, 1995.)

CHAPTER 4 REQUIREMENTS

38

external behavior of your program. They will certainly lead to lower-level requirements that talk more
about how your program works, rather than what it does. The output of this process of identifying
requirements is a functional specification of what the software system is supposed to do.

Functional Specification?
A functional specification describes what the program will do entirely from the user’s perspective. It
doesn’t care how the software is implemented. It talks about the features of the program and specifies
screens, menus, dialogs, and the like. Think of it as a badly written user manual. A second kind of spec
can be called a technical specification. The technical specification describes the internal implementation
details of the program. That is, it talks about data structures, algorithms used, database models, choice
of programming language, and so on. We’re not going to talk about technical specs in this chapter, just
functional specs.

“Wait,” you say. “What about all those agile methodologies we talked about in Chapter 2? They don’t
write functional specs. So there! I’m off the hook.” Well, in fact, agile methodologies do write functional
specifications. They’re just in a different format from the 300-page single-spaced requirements
document that some plan-driven methodologies require. XP requires that together with the customer
representative you write user stories that lay out what the program will do. That’s a spec. The important
part and the idea behind this entire chapter is to write down what your program is supposed to do before
you start coding.

But I Don’t Like Writing!
A standard argument made by software developers is that they can’t write. Nonsense! Everyone can
learn to write functional specs. But writing is work. You have to get in there and practice writing before
you’ll be any good at it. If you’re still in school (be it undergrad or graduate school), take a course in
writing, one where you’ve got to write essays or journal entries or stories or poetry every single week. You
should also have to read other works critically; reading other people’s writing, whether good or bad, is a
great way to learn how to write better.

That Natural Language Thing
Functional specifications should always be written in a natural language. Why? Well, it’s the Sapir-Whorf
linguistic relativity hypothesis, don’t you know?2 In a nutshell, language not only determines what you
do say, it determines what you can say (and think). That is, the language you use determines what kinds
of thoughts you are able to have, and thus what you can think about and how you express your thoughts.
If the language doesn’t have room for certain kinds of thoughts, you are much less likely to think them.
Natural languages are much more expressive and varied than programming languages, so you want to
do your designs in natural languages and save the programming languages for implementation later.
Whether you believe the Sapir-Whorf hypothesis or not, it’s nearly always a good idea to develop your
functional specification in a natural language so you don’t get bogged down in the syntactic and
semantic details of a programming language before you need to. This doesn’t mean that you can’t think
about implementation while you’re doing the functional specification (you will, trust me), but just shunt

2http://en.wikipedia.org/wiki/Linguistic_relativity retrieved, September 15, 2009.

http://en.wikipedia.org/wiki/Linguistic_relativity

CHAPTER 4 REQUIREMENTS

39

those thoughts over into a “technical note” sidebar of your specification.3 You might also look at
Kenneth Iverson’s Turing Award lecture, “Notation as a Tool of Thought,” for a similar discussion.4

Outline of a Functional Specification
Every functional specification is different, just as every software development project is different. So take
this outline with a grain of salt and just use the parts that apply to your project. Lots of the ideas here are
from.5 Every function specification should have the elements discussed in the following sections.

Overview
This is your executive summary. A paragraph or at most two of what the program is supposed to do.
“This program runs your microwave oven. It interfaces to a keypad and an LCD display that provides
user input and output functionality. Its functions are limited to those that a standard microwave would
have, with the addition of single buttons for pizza and coffee reheating. It also will run a time of day
clock and a standalone countdown timer. It doesn’t control the light. It has a safety interlock that will
prevent the microwave from starting if the door is open.”

Disclaimer
You should always put it a statement right at the beginning that “This specification isn’t done yet. If you
think something is missing or wrong, just sent me an email.” That helps keep all the marketing guys off
your back and lets you file new feature requests in your mail trash bin. Lots of people will put a big, black
DRAFT in the header or footer of the document. That can work as well, but folks tend to ignore it. Some
people will use a big DRAFT watermark on their specs, so that every page has the word embedded
behind the text. This doesn’t stop people from yelling at you either. At some point your disclaimer
should change to something like “This specification is as complete as it will be for this release. If you
think something is missing or wrong, just sent an email to the author and we’ll consider it for the next
release.”

Author’s Name
Somebody needs to be responsible for the functional specification. Not a committee, not the
development team, one person. This is usually either the development manager, the project manager, or
the chief architect, depending on how your company sets up development projects. There are pros and
cons to all the different organizational arrangements.

If the development manager (the person to whom the developers report) is in charge of the
functional spec, then that person is usually up to speed on all the technical aspects of the project. That’s
good. On the other hand, if your boss writes the functional spec, it might be harder to tell her that there’s
something wrong with the specification, or that you don’t agree with the design. Also, development

3Spolsky, J., Joel on Software. (Berkeley, CA: Apress, 2004.)

4Iverson, K. E. “Notation as a Tool of Thought.” Communications of the ACM 23(8): 444–465. (1980.)
5Spolsky, 2004.

CHAPTER 4 REQUIREMENTS

40

managers were probably developers at one time and so they may not have the people skills (read: charm
and schmoozing skills) necessary to talk to marketing, the customer, documentation, testing, and so on.

If your company uses project managers that are in charge of the specification, design, and schedule,
but don’t have developers directly reporting to them, then you run the risk of getting someone that isn’t
as technically astute as a former developer. On the other hand, these folks can usually charm the socks
off the other teams, so negotiations are a lot smoother. Project managers need to have some technical
skills and to be very good at getting all the stakeholders to reach consensus on the contents of the
functional specification.

The chief architect model is like the project manager model except that the architect is a developer
and so is more technically competent and is usually in charge of the functional specification and all the
program design issues. This is like the chief programmer model in Brooks’ The Mythical Man-Month.
Someone else is in charge of interfacing with the other teams, the schedule, and doing all that people-
interaction stuff. This can be good if the architect is disciplined and doesn’t let any requirements creep
get in the way of a good design.

Scenarios of Typical Usage
A great way to get customers to respond to your requirements list is to present several scenarios of
typical usage of the program to them as part of the specification. This has a couple of advantages.

• First, if you write the scenarios as if they’re user stories, the customer is more
likely to read them.

• Second, customers are more likely to understand what you’re doing and come up
with ideas for things you’ve missed or gotten wrong. This is always a good thing,
because the more customer input you get early in the process, the more likely
you’ll actually create something they want.

In many agile methodologies, including XP, user stories are often written like scenarios. And in XP, the
customer is part of the project team, so you get constant feedback on user stories and daily program
builds. In the Unified Modeling Language (UML, see www.uml.org), there is an entire notation used to
create use cases (another word for scenarios). But as we discussed above, nothing beats natural language
for describing usage scenarios. We’ll come back to use cases later, in Chapter 8.

Detailed Screen-By-Screen Specifications
Once you’ve written a couple of scenarios, you will have a much better idea of how your program will
flow, and what screens, dialog boxes, menus, and so on you’ll need. This lets you go through each one of
those screens and flesh out the details of how they’re laid out, what buttons, text boxes, icons, graphics,
and so on they’ll have, and what other screens they connect to. Use pictures! A picture of a screen or a
dialog box is worth way more than a thousand words. It gives the reader something to react to and it gets
them thinking about program flow and user interface issues. Don’t expect anyone to read these except
for the developers who will implement them and the tech writers who will write the user manual (that no
one will read).

Non-requirements
This may be the most important section of the functional specification. This tells the world what you’re
not going to do. Really, you need to put this in because after laying out what the program will do, the
most important thing the functional specification does is manage expectations. One of the worst phrases

http://www.uml.org

CHAPTER 4 REQUIREMENTS

41

a customer can utter at that final demo before you release is, “But I thought it was going to do” You
need to tell all the stakeholders in a project what the program is going to do and also what it’s not going
to do. “This microwave software will not balance your checkbook.” Well, okay, that’s a little over the top,
but you do need to let them know that there are requirements that won’t be implemented – at least not
in the current release. “Only one countdown timer may run at a time.” “There will not be a defrost cycle
that allows defrost modes to be selected by food type.” It’s likely that your customer won’t read this
section, but at least you can point to it when they ask.

Open Issues
When you first write the functional specification, there will be one or two (thousand) things you don’t
know. That’s okay. Just put them in the “Open Issues” section. Then every time you meet with the
customer, point to this section and try to get answers. Some of these questions will move to
requirements sections and some will end up in the “Non-requirements” section, after you get those
answers. By the end of the project, though, this section should be empty. If it’s not, well, you’ve got
issues that will haunt you.

Design and Feature Ideas
If you’re like me, you’ll be trying to design and code the program all the time you’re doing your
requirements gathering and analysis. That’s just what developers do. So to avoid having your head
explode from all these fantastic design and implementation ideas that you can’t write down because
you’re writing requirements after all, write a separate notebook. This notebook is just a separate
document – keep a text document open on your desktop for it – that contains a note for later. The two
types of notes I typically create are technical notes containing design or coding ideas for developers, and
marketing notes containing feature ideas for the marketing folks and the customer.

Backlog
As your project proceeds through development, new requirements will surface. Get used to it; this
always happens. But if you want to keep to a schedule and deliver a working product, you just cannot
implement everything that will come up. That’s what the “Backlog” section is for, all the requirements
you are going to consider for the next release of the product. Most functional specifications don’t have a
“Backlog” section, but if you want your functional spec to be a living document, you need a place to put
all the tasks you will do later. This does a couple of good things for you. It tells the customer you haven’t
forgotten these features, and that by moving them to the next release you are committed to delivering
the current release as close to the published schedule as possible. And it tells the developers that you’re
not out of control and that the project has a good shot at being done with high quality and on time. For
more information on backlogs, take a look any of the Scrum agile methodology descriptions.6

6Schwaber, K. and M. Beedle. Agile software development with Scrum. (Upper Saddle River, NJ: Prentice

Hall, 1980.)

CHAPTER 4 REQUIREMENTS

42

One More Thing
One more thing about the functional specification – don’t obsess. Chances are that you’ll do a good job
of picking out requirements and writing them down in the functional spec, but that it won’t be as
detailed as you like and it won’t be complete. Don’t worry, be happy. The only time a functional
specification is complete is when you ship the release. Don’t spend time trying to get every single detail
correct, don’t spend time trying to tease every requirement out of your customer. It just won’t happen.
Set a time limit, do your best, and let it go. You don’t want to have a bunch of developers sitting around
twiddling their thumbs with nothing to do waiting for the spec do you?

Types of Requirements
In a functional specification you’ll usually see four different types of requirements: user requirements,
domain requirements, non-functional requirements, and non-requirements.

User Requirements
User requirements are nearly always expressed in natural language. They are the details of what the user
expects to see as she uses the program. They also include descriptions of screen layouts, dialog boxes,
and menus. Any interaction element in the program should be described in the user requirements. For
example:

Logging into the System: When Gloria clicks on the Login button on the main
page, a login dialog box appears in the middle of the screen. The login dialog
must contain two text boxes, labeled “Username” and “Password.” There must
also be two buttons in the dialog box, labeled “Submit” and “Cancel.” If at any
time Gloria presses the Cancel button, the dialog box shall disappear and she
will be taken back to the previous screen. In normal usage, she will click in the
Username text box and type in her user name, and then click (or tab) in the
Password text box and type in her password. The text typed in the Password text
box must be hidden. Once Gloria is finished typing in her user name and
password she must press the Submit button. If she has entered a correct user
name/password combination she will then be taken to the main menu page. If
Gloria’s user name/password combination is incorrect, an “Invalid user name
or password, please try again” message shall appear in the dialog box, the text
boxes shall be cleared and she will be given the opportunity to login again.

As seen in this section, you can express user requirements as scenarios, and as detailed screen-by-
screen descriptions. Remember to use pictures as much as you can when you’re doing user
requirements. If your program is web-based, do lots of quick and dirty html pages and paste them into
the spec. If it’s not web-based, use a drawing program to create pictures of what the user will see.

Domain Requirements
These are requirements that are imposed on you by the application domain of the program. If you’re
writing a new version of TurboTax®, you will be constrained by the latest IRS regulations. A general
ledger program will have to abide by the latest edition of the Generally Accepted Accounting Principles
(GAAP), and an AT&T-branded iPhone will need to implement the latest GSM protocols. You don’t need

CHAPTER 4 REQUIREMENTS

43

to write down all these requirements, just refer to them. A set of detailed domain requirements give the
developers information they will need during their design of the program. Domain requirements are
usually considered “middle layer” software because they are the heart of the application, below the user
interface and above the operating system, networking, or database software. Lots of domain
requirements will get implemented as separate classes and libraries with their own APIs.

Non-functional Requirements
Non-functional requirements are constraints on the services and functions of the program and also
expectations about performance. They can include target platform specifications, timing constraints,
performance requirements, memory usage requirements, file access privileges, security requirements,
response times, minimum number of transactions per second, and so on. These are usually
requirements that may not be visible to the user, but which do effect the user experience.

Non-requirements
These are the things you’re not going to do. See the previous section for a description of non-
requirements.

Requirements Digging
Most software engineering texts use the phrase “requirements elicitation” to talk about the process of
getting your users to tell you what they want. Hunt and Thomas, in their book The Pragmatic
Programmer use the much more descriptive phrase “requirements digging” to emphasize the point that
what you’re really doing is digging for all those requirements that your customer doesn’t know they want
yet.7 Hunt and Thomas also make the terrific distinction between requirements, policies, and
implementations as a way to illustrate the requirements digging process.

For example, “The system must let the user choose a loan term” is a nice succinct requirement. It
says that there’s something you have to do. It isn’t specific enough for implementation yet, but it tells
the developer something concrete that must be built.

“Loan terms must be between 6 months and 30 years” is not a requirement, although it kind of looks
like one. This statement is an example of a business policy. When statements like this are presented to
developers as requirements they have a tendency to hard-code the statement in the program. Wrong,
wrong, wrong. Policies like this can change, so you need to be very careful about putting business
policies in your requirements. It is almost always the case that you need to implement a more general
version of the business policy than is stated. The real requirement is probably something like, “Loan
terms are of finite length but the length of the loan will vary by type of loan.” This tells you that you
probably need to build a table-driven subsystem to handle this feature. That way, the loan term for a
particular type of loan can be changed by making a single change in a data table and the code doesn’t
need to change at all.

“The user must be able to select a loan term using a drop-down list box” isn’t a requirement either,
although, again, it may look like one. This is only a requirement if the customer absolutely must have a

7Hunt, A. and D. Thomas. The Pragmatic Programmer: From Journeyman to Master. (Boston, MA:

Addison-Wesley, 2000.)

CHAPTER 4 REQUIREMENTS

44

drop-down menu to choose their loan term. Otherwise, this is an example of the implementation that
the customer would like to see, and it may not be a requirement. As Hunt and Thomas state in their
book, “It’s important to discover the underlying reason why users do a particular thing, rather than just
the way they currently do it. At the end of the day, your development has to solve their business problem,
not just meet their stated requirements. Documenting the reasons behind requirements will give your
team invaluable information when making daily implementation decisions.”

Why Requirements Digging Is Hard
There are several reasons why pulling requirements out of your customer is a really hard exercise. We’ll
look at a few.

Problems of Scope
Lots of times the actual boundaries of what your program is supposed to do are fuzzy. This can be
because of several things. The program may be part of a larger system and the integration of the parts is
ill-defined. The customer may not have thought through exactly what they want the program to do, so
they start throwing out all sorts of ideas, many of which may not even apply to the problem at hand.
Finally, the customer may have dropped into implementation-land and provides unnecessary levels of
detail.

It takes lots of patience, discipline, repeatedly saying the word “no,” and repeatedly asking, “why
does this need to be part of the program?” in order to overcome problems of scope. Scope is directly
related to requirements creep, so beware.

Problems of Understanding
Let’s face it; the customer and you as the developer speak different languages. Your customer is the
domain expert and they speak the domain language (accounts receivable, accounts payable,
reconciliation, general ledger, and so on). You speak the design and implementation language (class,
object, method, use case, recursion, activation record, and the like). This is usually worse than an
American in Paris; at least there, both sides can pantomime their needs and figure things out. With
problems of domain understanding, the best you can usually do is order drinks together.

There are usually two ways to overcome problems of understanding. The first is to have someone in
the middle who has lived in both worlds and who can translate between the two. Some companies have
folks called system engineers or technical marketers who fulfill this role. These folks have done
development and have also worked the customer side of things so they can speak both languages. Good
system engineers are worth their weight in use-cases. The second way to promote understanding is to
have the customer as part of the development team. This is the approach taken by some agile
methodologies, notably XP. When the customer is part of the development team you get to talk to them
every day, ask them questions, teach them technical stuff. Both sides benefit. And because the on-site
customer sees intermediate product builds as soon as they pop out of your build machine, you get
immediate feedback. Win, win, win.

Problems of Volatility
Things change. This is by far the hardest part of requirements gathering and analysis and the biggest
reason why schedules slip. You can’t do anything about it. Get used to it. As Kent Beck says, “Embrace

CHAPTER 4 REQUIREMENTS

45

change.” What you can do is manage change. Create a backlog of new features that get added as they
arrive. In the Scrum methodology, new requirements are always added to the release backlog, they are
not added to the current iteration; this allows the current sprint to proceed normally and the
requirements are all reviewed at the end of the sprint. Another way to manage change is to push the
decision onto the user; give the user a choice - “If we implement this new feature it will add 6 weeks to
the schedule. Do you still want it?” Alternatively, “If you want to keep to the original schedule we can
only implement and test one of A, B, or C. You pick the one you want most.” This is one of the things that
the agile folks mean by “courage;”8 sometimes you have to take a stand and choose what is best for the
project as a whole.

Non-technical Problems
From a developer’s perspective, non-technical problems with requirements are the worst ones you will
see. In fact, these are problems developers should never see; their managers should shield them from
non-technical problems. Non-technical requirements problems are fundamentally political. Examples
abound. One group of customers in an organization has a different view of the program requirements
than another group. Or worse, one manager has a different view than another manager. The program
being developed will reduce the influence of one department by automating a function that they used to
be the sole source of. The program will distribute data processing across several departments where it
was once centralized in a single department. The list goes on and on. The best advice for non-technical
problems is to run away – quickly. Let your vice-president deal with it; that’s why she is paid the big
bucks.

Analyzing the Requirements
Once you’ve written down a set of requirements you need to make sure that these are the right
requirements for the program; you need to analyze them. Analysis has three basic parts.

First, you categorize the requirements and organize them into related areas. This will help the
designers a lot.

Second, you prioritize them based on customer input. This is critical because you won’t be able to
implement all the requirements in the first product release (trust me, you won’t). So this prioritized list
will be what you’ll use to set the contents of each interim release.

Lastly, you need to examine each requirement in relation to all the others to make sure they fit into a
coherent whole. Ask yourself a series of questions:

1. Is each requirement consistent with the overall project objective? If your
program is supposed to sell your users books, it doesn’t also have to compute
their golf handicap.

2. Is this requirement really necessary? Have you added something that can be
removed without impairing the essential functionality of the program? If your
first release is supposed to allow users to buy books, then you probably don’t
need to also allow them to buy sailboats.

8Beck, K. Extreme Programming Explained: Embrace Change. (Boston, MA: Addison-Wesley, 2000.)

CHAPTER 4 REQUIREMENTS

46

3. Is this requirement testable? This is probably the most important question
when you’re doing requirements analysis. If you cannot figure out how to test
a requirement, then you cannot know that you’ve implemented it correctly or
that you are finished. All requirements must be testable, or else they are not
requirements. In most agile methodologies, the rule is to write the test first,
then write the code.

4. Is this requirement doable in the technical environment you’ve got to work in?
This question normally applies to those non-functional requirements
mentioned previously. Are your requirements feasible given the particular
target platform or set of hardware constraints you must work under for this
project? For example, if your target platform is a Macintosh running OS X, a
requirement that the DirectX graphics library be used is not doable because
DirectX is a Windows only library.

5. Is this requirement unambiguous? Your requirements need to be as precise as
possible (refer to the previous testable questions), because as sure as you’re
sitting here reading this, someone will misinterpret an ambiguous
requirement and you’ll discover the error the day after you ship. Your
requirements should never contain the words “or” or “may.”

Conclusion
Once you’re done with your functional spec and the analysis of your requirements you’re done with the
requirements phase, right. Well, of course not. As we’ve said before – requirements change. So relax,
don’t obsess about the requirements, do the best you can to get an initial list of clear, testable
requirements and then move on to design. You’ll always come back here later.

References
Beck, K. Extreme Programming Explained: Embrace Change. (Boston, MA: Addison-Wesley, 2000.)

Brooks, F. P. The Mythical Man-Month : Essays on Software Engineering, Silver Anniversary Edition.

(Boston, MA: Addison-Wesley, 1995.)

Hunt, A. and D. Thomas. The Pragmatic Programmer: From Journeyman to Master. (Boston, MA:

Addison-Wesley, 2000.)

Iverson, K. E. “Notation as a Tool of Thought.” Communications of the ACM 23(8): 444–465. (1980.)

Schwaber, K. and M. Beedle. Agile software development with Scrum. (Upper Saddle River, NJ: Prentice

Hall, 1980.)

Spolsky, J., Joel on Software. (Berkeley, CA: Apress, 2004.)Wikipedia, Sapir-Whorf Linguistic Relativity

Hypothesis, http://en.wikipedia.org/wiki/Linguistic_relativity retrieved, September 15, 2009.

http://en.wikipedia.org/wiki/Linguistic_relativity

C H A P T E R 5

47

Software Architecture

What do we mean by a software architecture? To me the term architecture conveys a
notion of the core elements of the system, the pieces that are difficult to change. A
foundation on which the rest must be built.

—Martin Fowler1

Once you have an idea of what you’re going to build, then you can start thinking about how you’re going
to build it. Of course, you’ve already been thinking about this from the very first requirement, but now
you have permission to do it. Now we begin to delve into design.

There are really two levels of software design. The level we normally think of when we’re writing
programs is usually called detailed design. What operations do we need? What data structures? What
algorithms are we using? How is the database going to be organized? What does the user interface look
like? What are the calling sequences? These are all very detailed questions that need to be answered
before you can really get on with the detailed work of coding (well, sort of – we’ll get to that later).

But there’s another level of design. This kind of design is all about style. If you were building a house,
this design level asks questions like ranch or multi-story? Tudor or Cape Cod? Which direction do the
bedroom windows face? Forced-air or hot-water heat? Three bedrooms or four? Open concept floor plan
or closed? These questions focus somewhat on details, but they are much more about the style of the
house and how you’ll be using it, rather than things like 12 or 14 gauge wire for the electrical system or
the diameter of the air conditioning ductwork. This emphasis on style is what software architecture is all
about. As Fowler says in this chapter’s opening quote, you need the foundation before you can build the
rest of the structure. Software architecture is a set of ideas that tells you which foundation is the right
one for your program.

The idea of software architecture began as a response to the increasing size and complexity of
programs. “As the size and complexity of software systems increases, the design problem goes beyond
the algorithms and data structures of the computation: designing and specifying the overall system
structure emerges as a new kind of problem.... This is the software architecture level of design.”2

1 “Is Design Dead?” Retrieved from http://martinfowler.com/articles/designDead.html

2 Garlan, D. and M. Shaw (1994). An Introduction to Software Architecture. Pittsburgh, PA: Carnegie

Mellon University: 49. CMU/SEI-94-TR-21. (1994)

http://martinfowler.com/articles/designDead.html

CHAPTER 5 SOFTWARE ARCHITECTURE

48

However it is really the case that all programs of any size and complexity have an architecture. It’s just
that for larger programs you need to be more intentional about your thinking about the architecture to
make sure you have the right set of architectural patterns incorporated in your system design. You need
to do this. It’s so much harder to change things at the architectural level once the program has been
written, because architectural features are so fundamental to the structure of the program.

There are many different styles of software architecture, and in any given project you’ll probably use
more than one. The architectural style used for a program depends on what it is you’re doing. As we’ll
see, different types of programs in different domains will lead us to different architectural styles; we can
also call these architectural patterns since they have many characteristics of the design patterns we’ll see
shortly. First let’s get some general vocabulary under our belts.

General Architectural Patterns
Whenever a software architect starts thinking about an architecture for a program, she usually starts by
drawing pictures. Diagrams of the architecture allow people to see the structure and framework of the
program much more easily than text. Software architectures are normally represented as black box
graphs where graph nodes are computational structures and the graph edges are communication
conduits between the structures. The conduits can represent data flow, object message passing, or
procedure calls. Notations of this type vary and there are several standard notations, notably the United
Modeling Language (UML). Visual descriptions of architectures are generally easier to understand. A
particular architectural style is a pattern that can represent a set of similar structures. Let’s looks at
several different common architectural styles.

Pipe-and-filter Architecture
In a pipe-and-filter style architecture, the computational components are called filters and they act as
transducers that take input, transform it according to one or more algorithms, and then output the result
to a communications conduit. The input and outputs conduits are called pipes.

A typical pipe-and-filter architecture is linear, as in Figure 5-1.

Figure 5-1. The pipe-and-filter architecture

The filters must be independent components. That is one of the beauties of a pipe-and-filter
architecture. You can join different filters in the set in different arrangements in order to get different
results. The classic example of a pipe-and-filter architectural style is the Unix shell, where there are a
large number of small programs that typically do a single thing and can be chained together using the
Unix pipe mechanism. Here’s an example that shows how a pipe-and-filter can work. This problem is
from Jon Bentley’s book Programming Pearls.3

3 Bentley, J. Programming Pearls, Second Edition. (Boston, MA: Addison-Wesley, 2000.)

CHAPTER 5 SOFTWARE ARCHITECTURE

49

The Problem: Given a dictionary of words in English, find all the anagrams in
the dictionary. That is, find all the words that are permutations of each other.
For example, “pots,” “stop,” and “spot” are anagrams of each other.

So what do we know? Well, first of all, all the anagrams have the same letters and the same number
of letters in each word. That gives us the clue to the method you’ll use to find the anagrams. Got it yet?
Don’t worry; I’ll wait.

Yes! If you sort each word, you’ll end up with a string of characters that has all the letters in the word
in alphabetical order. We call this creating a sign for the word. If you then sort the resulting list, all the
anagrams will end up together in the sorted list because their sorted letters will be identical. If you then
keep track of which words you sorted, you can then simplify the list and create a new list with, say, each
set of anagrams on the same line of the output file. This is exactly how Bentley does it.

But how does this relate to a pipe-and-filter architecture, you ask? Good question. Let’s break down
the solution again.

1. Create a sign for each word in the list by sorting the letters in each word; keep

the sign and the word together.

2. Sort the resulting list by the signs; all the anagrams should now be together.

3. Squash the list by putting each set of anagrams on the same line, removing the

signs as you do.

See the pipe-and-filter now? In Unix-speak it looks like this:

sign <dictionary.txt | sort | squash >anagrams.txt

where sign is the filter we use to do step 1, with input file dictionary.txt. sign outputs a list of signs and
their associated words which is piped to the Unix sort utility (we didn’t need to write that one). Sort
then sorts the list by the first field on each line (its default behavior), which happens to be the sign of
each word. It then outputs the sorted list to the next pipe. Squash takes the sorted list from the incoming
pipe and compresses it by putting all the words with the same sign on the same line, eliminating the
signs as it does so. This final list is sent via one last pipe (this time a Unix I/O redirection) to the output
file anagrams.txt.

Note that this example has all the features of a standard pipe-and-filter architecture: independent
computational components that perform a transformation on their input data and communication
conduits that transmit the data from the output of one component to the input of the next. Note also
that not all applications should use the pipe-and-filter architecture. For example, it won’t work so well
for interactive applications or applications that respond to events or interrupts. That’s why we’re going
to look at more architectural styles.

An Object-Oriented Architectural Pattern
The advent of object-oriented analysis, design, and programming in the early 1980s (well, it really started
in the ‘60s, but no one was paying attention) brought with it a number of architectural and design
patterns. We’ll just focus on one object-oriented architectural pattern here and save discussions of the
rest to the chapter on Design Patterns.

The Model-View-Controller (MVC) architectural pattern is a way of breaking an application, or even
just a piece of an application’s interface, into three parts: the model, the view, and the controller. MVC

CHAPTER 5 SOFTWARE ARCHITECTURE

50

was originally developed to map the traditional input, processing, output roles of many programs into
the GUI realm:

Input ➤ Processing ➤ Output

Controller ➤ Model ➤ View

The user input, the modeling of the external world, and the visual feedback to the user are separated
and handled by model, view and controller objects, as shown in Figure 5-2.

Figure 5-2. The Model-View-Controller architecture

• The controller interprets mouse and keyboard inputs from the user and maps
these user actions into commands that are sent to the model and/or viewport to
effect the appropriate change.

• The model manages one or more data elements, responds to queries about its
state, and responds to instructions to change state. The model knows what the
application is supposed to do and is the main computational structure of the
architecture – it models the problem you’re trying to solve.

• The view or viewport manages a rectangular area of the display and is responsible
for presenting data to the user through a combination of graphics and text. The
view doesn’t know anything about what the program is actually doing; all it does is
take instructions from the controller and data from the model and displays them.
It communicates back to the model and controller to report status.

The flow of an MVC program typically looks like this:

1. The user interacts with the user interface (e.g., the user presses a button) and
the controller handles the input event from the user interface, often via a
registered handler or callback. The user interface is displayed by the view but
controlled by the controller. Oddly enough, the controller has no direct
knowledge of the view as an object; it just sends messages when it needs
something on the screen updated.

2. The controller accesses the model, possibly updating it in a way appropriate to
the user’s action (e.g., controller causes the user’s shopping cart to be updated
by the model). This usually causes a change in the model’s state as well as in its
data.

3. A view uses the model to generate an appropriate user interface (e.g., view
produces a screen listing the shopping cart contents). The view gets its own
data from the model. The model has no direct knowledge of the view. It just

CHAPTER 5 SOFTWARE ARCHITECTURE

51

responds to requests for data from whomever and to requests for transforming
data from the controller.

4. The controller, as the user interface manager, waits for further user
interactions, which begins the cycle anew.

The main idea here is separation of concerns – and code. The objective is to separate how your
program works from what it is displaying and how it gets its input data. This is classic object-oriented
programming; create objects that hide their data and hide how they manipulate their data and then just
present a simple interface to the world to interact with other objects. We'll see this again in Chapter 9.

An MVC Example: Let’s Hunt!
A classic example of a program that uses the MVC architectural pattern is the Nifty Assignment
presented by Dr. David Matuszek at the 2004 SIGCSE Technical Symposium.4

The Problem
The program is a simple simulation of a fox and a rabbit. The fox is trying to find the rabbit in a grid
environment, and the rabbit is trying to get away. There are bushes that the rabbit can hide behind and
there are some restrictions on movement.

Figure 5-3 is a typical picture of the game in action.

Figure 5-3. A typical fox and rabbit hunt instance

4 Matuszek, David. “Rabbit Hunt,” SIGCSE 2004 Technical Symposium, Nifty Assignments Session,

retrieved August 17, 2009, http://nifty.stanford.edu/2004/RabbitHunt/. (2004)

http://nifty.stanford.edu/2004/RabbitHunt/

CHAPTER 5 SOFTWARE ARCHITECTURE

52

The fox is the large dot, the rabbit is the small dot, and the bushes are the fat crosses.
The objective of the programming assignment is to make the rabbit smarter so it can escape from

the fox. We don’t really care about this; we want to look at how the program is organized. Figure 5-4
shows the organization of the program. It’s a UML object diagram taken from the BlueJ IDE. The key
parts of the program are the three classes, Model, View, and Controller.

Figure 5-4. The fox and rabbit hunt class structure

Model
The model represents the rules of the game. It does all the computation, all the work of deciding whose
turn it is, what happens during each turn, and whether anyone has won. The model is strictly internal
and has practically nothing to do with the other parts of the program.

View
The view displays what is going on. It puts an image on the screen so the user can see what is happening.
The view is completely passive; it does not affect the hunt in any way, it’s just a news reporter that gives
you a (partial) picture of what is happening inside the model.

CHAPTER 5 SOFTWARE ARCHITECTURE

53

Controller
The controller is the part of the program that displays the controls (the five buttons and the speed
controls at the bottom of the window). It knows as little as possible about the model and view; it
basically tells the model when to go and when to stop.

Model
The model part of this program is actually composed of five classes: Model (the “main” model class),
Animal, Rabbit, Fox, and Bush. Rabbit and Fox are subclasses of Animal (as you can see from the solid
arrows in the UML diagram). This is the part of the program that you really need to understand.

The RabbitHunt class just creates model, view, and controller objects, and turns control over to the
controller object. The controller object starts the model object, and then just waits for the user to press
a button. When a button is pressed, a message is sent to the model object, which decides what to do.

The model object

• places the fox, rabbit, and bushes in the field;

• gives the rabbit and the fox each a chance to move (one moves, then the other;
they don’t both move at the same time);

• tells the view to display the result of these two moves; and

• determines which animal won.

The advantages of breaking the program up into these separate parts are many. We can safely
rewrite the GUI in the Controller object or the display in the view object without changing the model. We
can make the fox and/or the rabbit smarter (or dumber!) without changing the GUI or the display. We
can re-use the GUI for a different application with very little effort. The list just goes on.

In short, MVC is your friend; use it wisely and often.

The Client-Server Architectural Pattern
Moving to a more traditional architecture we go back in time. Once upon a time all programs ran on big
iron and your entire program ran on a single machine. If you were lucky enough to be using a time-
shared operating system, several people could be using the same program – albeit usually different
copies – simultaneously. Then came personal computers and networks. And someone had the bright
idea of dividing the work up between that big iron and your puny desktop machine. Thus was born the
client-server architecture.

In a client-server architecture, your program is broken up into two different pieces that typically run
on two separate computers. A server does most of the heavy lifting and computation; it provides services
to its clients across a high-bandwidth network. Clients, on the other hand, mostly just handle user input,
display output, and provide communication to the server. In short, the client program sends requests for
services to the server program. The server program then evaluates the request, does whatever
computation is necessary (including accessing a database, if needed) and responds to the client’s
request with an answer. The most common example of a client-server architecture today is the World
Wide Web.

In the web model, your browser is the client. It presents a user interface to you, communicates with
a web server, and renders the resulting web pages to your screen. The web server does a number of
things. It serves web pages in HTML, but it also can serve as a database server, a file server, and a
computational server – think about everything that Amazon.com does when you access that web site.

CHAPTER 5 SOFTWARE ARCHITECTURE

54

Clients and servers don’t have to be on different computers, though. Two examples of programs
written using a client-server architecture where both sides can reside on the same computer are print
spoolers and the X Windows graphical system.

In a print spooler application, the program you are running – a word processor, a spreadsheet
program, your web browser – runs as a client that makes request to a printing service that is
implemented as a part of the computer’s operating system. This service is typically known as a print
spooler because it keeps a spool of print jobs and controls which jobs get printed and the order of their
printing. So from your word processor, you’ll select Print from a menu, set certain attributes and often
pick a printer, and then click OK on some dialog box. This sends a print request to the print spooler on
your system. The print spooler then adds your file to a queue of print jobs that it manages, contacts the
printer driver and makes requests for printing to occur. The difference here is that once you’ve clicked
the OK button, your client program (the word processor) typically does not have any more contact with
the print spooler, the print service runs unattended.

The X Window System (see www.xfree86.org/) is a graphical windowing system used on all Unix and
Linux based systems and also available for Apple Macintosh and Microsoft Windows systems as an add-
on windowing system. The X system uses a client-server architecture where the client programs and the
server typically both reside on the same computer. The X system server receives requests from client
programs , processes them for the hardware that is attached to the current system, and provides an
output service that displays the resulting data in bitmapped displays. Client program examples include
xterm – a windowed terminal program that provides a command line interface to Unix, xclock – you
guessed it – a clock, and xdm the X Window display manager. The X system allows hierarchical and
overlapping windows, and provides the ability to configure menus, scroll bars, open and close buttons,
background and foreground colors, and graphics. X can also manage a mouse and keyboards. These
days the main use of the X system is as a springboard to build more sophisticated window managers,
graphical environments, graphical widgets, and desktop management windowing systems like GNOME
and KDE.

The Layered Approach
The layered architectural approach suggests that programs can be structured as a series of layers, much
like geologic strata, with a sequence of well-defined interfaces between the layers. This has the effect of
isolating each layer from the ones above and below it, so that one can change the internals of any layer
without having to change any of the other layers in the program. That is, as long as your changes don’t
involve any changes to the interface. In a layered approach, interfaces are sacred. Two classic examples
of a layered approach to programming are operating systems (OSs) and communications protocols.

An operating system’s architecture has several objectives, among them to centralize control of the
limited hardware resources and to protect users from each other. A layered approach to the operating
system architecture does both of these things. Take a look at a pretty standard picture of an OS
architecture (see Figure 5-5).

http://www.xfree86.org/

CHAPTER 5 SOFTWARE ARCHITECTURE

55

Figure 5-5. A layered architecture

In this layered model, user applications request operating system services via a system call interface.
This is normally the only way for applications to access the computer’s hardware. Most operating system
services must make requests through the kernel and all hardware requests must go through device
drivers that talk directly to the hardware devices. Each of these layers has a well-defined interface, so
that, for example, a developer may add a new device driver for a new disk drive without changing any
other part of the OS. This is a nice example of information hiding.

The same type of interface happens in a communications protocol. The most famous of these
layered protocols is the International Standards Organization (ISO) Open Systems Interconnection (OSI)
seven-layer model. This model looks like Figure 5-6.

Figure 5-6. The ISO-OSI layered architecture

In this model, each layer contains functions or services that are logically similar and are grouped
together. An interface is defined between each layer and communication between layers is only allowed
via the interfaces. A particular implementation need not contain all seven layers, and sometimes two or
more layers are combined to make a smaller protocol stack. The OSI model defines both the seven-layer
approach and all the interface protocols. The model can be downloaded as a PDF file from
http://www.itu.int/rec/T-REC-X.200/en. (The ITU or International Telecommunications Union is the
new name for the ISO.)

Examples of protocols that are implemented at each layer are shown in Table 5-1.

http://www.itu.int/rec/T-REC-X.200/en

CHAPTER 5 SOFTWARE ARCHITECTURE

56

Table 5-1. Example Layered Protocols Using the ISO-OSI Architecture

Layer Protocol

7. Application http, ftp, telnet

6. Presentation MIME, SSL

5. Session Sockets

4. Transport TCP, UDP

3. Network IP, IPsec

2. Data Link PPP, Ethernet, SLIP, 802.11

1. Physical

The Main Program: Subroutine Architectural Pattern
The most traditional and oldest architectural pattern is the main program – subroutine pattern. While it
descends from Niklaus Wirth’s 1971 paper “Program Development by Stepwise Refinement,”5 Wirth was
just the first to formally define the top-down problem decomposition methodology that naturally leads
to the main program – subroutine pattern.

The idea is simple. You start with a big problem, and then try to decompose the problem into
several smaller problems or pieces of the original problem. For example, nearly every problem that is
amenable to solution by top-down decomposition can be divided into three parts immediately – input
processing, computation of the solution, and output processing.

Once you have a problem divided into several pieces, you look at each piece individually and
continue dividing, ignoring all the other pieces as you go. Eventually, you’ll have a very small problem
where the solution is obvious; now is the time to write code. So you generally solve the problem from the
top down, and write the code from the bottom up. There are many variations, however.

To quote from the conclusion to Wirth’s paper:

1. Program construction consists of a sequence of refinement steps. In each step a
given task is broken up into a number of subtasks. Each refinement in the
description of a task may be accompanied by a refinement of the description of
the data which constitute the means of communication between the subtasks...

5 Wirth, N. “Program Development by Stepwise Refinement.” Communications of the ACM 14(4): 221-

227. (1971)

CHAPTER 5 SOFTWARE ARCHITECTURE

57

2. The degree of modularity obtained in this way will determine the ease or
difficulty with which a program can be adapted to changes or extensions of the
purpose...

3. During the process of stepwise refinement, a notation which is natural to the
problem in hand should be used as long as possible... Each refinement implies a
number of design decisions based upon a set of design criteria...

4. The detailed elaborations on the development of even a short program form a
long story, indicating that careful programming is not a trivial subject.

Figure 5-7 gives an impression about how the main program subroutine architecture works. We’ll
discuss top-down decomposition of problems much more in Chapter 7.

Figure 5-7. A main program – subroutine architecture

Conclusion
The software architecture is the core of your application. It is the foundation on which you build the rest
of the program. It drives the rest of your design. There are many different styles of software architecture
and in any given project you’ll probably use more than one. The architectural style used for a program
depends on what it is you’re doing. That's the beauty of these styles; it may not always be true that form
follows function, but for software – design follows architecture. These foundational patterns lead you
down the path of design, shaping how your program will be constructed and lived in. Go out there and
build a great program.

CHAPTER 5 SOFTWARE ARCHITECTURE

58

References
Bentley, J. Programming Pearls, Second Edition. (Boston, MA: Addison-Wesley, 2000.)

Garlan, D. and M. Shaw (1994). An Introduction to Software Architecture. Pittsburgh, PA: Carnegie

Mellon University: 49. CMU/SEI-94-TR-21. (1994)

Kernighan, B. W. and R. Pike. The Practice of Programming. (Boston, MA: Addison-Wesley, 1999.)

Matuszek, David. “Rabbit Hunt,” SIGCSE 2004 Technical Symposium, Nifty Assignments Session,

retrieved August 17, 2009, http://nifty.stanford.edu/2004/RabbitHunt/. (2004)

McConnell, S. Code Complete 2. (Redmond, WA: Microsoft Press, 2004.)

Wirth, N. “Program Development by Stepwise Refinement.” Communications of the ACM 14(4): 221-227.

(1971)

http://nifty.stanford.edu/2004/RabbitHunt/

C H A P T E R 6

59

Design Principles

There are two ways of constructing a software design. One way is to make it so simple
that there are obviously no deficiencies. And the other way is to make it so
complicated that there are no obvious deficiencies.

— C. A. R. Hoare

One way to look at software problems is with a model that divides the problems into two different layers:

• “Wicked” problems fall in the upper layer. These are problems that typically come
from domains outside of computer science (e.g. biology, business, meteorology,
sociology, political science, etc.). These types of problems tend to be open-ended,
ill-defined, and large in the sense that they require much work. For example,
pretty much any kind of a web commerce application is a wicked problem. Horst
W. J. Rittel and Melvin M. Webber, in a 1973 paper on social policy,1 gave a
definition for and a set of characteristics used to recognize a wicked problem that
we’ll look at later in this chapter.

• “Tame” problems fall in the lower layer. These problems tend to cut across other
problem domains; they tend to be more well defined and small. Sorting and
searching are great examples of tame problems. Small and well-defined don’t
mean “easy” however. Tame problems can be very complicated and difficult to
solve. It’s just that they are clearly defined and you know when you have a
solution. These are the kinds of problems that provide computer scientists with
foundations in terms of data structures and algorithms for the wicked problems
we solve from other problem domains.

According to Rittel and Webber, a wicked problem is one for which the requirements are completely
known only after the problem is solved, or for which the requirements and solution evolve over time. It

1 Rittel, H. W. J. and M. M. Webber. “Dilemmas in a General Theory of Planning.” Policy Sciences 4(2):

155-169. (1973)

CHAPTER 6 DESIGN PRINCIPLES

60

turns out this describes most of the “interesting” problems in software development. Recently, Jeff
Conklin has revised Rittel and Webber’s description of a wicked problem and provided a more succinct
list of the characteristics of wicked problems.2 To paraphrase:

• A wicked problem is not understood until after the creation of a solution. Another
way of saying this is that the problem is defined and solved at the same time.3

• Wicked problems have no stopping rule; that is, you can create incremental
solutions to the problem, but there’s nothing that tells you that you’ve found the
correct and final solution.

• Solutions to wicked problems are not right or wrong; they are better or worse, or
good-enough or not-good-enough.

• Every wicked problem is essentially novel and unique. Because of the “wickedness”
of the problem, even if you have a similar problem next week, you basically have
to start over again because the requirements will be different enough and the
solution will still be elusive.

• Every solution to a wicked problem is a ‘one shot operation’. See number 4 above.

• Wicked problems have no given alternative solutions. That is, there is no small
finite set of solutions from which to choose .

Wicked problems crop up all over the place. For example, creating a word processing program is a
wicked problem. You may think that you know what a word processor needs to do – insert text, cut and
paste, handle paragraphs, print. But this list of features is only one person’s list. As soon as you “finish”
your word processor and release it, you’ll be inundated with new feature requests: spell checking,
footnotes, multiple columns, support for different fonts, colors, styles, and the list goes on. The word
processing program is essentially never done – at least not until you release the last version and end-of-
life the product.

Word processing is actually a pretty obvious wicked problem. Others might include problems where
you don’t really know if you can solve the problem at the start. Expert systems require a user interface,
an inference engine, a set of rules, and a database of domain information. For a particular domain, it’s
not at all certain at the beginning that you can create the rules that the inference engine will use to reach
conclusions and recommendations. So you have to iterate through different rule sets, send out the next
version and see how well it performs. Then you do it again, adding and modifying rules. You don't really
know if the solution is correct until you’re done. Now that’s a wicked problem.

Conklin and Rittel and Webber say that when faced with a large, complicated problem (a wicked
one), that traditional cognitive studies indicate most people will follow a linear problem solving
approach, working top-down from the problem to the solution. This is equivalent to the traditional
waterfall model described in Chapter 24. Figure 6-1 shows this linear approach.

2 Conklin, J. Dialogue Mapping: Building Shared Understanding of Wicked Problems. (New York, NY:

John Wiley & Sons, 2005.)
3 DeGrace, P. and L. H. Stahl Wicked Problems, Righteous Solutions : A Catalogue of Modern Software

Engineering Paradigms. (Englewood Cliffs, NJ: Yourdon Press, 1990.)
4 Conklin, J. Wicked Problems and Social Complexity. Retrieved from

http://cognexus.org/wpf/wickedproblems.pdf on 8 September 2009. Paper last updated October,
2008.

http://cognexus.org/wpf/wickedproblems.pdf

CHAPTER 6 DESIGN PRINCIPLES

61

Figure 6-1. Linear problem-solving approach

Instead of this linear, waterfall approach, real wicked problem solvers tend to use an approach that
swings from requirements analysis to solution modeling and back until the problem solution is good
enough. Conklin calls this an opportunity-driven or opportunistic approach because the designers are
looking for any opportunity to make progress toward the solution.5 Instead of the traditional waterfall
picture in Figure 601, the opportunity-driven approach looks like Figure 6-2.

Figure 6-2. The opportunity-driven development approach

In this figure, the jagged line indicates the designer’s work moving from the problem to a solution
prototype and back again, slowly evolving both the requirements understanding and the solution
iteration and converging on an implementation that is good enough to release. As an example, let’s take
a quick look at a web application.

Say that a not-for-profit organization keeps a list of activities for youth in your home county. The list
is updated regularly and is distributed to libraries around the county. Currently, the list is kept on a
spreadsheet and is distributed in hard copy in a three-ring binder. The not-for-profit wants to put all its
data online and make it accessible over the web. It also wants to be able to update the data via the same
web site. Simple, you say. It’s just a web application with an HTML front-end and a database back end.
Not a problem.

Ah, but this is really a wicked problem in disguise. First of all, the customer has no idea what they
want the web page(s) to look like. So whatever you give them the first time will not be precisely what they
want; the problem won’t be understood completely until you are done. Secondly, as you develop
prototypes, they will want more features – so the problem has no stopping rule. And finally, as time goes

5 Conklin, J. (2008)

CHAPTER 6 DESIGN PRINCIPLES

62

on the not-for-profit will want new features, so there is no “right” answer, there is only a “good enough”
answer. Very wicked.

Conklin also provides a list of characteristics of “tame” problems, ones for which you can easily and
reliably find a solution. “A tame problem:

• has a well-defined and stable problem statement;

• has a definite stopping point, i.e., when the solution is reached;

• has a solution which can be objectively evaluated as right or wrong;

• belongs to a class of similar problems which are all solved in the same similar way;

• has solutions which can be easily tried and abandoned; and

• comes with a limited set of alternative solutions.”

A terrific example of a tame problem is sorting a list of data values.

• The problem is easily and clearly stated – sort this list into ascending order using this

function to compare data elements.

• Sorting has a definite stopping point – the list is sorted.

• The result of a sort can be objectively evaluated (the list is either sorted correctly, or it isn’t.)

• Sorting belongs to a class of similar problems that are all solved in the same way. Sorting

integers, is similar to sorting strings, is similar to sorting database records using a key and so

on.

• Sorting has solutions that can easily be tried and abandoned.

• Finally, sorting has a limited set of alternative solutions; sorting by comparison has a set of

known algorithms and a theoretical lower bound.

What does this have to do with design principles, you ask? Well, realizing that most of the larger
software problems we’ll encounter have a certain amount of “wickedness” built into them influences
how we think about design issues, how we approach the design of a solution to a large, ill-formed
problem, and gives us some insight into the design process. It also lets us abandon the waterfall model
with a clear conscience and pushes us to look for unifying heuristics that we can apply to design
problems. In this chapter we’ll discuss overall principles for design that we’ll then expand upon in the
chapters ahead.

The Design Process
Design is messy. Even if you completely understand the problem requirements (it’s a tame problem), you
typically have many alternatives to consider when you’re designing a software solution. You’ll also
usually make lots of mistakes before you come up with a solution that works. As we saw in Figure 6-2,
your design will change as you understand the problem better over time. This gives the appearance of
messiness and disorganization, but really, you’re making progress.

CHAPTER 6 DESIGN PRINCIPLES

63

Design is about tradeoffs and priorities. Most software projects are time-limited, so you usually
won’t be able to implement all the features that the customer wants. You have to figure out the subset
that will give the customer the most bang in the time you have available. So you have to prioritize the
requirements and trade off one subset for another.

Design is heuristic. For the overwhelming majority of projects there is no set of cut and dried rules
that says, “First we design component X using technique Y. Then we design component Z using
technique W.” Software just doesn’t work that way. Software design is done using a set of ever-changing
heuristics (rules of thumb) that each designer acquires over the course of a career. Over time good
designers learn more heuristics and patterns (see Chapter 11) that allow them to quickly get through the
easy bits of a design and get to the heart of the wickedness of the problem. The best thing you can do is
to sit at the feet of a master designer and learn the heuristics.

Designs evolve. Finally, good designers recognize that for any problem, tame or wicked, the
requirements will change over time. This will then cascade into changes in your design. And so your
design will evolve over time. This is particularly true across product releases and new feature additions.
The trick here is to create a software architecture (Chapter 5) that is amenable to change with limited
effect on the downstream design and code.

Desirable Design Characteristics (Things Your Design Should Favor)
Regardless of the size of your project or what process you use to do your design, there are a number of
desirable characteristics that every software design should have. These are the principles you should
adhere to as you consider your design. Your design doesn’t necessarily need to exhibit all of these
characteristics, but having a majority of them will certainly make your software easier to write,
understand, and use.

• Fitness of purpose. Your design must work, and work correctly in the sense that it
must satisfy the requirements you’ve been given within the constraints of the
platform on which your software will be running. Don’t add new requirements as
you go – the customer will do that for you.

• Separation of concerns. Related closely to modularity, this principle says you
should separate out functional pieces of your design cleanly in order to facilitate
ease of maintenance and simplicity. Modularity is good.

• Simplicity. Keep your design as simple as possible. This will let others understand
what you’re up to. If you find a place that can be simplified, do it! If simplifying
your design means adding more modules or classes to your design, that’s okay.
Simplicity also applies to interfaces between modules or classes. Simple interfaces
allow others to see the data and control flow in your design. In agile
methodologies, this idea of simplicity is kept in front of you all the time. Most agile
techniques have a rule that says if you’re working on part of a program and you
have an opportunity to simplify it (called refactoring in agile-speak) do it right
then. Keep you design and your code as simple as possible at all times.

• Ease of maintenance. A simple, understandable design is amenable to change. The
first kind of change you’ll encounter is fixing errors. Errors occur at all phases of
the development process, requirements, analysis, design, coding, and testing. The
more coherent and easy to understand your design is, the easier it will be to isolate
and fix errors.

3

CHAPTER 6 DESIGN PRINCIPLES

64

• Loose coupling. When you are separating your design into either modules or in
object-oriented design, into classes, the degree to which the classes depend on
each other is called coupling. Tightly coupled modules may share data or
procedures. This means that a change in one module is much more likely to lead
to a required change in the other module. This increases the maintenance burden
and makes the modules more likely to contain errors. Loosely coupled modules, on
the other hand, are connected solely by their interfaces. Any data they both need
must be passed between procedures or methods via an interface. Loosely coupled
modules hide the details of how they perform operations from other modules,
sharing only their interfaces. This lightens the maintenance burden because a
change to how one class is implemented will not likely affect how another class
operates as long as the interface is invariant. So changes are isolated and errors
are much less likely to propagate.

• High cohesion. The complement of loose coupling is high cohesion. Cohesion
within a module is the degree to which the module is self-contained with regards
both to the data it holds and the operations that act on the data. A class that has
high cohesion pretty much has all the data it needs defined within the class
template and all the operations that are allowed on the data are defined within the
class as well. So any object that is instantiated from the class template is very
independent and just communicates with other objects via its published interface.

• Extensibility. An outgrowth of simplicity and coupling is the ability to add new
features to the design easily. This is extensibility. One of the features of wicked
software problems is that they’re never really finished. So after every release of a
product, the next thing that happens is the customer asks for new features. The
easier it is to add new features, the cleaner your design is.

• Portability. While not high on the list, keeping in mind that your software may
need to be ported to another platform (or two or three) is a desirable
characteristic. There are a lot of issues involved with porting software, including,
operating system issues, hardware architecture, and user interface issues. This is
particularly true for web applications.

Design Heuristics
Speaking of heuristics, here’s a short list of good, time-tested heuristics. The list is clearly not exhaustive
and it’s pretty idiosyncratic, but it’s a list you can use time and again. Think about them and try some of
them during your next design exercise. We will come back to all of these heuristics in much more detail
in later chapters.

Find real world objects to model. Alan Davis6 and Richard Fairley7 call this “intellectual distance.” It’s
how far your design is from a real world object. The heuristic here is to try to find real world objects that
are close to things you want to model in your program. Keeping the real world object in mind as you are

6 Davis, A. M. 201 Principles of Software Development. (New York, NY: McGraw-Hill, 1995).

7 Fairley, R. E. Software Engineering Concepts. (New York, NY: McGraw-Hill, 1985.)

CHAPTER 6 DESIGN PRINCIPLES

65

designing your program helps keep your design closer to the problem. Fairley’s advice is to minimize the
intellectual distance between the real world object and your model of it .

Abstraction is key. Whether you’re doing object-oriented design and you are creating interfaces and
abstract classes, or whether you’re doing a more traditional layered design, you want to use abstraction.
Abstraction means being lazy. You put off what you need to do by pushing it higher in the design
hierarchy (more abstraction) or pushing it further down (more details). Abstraction is a key element of
managing the complexity of a large problem. By abstracting away the details you can see the kernel of
the real problem.

Information hiding is your friend. Information hiding is the concept that you isolate information –
both data and behavior – in your program so that you can isolate errors and isolate changes; you also
only allow access to the information via a well-defined interface. A fundamental part of object-oriented
design is encapsulation, a concept that derives from information hiding. You hide the details of a class
away and only allow communication and modification of data via a public interface. This means that
your implementation can change, but as long as the interface is consistent and constant, nothing else in
your program need change. If you’re not doing object-oriented design, think libraries for hiding
behavior and structures (structs in C and C++) for hiding state.

Keep your design modular. Breaking your design up into semi-independent pieces has many
advantages. It keeps the design manageable in your head; you can just think about one part at a time
and leave the others as black boxes. It takes advantage of information hiding and encapsulation. It
isolates changes. It helps with extensibility and maintainability. Modularity is just a good thing. Do it.

Identify the parts of your design that are likely to change. If you make the assumption that there will
be changes in your requirements, then there will likely be changes in your design as well. If you identify
those areas of your design that are likely to change, you can separate them, thus mitigating the impact of
any changes you need to make. What things are likely to change? Well, it depends on your application,
doesn’t it? Business rules can change (think tax rules or accounting practices), user interfaces can
change, hardware can change, and so on. The point here is to anticipate the change and to divide up
your design so that the necessary changes are contained.

Use loose coupling. Use interfaces and abstract classes. Along with modularity, information hiding,
and change, using loose coupling will make your design easier to understand and to change as time goes
along. Loose coupling says that you should minimize the dependencies of one class (or module) on
another. This is so that a change in one module won’t cause changes in other modules. If the
implementation of a module is hidden and only the interface exposed, you can swap out
implementations as long as you keep the interface constant. So you implement loose coupling by using
well-defined interfaces between modules, and in an object-oriented design, using abstract classes and
interfaces to connect classes.

Use your knapsack full of common design patterns. Robert Glass8 describes great software designers
as having “...a large set of standard patterns” that they carry around with them and apply to their
designs. This is what design experience is all about. Doing design over and over again and learning from
the experience. In Susan Lammer’s book Programmers at Work,9 Butler Lampson says, “Most of the time,
a new program is a refinement, extension, generalization, or improvement of an existing program. It’s
really unusual to do something that’s completely new....” That’s what design patterns are: they’re
descriptions of things you’ve already done that you can apply to a new problem. Voila!

Adhere to the Principle of One Right Place. In his book Programming on Purpose: Essays on Software
Design, P.J. Plauger says, “My major concern here is the Principle of One Right Place – there should be

8 Glass, R. L. Software Creativity 2.0. Atlanta, GA, developer.*. (2006)

9 Lammers, S. Programmers At Work. (Redmond, WA: Microsoft Press, 1986.)

CHAPTER 6 DESIGN PRINCIPLES

66

One Right Place to look for any nontrivial piece of code, and One Right Place to make a likely
maintenance change.”10 Your design should adhere to the Principle of One Right Place; debugging and
maintenance will be much easier.

Use diagrams as a design language. I’m a visual learner. For me, a picture really is worth a thousand
or so words. As I design and code I’m constantly drawing diagrams so I can visualize how my program is
going to hang together, which classes or modules will be talking to each other, what data is dependent
on what function, where do the return values go, what is the sequence of events. This type of
visualization can settle the design in your head and it can point out errors or possible complications in
the design. Whiteboards or paper are cheap; enjoy!

Designers and Creativity
Don’t think that design is cut and dried or that formal process rules can be imposed to crank out
software designs. It’s not like that at all. While there are formal restrictions and constraints on your
design that are imposed by the problem, the problem domain, and the target platform, the process of
reaching the design itself need not be formal. It is at bottom a creative activity. Bill Curtis, in a 1987
empirical study of software designers came up with a process that seems to be what most of the
designers followed:11

1. Understand the problem.

2. Decompose the problem into goals and objects.

3. Select and compose plans to solve the problem.

4. Implement the plans.

5. Reflect on the design product and process.

Frankly, this is a pretty general list and doesn’t really tell us all we’d need for software design. Curtis,
however, then went deeper in #3 on his list, “select and compose plans,” and found that his designers
used the following steps

6. Build a mental model of a proposed solution.

7. Mentally execute the model to see if it solves the problem – make up input and
simulate the model in your head.

8. If what you get is not correct, then change the model to remove the errors and
go back to step 2 to simulate again.

10 Plauger, P. J. Programming on Purpose : Essays on Software Design. Englewood Cliffs, NJ: PTR Prentice

Hall, 1993.)
11 Curtis, B., R. Guindon, et al. Empirical Studies of the Design Process: Papers for the Second Workshop on
Empirical Studies of Programmers. Austin, TX, MCC. (1987)

CHAPTER 6 DESIGN PRINCIPLES

67

9. When your sample input produces the correct output, select some more input
values and go back and do steps 2 and 3 again.

10. When you’ve done this enough times (you’ll know because you’re
experienced) then you’ve got a good model and you can stop.12

This deeper technique makes the cognitive and the iterative aspects of design clear and obvious. We
see that design is fundamentally a function of the mind, and is idiosyncratic and depends on things
about the designer that are outside the process itself.

John Nestor, in a report to the Software Engineering Institute came up with a list of what are some
common characteristics of great designers.

Great designers

• have a large set of standard patterns;

• have experienced failing projects;

• have mastery of development tools;

• have an impulse towards simplicity;

• can anticipate change;

• can view things from the user’s perspective; and

• can deal with complexity.13

Conclusion
So at the end of the chapter, what have we learned about software design?

Design is ad hoc, heuristic, and messy. It fundamentally uses a trial-and-error and heuristic process
and that process is the natural one to use for software design. There are a number of well-known
heuristics that any good designer should employ.

Design depends on understanding of prior design problems and solutions. Designers need some
knowledge of the problem domain. More importantly, they need knowledge of design and patterns of
good designs. They need to have a knapsack of these design patterns that they can use to approach new
problems. The solutions are tried and true. The problems are new but they contain elements of
problems that have already been solved. The patterns are malleable templates that can be applied to
those elements of the new problem that match the pattern’s requirements.

Design is iterative. Requirements change, and so must your design. Even if you have a stable set of
requirements, your understanding of the requirements changes as you progress through the design
activity and so you’ll go back and change the design to reflect this deeper, better understanding. The
iterative process clarifies and simplifies your design at each step.

Design is a cognitive activity. You’re not writing code at this point, so you don’t need a machine.
Your head and maybe a pencil and paper or a whiteboard are all you need to do design. As Dijkstra says,

12 Glass, R. L. Software Creativity 2.0. Atlanta, GA, developer.*. (2006)
13 Glass, R. L. (2006)

CHAPTER 6 DESIGN PRINCIPLES

68

“We must not forget that it is not our business to make programs; it is our business to design classes of
computations that will display a desired behavior.”14

Design is opportunistic. Glass sums up his discussion of design with “The unperturbed design
process is opportunistic – that is, rather than proceed in an orderly process, good designers follow an
erratic pattern dictated by their minds, pursuing opportunities rather than an orderly progression.”15

All the characteristics above argue against a rigid, plan-driven design process and for a creative,
flexible way of doing design. This brings us back to the first topic in this chapter – design is just wicked.

And finally:

A designer can mull over complicated designs for months. Then suddenly the simple,
elegant, beautiful solution occurs to him. When it happens to you, it feels as if God is
talking! And maybe He is.

—Leo Frankowski (in The Cross-Time Engineer)

References
Conklin, J. Dialogue Mapping: Building Shared Understanding of Wicked Problems. (New York, NY: John

Wiley & Sons, 2005.)

Conklin, J. Wicked Problems and Social Complexity. Retrieved from

http://cognexus.org/wpf/wickedproblems.pdf on 8 September 2009. Paper last updated October,

2008.

Curtis, B., R. Guindon, et al. Empirical Studies of the Design Process: Papers for the Second Workshop on

Empirical Studies of Programmers. Austin, TX, MCC. (1987)

Davis, A. M. 201 Principles of Software Development. (New York, NY: McGraw-Hill, 1995).

DeGrace, P. and L. H. Stahl Wicked Problems, Righteous Solutions : A Catalogue of Modern Software

Engineering Paradigms. (Englewood Cliffs, NJ: Yourdon Press, 1990.)

Dijkstra, E. "The Humble Programmer." CACM 15(10): 859-866. (1972)

Fairley, R. E. Software Engineering Concepts. (New York, NY: McGraw-Hill, 1985.)

Glass, R. L. Software Creativity 2.0. Atlanta, GA, developer.*. (2006)

Lammers, S. Programmers At Work. (Redmond, WA: Microsoft Press, 1986.)

McConnell, S. Code Complete 2. (Redmond, WA: Microsoft Press, 2004.)

14 Dijkstra, E. "The Humble Programmer." CACM 15(10): 859-866. (1972)
15 Glass, R. L. (2006)

http://cognexus.org/wpf/wickedproblems.pdf

CHAPTER 6 DESIGN PRINCIPLES

69

Parnas, D. “On the Criteria to be Used in Decomposing Systems into Modules.” CACM 15(12): 1053-

1058. (1972)

Plauger, P. J. Programming on Purpose : Essays on Software Design. Englewood Cliffs, NJ: PTR Prentice

Hall, 1993.)

Rittel, H. W. J. and M. M. Webber. “Dilemmas in a General Theory of Planning.” Policy Sciences 4(2): 155-

169. (1973)

C H A P T E R 7

71

Structured Design

Invest in the abstraction, not the implementation. Abstractions can survive the
barrage of changes from different implementations and new technologies”

—Andy Hunt and Dave Thomas1

Structured Programming
Structured design has its genesis in Edsger Dijkstra’s famous 1968 letter to the Communications of the
ACM, “Go To Statement Considered Harmful.” Dijkstra’s paper concludes with

The go to statement as it stands is just too primitive; it is too much an invitation to
make a mess of one’s program. One can regard and appreciate the clauses considered
(ed. if-then-else, switch, while-do, and do-while) as bridling its use. I do not claim
that the clauses mentioned are exhaustive in the sense that they will satisfy all needs,
but whatever clauses are suggested (e.g. abortion clauses) they should satisfy the
requirement that a programmer independent coordinate system can be maintained to
describe the process in a helpful and manageable way.2

Programming languages created from this point onward, while not eliminating the goto statement
(except for Java, which has none), certainly downplayed its use, and courses that taught programming
encouraged students to avoid it. Instead, problem-solving was taught in a top-down structured manner,
where one begins with the problem statement and attempts to break the problem down into a set of
solvable sub-problems. The process continues until each sub-problem is small enough to be either
trivial or very easy to solve. This technique is called structured programming. Before the advent and
acceptance of object-oriented programming in the mid-80s, this was the standard approach to problem
solving and programming. It is still one of the best ways to approach a large class of problems.

1 Hunt, A. and D. Thomas. The Pragmatic Programmer: From Journeyman to Master. (Boston, MA:

Addison-Wesley, 2000.)

2 Dijkstra, E. “GoTo Statement Considered Harmful.” Communications of the ACM 11(3): 147-148. (1968)

CHAPTER 7 STRUCTURED DESIGN

72

Stepwise Refinement
Niklaus Wirth formalized the technique in his 1971 paper, “Program Development by Stepwise
Refinement.”3 Stepwise refinement contends that designing programs consists of a set of refinement
steps. In each step, a given task is broken up into a number of subtasks. Each refinement of a task must
be accompanied by a refinement of the data description and the interface. The degree of modularity
obtained will determine the ease or difficulty with which a program can be adapted to changes in
requirements or environment.

During refinement, you use a notation that is natural to the problem space. Avoid using a
programming language for description as long as possible. Each refinement implies a number of design
decisions based on a set of design criteria. These criteria include efficiency of time and space, clarity,
and regularity of structure (simplicity).

Refinement can proceed in two ways, top-down or bottom-up. Top-down refinement is
characterized by moving from a general description of the problem to detailed statements of what
individual modules or routines do. The guiding principle behind stepwise refinement is that humans
can concentrate on only a few things at a time; Miller’s famous 7 +/- 2 chunks of data rule.4 One works by

• analyzing the problem and trying to identify the outlines of a solution and the pros
and cons of each possibility;

• then, designing the top levels first;

• steering clear of language-specific details;

• pushing down the details until you get to the lower levels;

• formalizing each level;

• verifying each level; and

• moving to the next lower level to make the next set of refinements. (That is,
repeat.)

One continues to refine the solution until it seems as if it would be easier to code than to
decompose; we'll see an example of this process later in this chapter.

That is, you work until you become impatient at how obvious and easy the design becomes. The
down-side here is that you really have no good metric on “when to stop.” It just takes practice.

If you can’t get started at the top, then start at the bottom.

• Ask yourself, “What do I know that the system needs to do?” This usually involves lower level

I/O operations, other low-level operations on data structures, and so on.

• Identify as many low-level functions and components as you can from that question.

3 Wirth, N. “Program Development by Stepwise Refinement.” CACM 14(4): 221-227. (1971)

4 Miller, G. A. “The magical number seven, plus or minus two: Some limits on our capacity for processing

information.” Psychological Review 63: 81-97. (1956)

CHAPTER 7 STRUCTURED DESIGN

73

• Identify common aspects of the low-level components and group them together.

• Continue with the next level up, or go back to the top and try again to work down.

Bottom-up assessment usually results in early identification of utility routines, which can lead to a
more compact design. It also helps promote reuse – because you are reusing the lower level routines. On
the downside, bottom-up assessment is hard to use exclusively – you nearly always end up switching to a
top down approach at some point, sometimes you find you just can’t put a larger piece together from the
bottom-up. This isn’t really stepwise refinement, but it can help get you started. Most real step-wise
refinements involve alternating between top-down and bottom-up design elements. Fortunately, top-
down and bottom-up design methodologies can be very complementary.

Example of Stepwise Refinement: The Eight-Queens Problem
The eight queens problem is familiar to most students. The problem is to find a placement of eight
queens on a standard 8 8 chess board in such a way that no queen can be attacked by any other. One
possible solution to the problem is shown in Figure 7-1.

Figure 7-1. One solution to the eight-queens problem

Remember that queens can move any number of spaces horizontally, vertically, or diagonally. It
turns out that no one has yet found an analytical solution to this problem, and it’s likely one does not
exist. So how would you approach this problem? Go ahead, think about it; I’ll wait.

…
…
Done? Okay. Let’s see one way to decompose this problem.

Proposed Solution 1
The first thing we need to do is to look at the problem and tease out the requirements and the outline of
a solution. This will start us down the road of answering the question of what the top-level
decomposition should be.

CHAPTER 7 STRUCTURED DESIGN

74

First you could think of solving the problem using brute force; just try all the possible arrangements
of queens and pick the ones that work. With 8 queens and 64 possible squares there are

n!

k ! (n− k)!
= 64 !

56!�8!
= 232

possible board configurations, where n is the number of squares on the board and k is the number of
queens, which is only 4,294,967,296 (a bit over 4 billion configurations). These days, that’s not very
many, so brute force might be the way to go.

So if we generate a set A of all the possible board combinations, we can create a test called q(x) that
returns a true if the board configuration x is a solution, and returns false if x is not a solution. Then we
can create a program that looks like the following:

Generate the set A of all board configurations;

while there are still untested configurations in A do

 x = the next configuration from A

 if (q(x) == true) then print the solution x and stop

 go back to the top and do it again.

Notice that all the work is getting done in two steps – generating the set A and performing the test
q(x). The generation of A only happens once, but performing the test q(x) happens once for every
configuration in A until you find a solution. While this decomposition will surely work, it’s not terribly
efficient. So let’s just say that we’d rather reduce the number of combinations. Efficiency is a good thing,
after all.

Proposed Solution 2
Again, we need to start at the top level. But this time we've done some analysis, so we have a clearer idea
of what has to happen. We’ve eliminated brute-force, but we see that we can think in terms of board
configurations. In order to reduce the number of total possible configurations and then come up with a
more efficient algorithm, we need to think about the problem. The first thing to notice is that you can
never have more than one queen in a column, in fact, you must have exactly one queen per column.
That reduces the number of possible combinations to 224 or just 16 million. Although this is good, it
doesn’t really change the algorithm. Our proposed solution would now look like:

Generate the set B of restricted board configurations;

while there are still untested configurations in B do

 x = the next configuration from B

 if (q(x) == true) then print the solution x and stop

 go back to the top and do it again.

This version requires generating the set, B, of board positions with one queen in each column and
still requires visiting up to 16 million possible board positions. Generating B is now more complicated
than generating A because we now have to test to see if a proposed board position meets the one queen
per column restriction. There must be a better way.

CHAPTER 7 STRUCTURED DESIGN

75

Proposed Solution 3
Well, of course there is. We just need to be more intelligent about generating board configurations and
evaluate board positions while we’re generating them. Instead of generating a complete board
configuration and then testing it, why not generate and test partial solutions? If we can stop as soon as
we know we don’t have a valid solution, then things should go faster. Also, if we can back up from a bad
solution to the last good partial solution, we can eliminate bad configurations more quickly.

Now we're at the point where we can do that top-level design, formalize it, and move down to the
next refinement level.

Refinement 1
Here’s the idea.

1. Put down a queen on the next row in the next available column.

2. Test the queen to see if she can attack any other queen. (That’s a variation on
the q(x) test above.)

3. If she can attack, pick her back up, back up to the previous trial solution and
try again.

4. If she can’t attack, leave her alone and go back to the top and try the next
queen.

With this method, we’re guaranteed that the trial solution at column j is correct. We then attempt to
generate a new solution by adding a queen in column j+1. If this fails, we just need to back up to our
previous correct trial solution at column j and try again. This technique of creating and testing partial
solutions is called a stepwise construction of trial solutions by Wirth. And the backing up technique is, of
course, called backtracking. Here’s more formal pseudo-code to find a single solution:

do {
 while ((row < 8) && (col < 8)) {
 if (the current queen is safe) then
 advance: keep the queen on the board and advance to the next col.
 else
 the queen is not safe, so move up to the next row.
 }
 if (we've exhausted all the rows in this column) then
 regress: retreat a column, move its queen up a row, and start again.

 } while ((col < 8) && (col >= 0));
 if (we've reached column 8) then
 we have a solution, print it.

This solution tests only a single queen at a time. One implication of this is that, at any given time,
there are only j queens on the board and so only j queens need to be tested each time through the outer
loop. (One only needs to test the queens up through column j.) That reduces the amount of work in the
testing routine.

CHAPTER 7 STRUCTURED DESIGN

76

This algorithm is our first formal view of the solution. Notice in the method described above that
we’re using pseudo-code rather than a real programming language. This is because we want to push
language details further down the refinement levels. Also, while we’ve got a general outline of the
method, there are a lot of details still to be considered. These details have been pushed down in the
hierarchy of control we’re creating, and we’ll get to them in the next refinement iteration. This is also a
function of the stepwise refinement.

Now that we have a description of the algorithm, we can also work to verify it. The final verification
will, of course, be watching the program produce a correct solution but we're not at that point yet.
However, we can surely take a chess board (or a piece of paper) and walk through this algorithm by hand
to verify that we can generate a placement of queens on the board that is a solution to the problem.

At this point we’ve got a more formal top-level description, we’ve done what verification we can,
and we’re ready to expand those fuzzy steps we see above.

Refinement 2
Now that we’ve got a first cut at the program, we need to examine each of the steps in the program and
see what they are made of. The steps we’re interested in are

1. Check to see if the current queen is safe.

2. Keep a safe queen on the board and advance to the next column.

3. Advance an unsafe queen up a row.

4. Retreat a column and reset the queen in that column.

Checking to see if the current queen is safe means that we need to check that there are no other
queens on either of the diagonals (the up or down diagonals) or the row that the current queen is on.
The row check is easy, one just checks all the other squares in the same row. To check the up and down
diagonals, remember that if the current queen is at column j, that we only need to check columns 1
through j-1. If you think about it for a minute, you’ll see that the difference between the row and column
indexes of all the squares on the up diagonal (those that go from lower-left to upper-right) are a
constant. Similarly, the sum of the row and column indexes of all the squares on the down diagonal
(those that go from upper-left to lower-right) are also a constant. This makes it easier to figure out which
cells are on the diagonal of a queen and how to check them.

Now we’re ready to start considering data structures. Where did this come from, you ask? Well,
stepwise refinement is mostly about describing the control flow of the program. But at some point you
need to decide on exactly what the data will look like. For each problem you try to solve, this will happen
at a different place in your refinement process. For this problem we're at a place where in the next
refinement we should be writing more detailed pseudo-code. That is pretty much forcing us to think
about data structures now, so we can do the pseudo-code.

 In particular now we need to ask ourselves, how are we going to represent the board and the queens
on the board? How are we going to represent the empty cells? We need a data structure that will allow us
to efficiently represent queens and check whether they can be attacked. A first cut at this might be an 8
8 two-dimensional array where we place queens at the appropriate row and column intersections.
Because we don’t need to do any computation on this matrix – all we need is to indicate the presence or
absence of a queen – we can save space by making it a boolean array. This data structure also allows us
to quickly check the rows, and the up and down diagonals for queens that can attack the current queen.
So we should use a 2D boolean array, right?

CHAPTER 7 STRUCTURED DESIGN

77

Well, not so fast. This isn’t the only way to think about the data representation for queens. In fact, if
we think about the data structure and the operations we need to perform during the safety check we
might be able to simplify things a bit.

First of all, since we know that there can only be one queen in each column and one queen in each
row, why not combine that information? Instead of a 2D array, why not just use a 1D boolean array, say

boolean column[8];

where column[i] = true means that the ith column is still free. For the diagonals, we can use the property
about the constant difference or sum of up and down diagonals to create two other arrays

boolean up[-7..+7], down[0..14];

that will indicate which diagonal squares are free. With this arrangement, the test for a queen being safe
is

(column[i] and up[row-col] and down[row+col])5

All right. This seems simple enough , so we’re finally done with this, right?
Well, no. There’s yet another way to think about this. Going back to using a 1D array, but this time

using an integer array

int board[8];

where each index into the array represents a column (0 through 7 in the eight-queens case), and each
value stored in the array represents the row on which a queen is deposited (also 0 through 7 in the eight-
queens case). Because we now have data on the exact location (rows and columns) of each queen, we
don’t need separate arrays for the up and down diagonals. The test for safety is a bit more difficult, but
still simple. This might be the time for some more code. At this point it seems appropriate to move from
pseudo-code to a real language. You'll have to make that move at some point in the refinement process.
Just like deciding when to define your data structures, exactly when to insert language-specific features
depends on the problem and what how detailed the refinement is at this point. A Java method to test for
safety might look like:

public boolean isSafe (int[] board) {
 boolean safe = true;
 for (int i = 0; i < col; i++) {
 if (((board[i] + i) == (row + col)) || // down diagonal test
 ((board[i] - i) == (row - col)) || // up diagonal test
 (board[i] == row)) // row test
 safe = false;
 }
 return safe;
}

Remember that, because we’re creating partial solutions by adding one queen to a column at a time,
we only need to test the first col columns each time.

5 Dahl, O. J., E. Dijkstra, et al. (1972). Structured Programming. (London, UK: Academic Press, 1972.)

CHAPTER 7 STRUCTURED DESIGN

78

Now that we have the safety procedure out of the way and we’ve decided on a simple data structure
to represent the current board configuration, we can proceed to the remaining procedures in the
decomposition. The remaining procedures are

5. Keep a safe queen on the board and advance to the next column;

6. Advance an unsafe queen up a row; and

7. Retreat a column and reset the queen in that column.

These are all simple enough to just write without further decomposition. This is a key point of structured
programming – keep doing the decompositions until a procedure becomes obvious, then you can code.
These three methods then look like the following when written in code:

/*
 * keep a safe queen on the board and advance to the next column
 * the queen at (row, col) is safe, so we have a partial solution.
 * advance to the next column
 */
public void advance (int[] board) {
 board[col] = row; // put the queen at (row, col) on the board
 col++; // move to the next column
 row = 0; // and start at the beginning of the column
}

For advance an unsafe queen up a row we don’t even need a method. The test in the main program
for safety moves the queen up a row if the isSafe() method determines that the current (row, col)
position is unsafe. The code for this is:

 if (isSafe(board))
 advance(board);
 else
 row++;

Finally, we have:

 /**
 * retreat a column and reset the queen in that column
 * we could not find a safe row in current col
 * so back up one col and move that queen
 * up a row so we can start looking again
 */
 public void retreat (int[] board) {
 col--;
 row = board[col] + 1;
 }

The complete Java program is in the Appendix.

CHAPTER 7 STRUCTURED DESIGN

79

Modular Decomposition
In 1972, David Parnas published a paper titled “On the Criteria to Be Used in Decomposing Systems into
Modules” that proposed that one could design programs using a technique called modularity.6 Parnas’
paper was also one of the first papers to describe a decomposition based on information hiding, one of
the key techniques in object-oriented programming. In his paper, Parnas highlighted the differences
between a top-down decomposition of a problem based on the flow of control of a problem solution and
a decomposition of the problem that used encapsulation and information hiding to isolate data
definitions and their operations from each other. His paper is a clear precursor to object-oriented
analysis and design (OOA&D), which we’ll see in the next chapter.

While Parnas’ paper pre-dates the idea, he was really talking about a concept called separation of
concerns. “In computer science, separation of concerns is the process of separating a computer program
into distinct features that overlap in functionality as little as possible. A concern is any piece of interest
or focus in a program. Typically, concerns are synonymous with features or behaviors. Progress towards
separation of concerns is traditionally achieved through modularity of programming and encapsulation
(or “transparency” of operation), with the help of information hiding.”7 Traditionally, separation of
concerns was all about separating functionality of the program. Parnas added the idea of separating the
data as well, so that individual modules would control data as well as the operations that acted on the
data and the data would be visible only through well-defined interfaces.

There are three characteristics of modularity that are key to creating modular programs:

• Encapsulation

• Loose coupling (how closely do modules relate to each other)

• Information hiding

In a nutshell, encapsulation means to bundle a group of services defined by their data and behaviors
together as a module, and keep them together. This group of services should be coherent and clearly
belong together. (Like a function, a module should do just one thing.) The module then presents an
interface to the user and that interface is ideally the only way to access the services and data in the
module. An objective of encapsulating services and data is high cohesion. This means that your module
should do one thing and all the functions inside the module should work towards making that one thing
happen. The closer you are to this goal, the higher the cohesion in your module. This is a good thing.

The complement of encapsulation is loose coupling. Loose coupling describes how strongly two
modules are related to each other. This means we want to minimize the dependence any one module
has on another. We separate modules to minimize interactions and make all interactions between
modules through the module interface. The goal is to create modules with internal integrity (strong
cohesion) and small, few, direct, visible, and flexible connections to other modules (loose coupling).
Good coupling between modules is loose enough that one module can easily be called by others.

6 Parnas, D. “On the Criteria to be Used in Decomposing Systems into Modules.” Communications of the

ACM 15(12): 1053-1058. (1972)

7 Wikipedia. Separation of Concerns. 2009. http://en.wikipedia.org/wiki/

Separation_of_concerns. Retrieved on December 7, 2009.

http://en.wikipedia.org/wiki/

CHAPTER 7 STRUCTURED DESIGN

80

Coupling falls into four broad categories that go from good to awful:

• Simple data coupling: Where non-structured data is passed via parameter lists.
This is the best kind of coupling, because it lets the receiving module structure the
data as it sees fit and it allows the receiving module to decide what to do with the
data.

• Structured data coupling: Where structured data is passed via parameter lists. This
is also a good kind of coupling, because the sending module keeps control of the
data formats and the receiving module gets to do what it wants to with the data.

• Control coupling: Where data from module A is passed to module B and the
content of the data tells module B what to do. This is not a good form of coupling;
A and B are too closely coupled in this case because module A is controlling how
functions in module B will execute.

• Global-data coupling: Where the two modules make use of the same global data.
This is just awful. It violates a basic tenet of encapsulation by having the modules
share data. This invites unwanted side effects and ensures that at any given
moment during the execution of the program that neither module A nor module B
will know precisely what is in the globally shared data. And what the heck are you
doing using global variables anyway? Bad programmer!

Information hiding is often confused with encapsulation, but they are not the same thing.
Encapsulation describes a process of wrapping both data and behaviors into a single entity – in our case,
a module. Data can be publicly visible from within a module, and thus not hidden. Information hiding,
on the other hand, says that the data and behaviors in a module should be controlled and visible only to
the operations that act on the data within the module, so it’s invisible to other, external, modules. This is
an important feature of modules (and later of objects as well) because it leaves control of data in the
module that understands best how to manipulate the data and it protects the data from side effects that
can arise from other modules reaching in and tweaking the data.

Parnas was not just talking about hiding data in modules. His definition of information hiding was
even more concerned with hiding design decisions in the module definition. “We propose … that one
begins with a list of difficult design decisions or design decisions which are likely to change. Each
module is then designed to hide such a decision from the others.”8 Hiding information in this manner
allows clients of a module to use the module successfully without needing to know any of the design
decisions that went into constructing the module. It also allows developers to change the
implementation of the module without affecting how the client uses the module.

Example: Keyword in Context: Indexes for You and Me
Back in the day, when Unix was young and the world was new, the Unix documentation was divided into
eight (8) different sections and the entire manual started with a permuted index. The problem with Unix
is not the command line interface, it’s not the inverted tree file system structure. No, the problem with
Unix is that the three guys who developed it Kernighan, Ritchie, and Thompson, are the three laziest

8 Parnas, 1972.

CHAPTER 7 STRUCTURED DESIGN

81

guys on the planet. How do I know? Where’s my proof? Well, the proof is in practically every Unix
command- ls, cat, cp, mv, mkdir, ps, cc, as, ld, m4 … I could go on. Unix has to have the most cryptic
command line set of any operating system on the planet. The cardinal rule for creating Unix command
line tools was apparently, “why use three characters when two will do?”

So finding anything in any of the 8 sections of Unix documentation could have been a real trial.
Enter the permuted index. Every Unix man page starts with a header line that contains the name of the
command, and a short description of what the command does. For example, the cat(1) man page begins

cat -- concatenate and print files

The problem is, what if I don’t know the name of a command, but I do know what it does? The
permuted index solves this problem by making most of the words in the description (the articles were
ignored) of the command part of the index itself. So that cat could be found under “cat” and also
“concatenate”, “print” and “files.” This is known as a Keyword in Context (KWIC) index. It works just
dandy.

So our problem is to take as input two files, the first of which contains words to ignore, the second of
which contains lines of text to index, and create a KWIC index for them. For example, say that we’re
ignoring the articles for, the, and, et.c, and the second file looks like

The Sun also Rises

For Whom the Bell Tolls

The Old Man and the Sea

Our KWIC index would look like:

the sun ALSO rises
for whom the BELL tolls

the old MAN and the sea
the OLD man and the sea

the sun also RISES
the old man and the SEA

the SUN also rises
for whom the bell TOLLS

for WHOM the bell tolls

Note that each keyword is in all caps, each input line appears once for every index word in the line,

and the keywords are sorted alphabetically. Each line of text has its keywords made visible by circularly
shifting the words in the line. In the case of a tie (two lines of text have the same index word and so
should appear together in the output), the lines of text should appear in the same order in which they
appeared in the text input file. So the question we have to answer is is, how do we create the KWIC
index? A secondary question we’ll need to answer almost immediately is, how do we store the data?

Top-Down Decomposition
We’ll start by designing the problem solution using a top-down decomposition. Top-down
decompositions, as we’ve seen with the eight queens problem earlier in this chapter, are all about
control flow. We want to figure out how to sequentially solve the problem, making progress with each
step we take. It is assumed that the data are stored separately from the routines and each subroutine in
the control flow can access the data it needs. The alternative is to pass the data along to each subroutine

CHAPTER 7 STRUCTURED DESIGN

82

as we call it; this can be cumbersome and time consuming because the data usually has to be copied
each time you pass it to a routine. A first decomposition of this problem might look like:

1. Input the words to ignore and the text.

2. Create a data structure containing the circularly shifted lines of text, keeping
track of which word in the line is the index word for this line.

3. Sort the circularly shifted lines of text by the index words.

4. Format the output lines.

5. Output the text.

Note that these five steps can easily become five subroutines that are all called in sequence from a
main program. The data structure used for the input text could be an array of characters for each line, a
String for each line, or an array of Strings for the entire input file. One could also use a map data
structure that uses each index word as the key and a String containing the input text line as the value of
the map element. There are certainly other possible data structures to be used. Sorting can be done by
any of the stable sorting algorithms and which algorithm to use would depend on the data structure
chosen and on the expected size of the input text. Your sort must be stable because of the requirement
that identical index words sort their respective lines in the same order that they appear in the input text
file. Depending on the programming language you use and the data structure you choose, sorting might
be done automatically for you. The data structure you choose will affect how the circular shifts are done
and how the output routine does the work of formatting each output line.

Now that we’ve got a feel for how a top-down decomposition might proceed, let’s move on and
consider a modular decomposition.

Modular Decomposition of KWIC
A modular decomposition of the KWIC problem can be based on information hiding in the sense that we
will hide both data structures and design decisions. The modules we create will not necessarily be the
sequential list we have above, but will be modules that can cooperate with each other and are called
when needed. One list of modules for KWIC is:

• A Line module (for lines of input text)

• A Keyword-Line pair module

• A KWICIndex module to create the indexed list itself

• A Circular Shift module

• A module to format and print the output

• A master control module

The Line module will use the Keyword-Line module to create a map data structure where each Line
is a keyword and a list of lines that contain that keyword. The KWICIndex module will use the Line
module to create the indexed list. The Circular Shift module will use the KWICIndex module (and
recursively, the Line and Keyword-Line modules) and create the circularly shifted set of keyword-line
pairs. Sorting will be taken care of internally in the KWICIndex module; ideally the index will be created
as a sorted list and any additions to the list will maintain the ordering of the index. The format and print
module will organize the keyword-lines so that the keywords are printed in all caps and centered on the

CHAPTER 7 STRUCTURED DESIGN

83

output line. Finally, the master control module will read the input, create the KWICIndex and cause it to
print correctly.

The key of these modules is that one can describe the modules and their interactions without
needing the details of how each module is implemented and how the data is stored. That is hidden in the
module description itself. Other designs are also possible. For example, it might be better to subsume
the circular shift operations inside the Line module, allowing it to store the input lines and their shifts.
Regardless, the next step in the design is to create the interface for each module and to coordinate the
interfaces so that each module can communicate with every other module regardless of the internal
implementation.

We’ll continue this discussion in way more detail in the next chapter on object-oriented design.

Conclusion

Structured design describes a set of classic design methodologies. These design ideas work for a large
class of problems. The original structured design idea, stepwise refinement, has you decompose the
problem from the top-down, focusing on the control flow of the solution. It also relates closely to some
of the architectures mentioned in Chapter 5, particularly the main program-subroutine and pipe-and-
filter architectures. Modular decomposition is the immediate precursor to the modern object-oriented
methodologies, and introduced the ideas of encapsulation and information hiding. These ideas are the
fundamentals of your design toolbox.

References
Dahl, O. J., E. Dijkstra, et al. (1972). Structured Programming. (London, UK: Academic Press, 1972.)

Dijkstra, E. “GoTo Statement Considered Harmful.” Communications of the ACM 11(3): 147-148. (1968)

Hunt, A. and D. Thomas. The Pragmatic Programmer: From Journeyman to Master. (Boston, MA:

Addison-Wesley, 2000.)

McConnell, S. Code Complete 2. (Redmond, WA: Microsoft Press, 2004.)

Miller, G. A. “The magical number seven, plus or minus two: Some limits on our capacity for processing

information.” Psychological Review 63: 81-97. (1956)

Parnas, D. “On the Criteria to be Used in Decomposing Systems into Modules.” Communications of the

ACM 15(12): 1053-1058. (1972)

Wikipedia. Separation of Concerns. 2009. http://en.wikipedia.org/wiki/

Separation_of_concerns. Retrieved on December 7, 2009.

Wirth, N. “Program Development by Stepwise Refinement.” CACM 14(4): 221-227. (1971)

http://en.wikipedia.org/wiki/

CHAPTER 7 STRUCTURED DESIGN

84

Appendix: The Complete Non-Recursive Eight-Queens Program
/*
 * NQueens.java
 * 8-Queens Program
 * A non-recursive version for a single solution
 * jfd
 */

import java.util.*;

public class NQueens
{

 static int totalcount = 0;
 static int row = 0;
 static int col = 0;

 /*
 * the queen at (row, col) is safe,
 * so we have a partial solution.
 * advance to the next column
 */
 public void advance (int[] board) {
 board[col] = row;
 col++;
 row = 0;
 }

 /*
 * could not find a safe row in current col
 * so back up one col and move that queen
 * up a row
 */
 public void retreat (int[] board) {
 col--;
 row = board[col] + 1;
 }

 /*
 * check to see if queen at (row, col) can be
 * attacked
 */
 public boolean isSafe (int[] board) {
 boolean safe = true;
 totalcount++;
 /*
 * check diagonals and row for attacks
 * since we're just checking partial solutions
 * only need to go up to current col

CHAPTER 7 STRUCTURED DESIGN

85

 */
 for (int i=0; i<col; i++) {
 if (((board[i] + i) == (row + col)) || // up diagonal
 ((board[i] - i) == (row - col)) || // down diagonal
 (board[i] == row)) {
 safe = false;
 }
 }
 return safe;
 }

 public static void main(String args[]) {
 int N = 8; // default board size

 System.out.print("Enter the size of the board: ");
 Scanner stdin = new Scanner(System.in);
 N = stdin.nextInt();
 System.out.println();

 NQueens queen = new NQueens();
 /*
 * index into board is a column number
 * value stored in board is a row number
 * so board[2] = 3; says put a queen on col 2, row 3
 */
 int[] board = new int [N]; /*
 * simple algorithm to build partial solutions
 * for N-queens problem. Place a queen in the
 * next available column, test to see if it
 * can be attacked. If not, then move to the next
 * column. If it can be attacked, move the queen
 * up a row and try again.
 * If we exhaust all the rows in a column, back up
 * reset the previous column and try again.
 */
 do {
 while ((row < N) && (col < N)) {
 if (queen.isSafe(board)) {
 queen.advance(board);
 } else {
 row++;
 }
 }
 if (row == N) {
 queen.retreat(board);
 }

 } while ((col < N) && (col >= 0));

 /* If we've placed all N queens, we've got a solution */
 if (col == N) {
 for (int i = 0; i < N; i++) {

CHAPTER 7 STRUCTURED DESIGN

86

 System.out.print(board[i] + " ");
 }
 } else {
 System.out.println("No solution. ");
 }

 System.out.println();

 System.out.println("after trying " + totalcount +
 " board positions.");
 }
}

C H A P T E R 8

87

Object-Oriented Analysis
and Design

Object-oriented programming is an exceptionally bad idea, which could only have
originated in California.

—Edsger Dijkstra

The object has three properties, which makes it a simple, yet powerful model building
block. It has state so it can model memory. It has behavior, so that it can model
dynamic processes. And it is encapsulated, so that it can hide complexity.

—Trygve Reenskaug, Working With Objects

Well, yes, we’ve all learned about the object-oriented programming paradigm before. But it never hurts
to go over some basic definitions so that we’re all on the same page for our discussion about object-
oriented analysis and design.

First of all, objects are things. They have an identity (i.e., a name), a state (i.e., a set of attributes that
describes the current data stored inside the object), and a defined set of operations that operate on that
state. A stack is an object, as is an Automobile, a Bank Account, a Window, or a Button in a graphical user
interface. In an object-oriented program, a set of cooperating objects pass messages among themselves.
The messages make requests of the destination objects to invoke methods that either perform
operations on their data (thus changing the state of the object), or to report on the current state of the
object. Eventually work gets done. Objects use encapsulation and information hiding (remember,
they’re different) to isolate data and operations from other objects in the program. Shared data areas are
(usually) eliminated. Objects are members of classes that define attribute types and operations.

Classes are templates for objects. Classes can also be thought of as factories that generate objects. So
an Automobile class will generate instances of autos, a Stack class will create a new stack object, and a
Queue class will create a new queue. Classes may inherit attributes and behaviors from other classes.
Classes may be arranged in a class hierarchy where one class (a super class or base class) is a
generalization of one or more other classes (sub-classes). A sub-class inherits the attributes and
operations from its super class and may add new methods or attributes of its own. In this sense a sub-
class is more specific and detailed than its super class; hence, we say that a sub-class extends a super-

CHAPTER 8 OBJECT-ORIENTED ANALYSIS AND DESIGN

88

class. For example, a priority queue is a more specific version of a queue; it has all the attributes and
operations of a queue, but it adds the idea that some queue elements are more important that others. In
Java this feature is called inheritance while in UML it’s called generalization.1 Go figure.

There are a number of advantages to inheritance. It is an abstraction mechanism which may be used
to classify entities. It is a reuse mechanism at both the design and the programming level. The
inheritance graph is a source of organizational knowledge about domains and systems.

And, of course, there are problems with inheritance, as well. It makes object classes that are not self-
contained; sub-classes cannot be understood without reference to their super classes. Inheritance
introduces complexity and this is undesirable, especially in critical systems. Inheritance also usually
allows overloading of operators (methods in Java) which can be good (polymorphism) or bad (screening
useful methods in the superclass).

Object-oriented programming (OOP) has a number of advantages, among them easier
maintenance, because objects can be understood as stand-alone entities. Objects are also appropriate as
reusable components. But, for some problems there may be no mapping from real-world objects to
system objects, meaning that OOP is not appropriate for all problems.

An Object-Oriented Analysis and Design Process
Object-oriented analysis (OOA), design (OOD) and programming (OOP) are related but distinct. OOA is
concerned with developing an object model of the application domain. So, for example, you take the
problem statement, generate a set of features and (possibly) use cases,2 tease out the objects and some of
the methods within those objects that you’ll need to satisfy the use case, and you put together an
architecture of how the solution will hang together. That’s object-oriented analysis.

OOD is concerned with developing an object-oriented system model to satisfy requirements. You
take the objects generated from your OOA, figure out whether to use inheritance, aggregation,
composition, abstract classes, interfaces, and so on, in order to create a coherent and efficient model,
draw the class diagrams, and flesh out the details of what each attribute is and what each method does,
and describe the interfaces. That’s the design.

Some people like object-oriented analysis, design, and programming3 and some people don’t.4

So object-oriented analysis allows you to take a problem model and re-cast it in terms of objects and
classes and object-oriented design allows you to take your analyzed requirements and connect the dots
between the objects you’ve proposed and to fill in the details with respect to object attributes and
methods. But how do you really do all this? Well, here is a proposed process that starts to fill in some of
the details.5 We’ll figure out the rest as we go along.

1 Fowler, M. UML Distilled. (Boston, MA: Addison-Wesley, 2000.)

2 Cockburn, A. Writing Effective Use Cases. (Boston, MA: Addison-Wesley, 2000.)

3 Beck, K., and B. Boehm. “Agility through Discipline: A Debate.” IEEE Computer 36 (6):44-46. (2003)

4 Graham, Paul. “Why Arc isn’t Especially Object Oriented,” retrieved from

www.paulgraham.com/noop.html on October 12, 2009.

5 McLaughlin, Brett D., et. al. Head First Object-Oriented Analysis & Design. (O’Reilly Media, Inc.

Sebastopol, CA: 2007.)

http://www.paulgraham.com/noop.html

CHAPTER 8 OBJECT-ORIENTED ANALYSIS AND DESIGN

89

1. Write (or receive) the problem statement. Use this to generate an initial set of
features.

2. Create the feature list. The feature list is the set of program features that you
derive from the problem statement; it contains your initial set of requirements.

3. Write up use cases. This helps to refine the features and to dig out new
requirements and to expose problems with the features you just created. We’ll
also see that we can use user stories for this step.

4. Break the problem into subsystems or modules or whatever you want to call
them as long as they’re smaller, self-contained bits usually related to
functionality.

5. Map your features, subsystems, and use cases to domain objects; create
abstractions.

6. Identify the program’s objects, methods, and algorithms.

7. Implement this iteration.

8. Test the iteration.

9. If you’ve not finished the feature list and you still have time and/or money left,
go back to step 4 and do another iteration, otherwise…

10. Do final acceptance testing and release.

Note that this process leaves out a lot of details like the length of iteration. How many features end
up in an iteration? How and when do we add new features to the feature list? How exactly do we identify
objects and operations? How do we abstract objects into classes? Where do we fix bugs that are found in
testing? Do we do reviews of code and other project work products?

Leaving out steps here is okay. We’re mostly concerned with the analysis and design elements of the
process. We’ll discuss ideas on the rest of the process below and some of the answers are also in Chapter
3 on project management.

How do the process steps above fit into the software development life cycle? Well, I’m glad you
asked. Recall that the basic development life cycle has four steps:

1. Requirements Gathering and Analysis;

2. Design;

3. Implementation and Testing; and

4. Release, Maintenance, and Evolution.

We can easily assign the previous ten steps into four buckets, as follows:

Requirements Gathering and Analysis
1. Problem statement.

2. Feature list creation.

3. Use case generation.

CHAPTER 8 OBJECT-ORIENTED ANALYSIS AND DESIGN

90

Design
1. Break up the problem.

2. Map features and use cases to domain objects.

3. Identify objects, methods, and algorithms.

Implementation and Testing
1. Implement this iteration.

2. Test the iteration.

3. If you’ve not finished with the feature list or out of time, go back to step 4,
otherwise…

Release/Maintenance/Evolution
1. Do final acceptance testing and release.

Once again we can ignore the details of each process step for now. These details really depend on
the process methodology you choose for your development project. The description of the process
above uses an iterative methodology and can easily be fitted into an agile process, or a more traditional
staged release process.

Note also, that you’ll need to revisit the requirements whenever you get to step 4, because you’re
likely to have uncovered or generated new requirements during each iteration. Also, whenever your
customer sees a new iteration, they’ll ask for more stuff (yes, they will, trust me). This means you’ll be
updating the feature list (and re-prioritizing) at the beginning of each new iteration. BEWARE!

Doing the Process
Let’s continue by working through an extended example, seeing where the problem statement leads us
and how we can tease out requirements and begin our object oriented analysis.

The Problem Statement
Burt, the proud owner of Birds by Burt, has created the ultimate in bird feeders. Burt’s Bird Buffet and
Bath (B4), is an integrated bird feeder and bird bath. It comes in 12 different colors (including camo) and
1, 3, and 5 lb capacities. It will hold up to one gallon of water in the attached bird bath, it has a built-in
hanger so you can hang it from a tree branch or from a pole, and the B4 is just flying off the shelves. Alice
and Bob are desperate for a B4, but they’d like a few changes. Alice is a techno-nerd and a fanatic
songbird watcher. She knows that her favorite songbirds only feed during the day, so she wants a custom
B4 that allows the feeding doors to open automatically at sunrise and close automatically at sunset. Burt,
ever the accommodating owner, has agreed and the hardware division of Birds by Burt is hard at work
designing the B4++ for Alice. Your job is to write the software to make the hardware work.

CHAPTER 8 OBJECT-ORIENTED ANALYSIS AND DESIGN

91

The Feature List
The first thing we need to do is figure out what the B4++ will actually do. This version seems simple
enough. We can almost immediately write down three requirements:

• The feeding doors must all open and close simultaneously.

• The feeding doors should open automatically at sunrise.

• The feeding doors should close automatically at sunset.

So this doesn’t seem so bad. The requirements are simple and there is no user interaction required.
The next step is to create a use case so we can see just what the bird feeder is really going to do.

Use Cases
A use case is a description of what a program does in a particular situation. It’s the detailed set of steps
that the program executes when a user asks for something. Use cases always have an actor – some
outside agent that gets the ball rolling, and a goal – what the use case is supposed to have done by the
end. The use case describes what it takes to get from some initial state to the goal from the user’s
perspective.6 Here’s a quick example of a use case for the B4++:

1. The sensor detects sunlight at a 40% brightness level.

2. The feeding doors open.

3. Birds arrive, eat, and drink.

4. Birds leave.

5. The sensor detects a decrease in sunlight to a 25% brightness level.

6. The feeding doors close.

Given the simplicity of the B4++, that’s about all we can expect out of a use case. In fact, steps 3 and
4 aren’t technically part of the use case, because they aren’t part of the program – but they’re good to
have so that we can get a more complete picture of how the B4++ is operating. Use cases are very useful
in requirements analysis because they give you an idea – in English – of what the program needs to do in
a particular situation and because they nearly always will help you uncover new requirements. Note that
in the use case we don’t talk about how a program does something, we only concentrate on what the
program has to do to reach the goal. Use cases are generated during the Requirements Gathering and
Analysis phase of the software life cycle, so we’re not so much concerned with the details yet, we just
treat the program as a black box and let the use case talk about the external behavior of the program.
Most times there will be several use cases for every program you write. We’ve only got one because this
version of the B4++ is so simple.

Decompose the Problem
So now that we’ve got our use case we can probably just decompose the problem and identify the
objects in the program. You go ahead, I’ll wait....

6 Cockburn, 2000.

CHAPTER 8 OBJECT-ORIENTED ANALYSIS AND DESIGN

92

Done? Okay. This problem is quite simple; if you look at the use case above and pick out the nouns,
you see that we can identify several objects. Each of these objects has certain characteristics and
contributes to reaching the goal of getting the birds fed. (Yes, I know, “birds” is a noun in the use case,
but they are the actors in this little play so for the purposes of describing the objects we ignore them –
they’re not part of the program.) The other two nouns of interest are “sensor” and “doors.” These are the
critical pieces of the B4++, because the use case indicates that they are the parts that accomplish the goal
of opening and closing the feeding doors at sunrise and sunset. So it’s logical that they are objects in our
design. Here are the objects I came up with for this first version of the B4++ and a short description:

BirdFeeder: The top-level object. The bird feeder has one or more feeding doors
at which the birds will gather, and a sensor to detect sunrise and sunset. The
BirdFeeder class needs to control the querying of the light sensor and the
opening and closing of the feeding doors.

Sensor: There will be a hardware light sensor that detects different light levels.
We’ll need to ask it about light levels.

FeedingDoor: There will be several feeding doors on the bird feeder. They have
to open and close.

That’s probably about it for classes at this point. Now what do they all do? To describe classes and
their components we can use another UML feature, class diagrams.

Class Diagrams
A class diagram allows you to describe the attributes and the methods of a class. A set of class diagrams
will describe all the objects in a program and the relationships between the objects. We draw arrows of
different types between class diagrams to describe the relationships. Class diagrams give you a visual
description of the object model that you’ve created for your program. We saw a set of class diagrams for
the Fox and Rabbit program we described in Chapter 5.

Class diagrams have three sections:

• Name: The name of the class

• Attributes: The instance data fields and their types used by the class

• Methods: The set of methods used by the class and their visibility.

We can see an example of a class diagram for our BirdFeeder class in Figure 8-1.

Figure 8-1. The BirdFeeder class

CHAPTER 8 OBJECT-ORIENTED ANALYSIS AND DESIGN

93

The diagram shows that the BirdFeeder class has a single integer attribute, lightLevel, and a single
method, operate(). By themselves class diagrams aren’t terribly interesting, but when you put several of
them together and show the relationships between them, then you can get some interesting information
about your program. So what else do we need in the way of class diagrams? In our program the
BirdFeeder class uses the FeedingDoor and Sensor classes, but they don’t know (or care) about each
other. In fact, while BirdFeeder knows about FeedingDoor and Sensor and uses them, they don’t know
they are being used. Ah, the beauty of object-oriented programming. This relationship can be expressed
in the class diagram of all three classes shown in Figure 8-2.

Figure 8-2. BirdFeeder uses FeedingDoor and Sensor

In UML, the dotted line with the open arrow at the end indicates that one class (in our case
BirdFeeder) is associated with another class (in our case either FeedingDoor or Sensor) by using it.

Code Anyone?
Now that we’ve got the class diagrams and know the attributes, the methods, and the association
between the classes it’s time to flesh out our program with some code.

In the BirdFeeder object, the operate() method needs to check the light levels and open or close the
feeding doors depending on the current light level reported by the Sensor object, and does nothing if the
current light level is above or below the threshold values..

In the Sensor object, the getLevel() method just reports back the current level from the hardware
sensor.

In the FeedingDoor object, the open() method checks to see if the doors are closed. If they are, it
opens them and sets a boolean to indicate that they’re open. The close() method does the reverse.

Here’s the code for each of the classes described.

CHAPTER 8 OBJECT-ORIENTED ANALYSIS AND DESIGN

94

/**
 * class BirdFeeder
 *
 * @author John F. Dooley
 * @version 1.0
 */

import java.util.ArrayList;
import java.util.Iterator;

public class BirdFeeder
{
 /* instance variables */
 private static final int ON_THRESHOLD = 40;
 private static final int OFF_THRESHOLD = 25;
 private int lightLevel;
 private Sensor s1;
 private ArrayList<FeedingDoor> doors = null;

 /*
 * Default Constructor for objects of class BirdFeeder
 */
 public BirdFeeder()
 {
 doors = new ArrayList<FeedingDoor>();
 /* initialize lightLevel */
 lightLevel = 0;
 s1 = new Sensor();
 /* by default we have a feeder with just one door */
 doors.add(new FeedingDoor());

 }
 /*
 * The operate() method operates the birdfeeder.
 * It gets the current lightLevel from the Sensor and
 * checks to see if we should open or close the doors
 */
 public void operate()
 {
 lightLevel = s1.getLevel();

 if (lightLevel > ON_THRESHOLD) {
 Iterator door_iter = doors.iterator();
 while (door_iter.hasNext()) {
 FeedingDoor a = (FeedingDoor) door_iter.next();
 a.open();
 System.out.println("The door has opened.");
 }
 } else if (lightLevel < OFF_THRESHOLD) {
 Iterator door_iter = doors.iterator();
 while (door_iter.hasNext()) {

CHAPTER 8 OBJECT-ORIENTED ANALYSIS AND DESIGN

95

 FeedingDoor a = (FeedingDoor) door_iter.next();
 a.close();
 System.out.println("The door has closed.");
 }
 }
 }
}

/**
 * class FeedingDoor
 *
 * @author John Dooley
 * @version 1.0
 */
public class FeedingDoor
{
 /* instance variables */
 private boolean doorOpen;

 /*
 * Default constructor for objects of class FeedingDoors
 */
 public FeedingDoor()
 {
 /* initialize instance variables */
 doorOpen = false;
 }

 /*
 * open the feeding doors
 * if they are already open, do nothing
 */
 public void open()
 {
 /** if the door is closed, open it */
 if (doorOpen == false) {
 doorOpen = true;
 }
 }

 /*
 * close the doors
 * if they are already closed, do nothing
 */
 public void close()
 {
 /* if the door is open, close it */
 if (doorOpen == true) {
 doorOpen = false;
 }
 }

CHAPTER 8 OBJECT-ORIENTED ANALYSIS AND DESIGN

96

 /*
 * report whether the doors are open or not
 */
 public boolean isOpen()
 {
 return doorOpen;
 }
}

/**
 * class Sensor
 *
 * @author John Dooley
 * @version 1.0
 */
public class Sensor
{
 /* instance variables */
 private int lightLevel;

 /*
 * Default constructor for objects of class Sensor
 */
 public Sensor()
 {
 /** initialize instance variable */
 lightLevel = 0;
 }

 /**
 * getLevel - return a light level
 *
 * @return the value of the light level
 * that is returned by the hardware sensor
 */
 public int getLevel()
 {
 /* till we get a hardware light sensor, we just fake it */
 lightLevel = (int) (Math.random() * 100);
 return lightLevel;
 }
}

Finally, we have a BirdFeederTester class that operates the B
4
++.

/**
 * The class that tests the BirdFeeder, Sensor, and
 * FeedingDoor classes.
 *
 * @version 0.1

CHAPTER 8 OBJECT-ORIENTED ANALYSIS AND DESIGN

97

 */
public class BirdFeederTester
{
 private BirdFeeder feeder;

 /*
 * Constructor for objects of class BirdFeederTest
 */
 public BirdFeederTester()
 {
 this.feeder = new BirdFeeder();
 }

 public static void main(String [] args)
 {
 BirdFeederTester bfTest = new BirdFeederTester();

 for (int i = 0; i < 10; i++) {
 System.out.println("Testing the bird feeder");
 bfTest.feeder.operate();
 try {
 Thread.currentThread().sleep(2000);
 } catch (InterruptedException e) {
 System.out.println("Sleep interrupted" + e.getMessage());
 System.exit(1);
 }
 }
 }
}

When Alice and Bob take delivery of the B4++ they are thrilled. The doors automatically open and
close, the birds arrive and eat their fill. Birdsong fills the air. What else could they possibly want?

Conclusion
Object-oriented design is a methodology that works for a very wide range of problems. The real world is
easily characterized as groups of cooperating objects. This single simple idea promotes simplicity of
design, reuse of both designs and code, and the ideas of encapsulation and information hiding that
Parnas advocated in his paper on modular decomposition. It's not the right way to solve some problems,
including problems like communications protocol implementations, but it opens up a world of new and
better solutions for many others and it closes the “intellectual distance” between the real-world
description of a problem and the resulting code. Onward!

References
Beck, K., and B. Boehm. “Agility through Discipline: A Debate.” IEEE Computer 36 (6):44-46. (2003)

Cockburn, A. Writing Effective Use Cases. (Boston, MA: Addison-Wesley, 2000.)

CHAPTER 8 OBJECT-ORIENTED ANALYSIS AND DESIGN

98

Fowler, M. UML Distilled. (Boston, MA: Addison-Wesley, 2000.)

Graham, Paul. “Why Arc isn’t Especially Object Oriented,” retrieved from www.paulgraham.com/noop.html

on October 12, 2009.

McLaughlin, Brett D., et. al. Head First Object-Oriented Analysis & Design. (O’Reilly Media, Inc.

Sebastopol, CA: 2007.)

Wirfs-Brock, R. and A. McKean. Object Design: Roles Responsibilities, and Collaborations. (Boston, MA:

Addison-Wesley, 2003.)

http://www.paulgraham.com/noop.html

C H A P T E R 9

99

Object-Oriented Analysis
and Design

A Play in Several Acts

When doing analysis you are trying to understand the problem. To my mind this is not
just listing requirements in use cases. … Analysis also involves looking behind the
surface requirements to come up with a mental model of what is going on in the
problem. ... Some kind of conceptual model is a necessary part of software
development, and even the most uncontrolled hacker does it.

–-Martin Fowler1

Object-oriented design is, in its simplest form, based on a seemingly elementary idea.
Computing systems perform certain actions on certain objects; to obtain flexible and
reusable systems, it is better to base the structure of software on the objects than on the
actions.

Once you have said this, you have not really provided a definition, but rather posed a
set of problems: What precisely is an object? How do you find and describe the objects?
How should programs manipulate objects? What are the possible relations between
objects? How does one explore the commonalities that may exist between various
kinds of objects? How do these ideas relate to classical software engineering concerns
such as correctness, ease of use, efficiency?

Answers to these issues rely on an impressive array of techniques for efficiently
producing reusable, extendible and reliable software: inheritance, both in its linear
(single) and multiple forms; dynamic binding and polymorphism; a new view of types
and type checking; genericity; information hiding; use of assertions; programming by
contract; safe exception handling.

—Bertrand Meyer2

1 Martin, Robert, Single Responsibility Principle. www.butunclebob.com/ArticleS

.UncleBob.PrinciplesOfOod. Retrieved on December 10, 2009.

http://www.butunclebob.com/ArticleS

CHAPTER 9 OBJECT-ORIENTED ANALYSIS AND DESIGN

100

PRELUDE: In Which We Set the Scene
When defining object-oriented analysis and design, it’s best to keep in mind your objectives. In both of
these process phases we’re producing a work product that is closer to the code that is your end goal. In
analysis, you’re refining the feature list you’ve created and producing a model of what the customer
wants. In design you’re taking that model and creating the classes that will end up being code.

In analysis you want to end up with a description of what the program is supposed to do, its
essential features. This end product takes the form of a conceptual model of the problem domain and its
solution. The model is made up of a number of things, including use cases, user stories, preliminary
class diagrams, user interface storyboards, and possibly some class interface descriptions.

In design you want to end up with a description of how the program will implement the conceptual
model and do what the customer wants. This end product takes the form of an object model of the
solution. This model is made up of groups of related class diagrams, their associations and descriptions
of how they interact with each other. This includes the programming interface for each class. From here
you should be able to get to coding pretty quickly.

ACT ONE, Scene 1: In Which We Enquire into Analysis
So what is object-oriented analysis? Well, it depends on who you talk to. For our purposes, we’ll define
object-oriented analysis as a method of studying the nature of a problem and determining its essential
features and their relations to each other.3 Your objective is to end up with a conceptual model of the
problem solution that you can then use to create an object model – your design. This model doesn’t take
into account any implementation details or any constraints on the target system. It looks at the domain
that the problem is in and tries to create a set of features, objects and relations that describe a solution in
that domain. What makes a feature essential? Typically, a feature is essential if it’s a feature the customer
has said they must have, if it’s a non-functional requirement that the program won’t run without, or if
it’s a core program element that other parts of the program depend on.

The conceptual model describes what the solution will do and will typically include use cases,4 user
stories,5 and UML sequence diagrams.6 It can also include a description of the user interface and a
preliminary set of UML class diagrams (but that, of course, is shading over into design).

So how do you create this conceptual model? Just like all the other methodologies in software
development there is exactly one correct way to create a conceptual model – not! Really, just like with all
the other methodologies we’ve talked about, the correct answer is: it depends.

2 Meyer, Bertrand. Object-Oriented Software Construction. (Upper Saddle River , NJ: Prentice Hall, 1988).

3 McLaughlin, Brett D., et. al. Head First Object-Oriented Analysis & Design. (Sebastopol, CA: O’Reilly

Media, Inc., 2007).

4 Cockburn, A. (2000). Writing Effective Use Cases. (Boston, MA: Addison-Wesley, 2000).

5 Beck, K. Extreme Programming Explained: Embrace Change. (Boston, MA: Addison-Wesley, 2000).

6 Fowler, M.UML Distilled. (Boston, MA: Addison-Wesley, 2000).

CHAPTER 9 OBJECT-ORIENTED ANALYSIS AND DESIGN

101

It depends on understanding the problem domain, on understanding the feature list you’ve already
come up with, and it depends on understanding how the customer reacts to each of the program
iterations they’ll see. As we’ll see, change is constant.

The key part of object-oriented analysis is the creation of use cases. With use cases you create a
walkthrough of a scenario from the user’s perspective and that walkthrough gives you an understanding
of what the program is supposed to do from the outside. A program of any size will normally have several
use cases associated with it. In fact, a single use case may have alternative paths through the scenario.
More on this later.

Once you get a few use cases created how do you get to the class diagrams? There are several
methods suggested, but we’ll just go over one now and save the rest for later. The first method we’ll look
at is called textual analysis. With textual analysis, you take your uses cases and examine the text for clues
about classes in your programs. Remember that the object-oriented paradigm is all about objects and
the behavior of those objects, so those are the two things to pluck out of your use cases.

In textual analysis, you pluck potential objects out of the text by picking out the nouns in your use
case. Because nouns are things and objects are (usually) things, the nouns stand a good chance of being
objects in your program. In terms of behavior, you look at the verbs in the use case. Verbs provide you
with action words that describe changes in state or actions that report state. This usually isn’t the end,
but it gives you your first cut at method names and parameter lists for the methods.

Let's go back to Burt’s Bird Buffet and Bath, the B4++. When last we left the B4++ it automatically
opened the feeding doors at sunrise and closed them at sunset. The B4++ was a hit and Alice and Bob
were thrilled with its performance. Once again the B4 models were flying off the shelves.

Then one day Burt gets a call from Alice. It seems she has an issue. While the B4++ works just fine,
Alice has noticed that she’s getting unwanted birds at her bird feeder. Recall that Alice is a songbird
fanatic and she’s thrilled when cardinals, painted buntings, scarlet tanagers, American goldfinches, and
tufted titmice show up at the feeder. But she’s not so thrilled when grackles, blue jays, and starlings drive
away the songbirds and have their own feast. So Alice wants to be able to close the B4++ feeding doors
when the bad birds show up and open them again when the songbirds come back. And you’re just the
guy to do it.

The first obvious question you ask Alice is, “How do you want to open and close the feeding doors?”
“Well,” she says, “how about a remote control? That way I can stay inside the house and just open and
close the doors when the birds arrive.” And so the game begins again.

Just like last time we can take this sketchy problem statement and try to put together a use case. Our
previous use case looked like:

1. The sensor detects sunlight at a 40% brightness level.

2. The feeding doors open.

3. The birds arrive, eat, and drink.

4. The birds leave.

5. The sensor detects a decrease in sunlight to a 25% brightness level.

6. The feeding doors close.

So the first thing we need to decide is whether our new problem is an alternate path in this use case,
or whether we need an entirely new use case.

CHAPTER 9 OBJECT-ORIENTED ANALYSIS AND DESIGN

102

Let’s try a new use case. Why? Well, using the remote control doesn’t really fit into the sensor use
case, does it? The remote can be activated at any time and it requires a user interaction, neither of which
fits with our sensor. So let's see what we can come up with for a remote control use case:

1. Alice hears or sees birds at the bird feeder.

2. Alice determines that they are not songbirds

3. Alice presses the remote control button.

4. The feeding doors close.

5. The birds give up and fly away.

6. Alice presses the remote control button.

7. The feeding doors open again.

Does this cover all the situations? Are there any we’ve missed? There are two things to think of. First,
in step #1 we have “Alice hears or sees birds.” The question is should the “or” matter to us? In this case
the answer is no, because Alice is the one deciding and she’s the actor in this use case. We can’t control
the actor; we can only respond to something the actor wants to do and make available options for the
actor to exercise. In our case, our program will need to wait for the signal from the remote control and
then do the right thing. (Not to get ahead of ourselves, but look at our program now as an event-driven
system and the program has to wait (aka listen) for an event before it does something.)

Secondly, what are the steps in the use case that will help us identify new objects? This is where our
textual analysis comes in. In our previous version of this application, we’ve already got BirdFeeder,
Sensor, and FeedingDoor objects. These are identified in the use case easily. So what is new now? The
only new object here is the remote control. So what does the remote control do? How many buttons does
it have? What does the program do when the remote control button(s) is(are) pressed?

In our example, the remote control seems relatively simple. Opening and closing the feeding doors
is a toggle operation. The doors open if they are closed, and close if they are open. Those are the only
options. So the remote really just needs a single button to implement the toggle function.

So at the end of the day we’ve got a new use case and a new class for the B4++ program (see Figure
9-1).

Figure 9-1. The new RemoteControl class

And that, I think, is all the analysis we need for this version of the program.

CHAPTER 9 OBJECT-ORIENTED ANALYSIS AND DESIGN

103

This exercise provides us with a couple of guidelines we can use for analysis.

• First, make simple classes that work together by sending and responding to
messages. In our example, the simple classes FeedingDoor and Sensor encapsulate
knowledge about the current state of the BirdFeeder and allow us to control the
bird feeder with simple messages. This simplicity allows us to easily add a new
way of controlling the bird feeder with the RemoteControl class.

• Second, we say that classes should have one responsibility. Not only are the
FeedingDoor and Sensor simple and easy to control, but they each only do one
thing. That makes them easier to change later and easier to reuse.

ACT ONE, Scene 2: In Which We Deign to Design
Now what about design? Assuming you’ve got a conceptual model from your analysis in the form of a
few use cases and a few class diagrams, your design should follow from this. In object-oriented design,
you now need to firm up the class designs, decide on the methods your classes will contain, determine
the relationships between the classes, and figure out how each of the methods will do what it’s supposed
to do.

In our current example, we’ve decided on four classes, BirdFeeder, FeedingDoor, Sensor, and
RemoteControl. The first three classes we’ve already developed, so the question here is do we need to
change any of these classes in order to integrate the RemoteControl class into the program? Figure 9-2
shows what we’ve got right now.

Figure 9-2. How to integrate the RemoteControl class?

Thinking about it, it seems that nothing in FeedingDoor nor Sensor should have to change. Why?

CHAPTER 9 OBJECT-ORIENTED ANALYSIS AND DESIGN

104

Well, it’s because the BirdFeeder class uses those two classes, and they don’t need to use or inherit
anything from any other class; they are pretty self sufficient (ya gotta love encapsulation). If you recall,
it’s the operate() method in the BirdFeeder class that does all the hard work. It has to check the light
level from the Sensor and if appropriate, send a signal to the doors to open or close. So it seems that
maybe the RemoteControl class will work the same way. So the question for our design is: does the
BirdFeeder class also use the RemoteControl class, or does the RemoteControl class stand alone and just
wait for an “event” to happen?

Let’s take a look at the code for the operate() method again:

 public void operate()
 {
 lightLevel = s1.getLevel();

 if (lightLevel > ON_THRESHOLD) {
 Iterator door_iter = doors.iterator();
 while (door_iter.hasNext()) {
 FeedingDoor a = (FeedingDoor) door_iter.next();
 a.open();
 }
 } else if (lightLevel < OFF_THRESHOLD) {
 Iterator door_iter = doors.iterator();
 while (door_iter.hasNext()) {
 FeedingDoor a = (FeedingDoor) door_iter.next();
 a.close();
 }
 }
 }

In this method, we check the light level from the Sensor object and if it’s above a certain level (the
sun has risen), then we ask the doors to open. It’s the doors themselves that check to see if they are
already open or not. Regardless, when the open() method returns, each door is open. The same thing
happens with the close() method. Regardless of how they start out, when each invocation of close()
returns its door is closed. It seems as if this is just the behavior we want from the RemoteControl object,
except that instead of a light threshold, it responds to a button press. So the pseudo-code for
pressButton() will look like:

pressButton()
 while (there are still doors left to process) do
 if (the door is open) then
 door.close()
 else
 door.open()
 end-if
 end-while
end-method.

And from here you can just write the code.

CHAPTER 9 OBJECT-ORIENTED ANALYSIS AND DESIGN

105

ACT TWO, Scene 1: Change in the Right Direction
A key element of the last two sections is that object-oriented analysis and design are all about change.
Analysis is about understanding behavior and anticipation of change, while design is about
implementing the model and managing change. In a typical process methodology, analysis and design
are iterative. As you begin to create a new program you uncover new requirements; as the user begins to
use your prototypes they discover new ideas, things that don’t work for them, and new features they
hadn’t mentioned previously. All of these things require you to go back and re-think what you already
know about the problem and what you have designed. In order to avoid what’s known as “analysis
paralysis” you need to manage this never-ending flow of new ideas and requirements.

There are a number of techniques that can be used to see and deal with change. The first we’ll look
at is recognizing what might change in your design. So let’s look at the B4++ again. Right now, our B4++
will open and close the bird feeder’s doors at sunrise and sunset in response to the light levels returned
by the sensor. It will also open and close the feeding doors in response to a button push from the remote
control. What might change here?

Well, the hardware might change. If the sensor changes that might affect the Sensor class or it might
cause your boss to re-think how the Sensor class should work. You might also get new hardware. This is
just like the remote control addition we made above. And just like the remote control example new
hardware can result in the appearance of new use cases or changes to existing use cases. These changes
can consequently ripple down through your class hierarchy.

The requirements might change. Most likely new requirements would crop up. A requirement
change can lead to alternate paths through use cases. This implies that behavior will change
requirements, which then leads to design changes. Design change happens because requirements
change.

By thinking about what things can change in your program and design, you can begin to anticipate
change. Anticipating change can lead you to be careful about encapsulation, inheritance, dependencies
of one class on another, and so on.

Songbirds Forever
While we’re talking about change, let's look back at B4++ again. It’s several weeks now since Alice and
Bob received delivery of their new and improved B4++ with remote control. Alice loves it. She can watch
the birds out her kitchen window and when the grackles swoop in she just hits the remote control button
and the doors shut. The grackles leave disappointed and she hits the button again, the doors open. The
new version works like a charm and does everything they had asked for.

There’s just one little thing....
Alice has discovered that sometimes she has to run errands, or go to the bathroom, or watch her

favorite nature show on The Discovery Channel. When she does this, she can’t close the door with the
remote and the grackles can come and feed to their hearts content, chasing away all the songbirds.
Bummer.

So Alice would like yet another small, insignificant change to the B4++; hardly worth mentioning,
really. She wants the B4++ to detect the pesky birds and close the doors automatically. How to do this?

I’ll wait....
So the new requirement is that “The B4++ must be able to detect the unwanted birds and close the

doors automatically.” Is this a complete requirement? It doesn’t seem so because it begs the obvious
question – when do the doors open again? So it seems we have at least a couple of things to decide.

1. How does the bird feeder detect the birds?

2. How do we distinguish between the unwanted birds and the songbirds?

CHAPTER 9 OBJECT-ORIENTED ANALYSIS AND DESIGN

106

3. When does the bird feeder open the doors again after they’ve been closed?

Luckily for us, our sensor supplier, SensorsRUs, has just come out with a programmable audio
sensor that will let us identify birdsong. So if we integrate that hardware into the B4++ that takes care of
item #1 above. It also turns out that the pesky birds have way different songs from the songbirds we want
to attract, so that the audio sensor can be programmed via firmware to distinguish between the different
bird species. Whew! So much for issue #2. So what about issue #3, getting the closed doors open again?

It seems as if there are two ways you can get the B4++ to open the doors again. We can have a timer
that keeps the doors shut for a specific amount of time and then opens them again. This has the
advantage of simplicity, but it’s also a pretty stupid bit of programming. Stupid in the sense that the
timer program just implements a countdown timer with no information about the context in which it
operates. It could easily open the door while there are still a bunch of unwanted birds around. Another
way we could implement the bird identifier is to have it only open the door when it hears one of our
songbirds. If you reason that the songbirds won’t be around if the pesky birds are still there, then the
only time you’ll hear songbirds singing is if there are no pesky birds around. If that’s the case then it’s
safe to open the feeding doors.

So let's do a use case. Because opening and closing the feeding doors with the song identifier is a lot
like using the remote control, let’s start with the RemoteControl use case and add to it.

1. Alice hears or sees birds at the bird feeder.

a. 1.1 The songbird identifier hears birdsong.

2. Alice determines that they are not songbirds.

b. 2.1 The songbird identifier recognizes the song as from an unwanted
bird.

3. Alice presses the remote control button.

c. 3.1 The songbird identifier sends a message to the feeding doors to
close.

4. The feeding doors close.

5. The birds give up and fly away.

d. 5.1 The songbird identifier hears birdsong.

e. 5.2 The songbird identifier recognizes the song as from a songbird.

6. Alice presses the remote control button.

f. 6.1 The songbird identifier sends a message to the feeding doors to
open.

7. The feeding doors open again.

CHAPTER 9 OBJECT-ORIENTED ANALYSIS AND DESIGN

107

What we’ve created here is an alternate path in the use case. This use case looks pretty awkward
now, because the sub-cases look like they flow from the upper cases when, in fact, one or the other of
them should be done. We can rewrite the use case to look like Table 9-1.

Table 9-1. The Song Identifier Use Case and Its Alternate

Main Path Alternate Path

1. Alice hears or sees birds at the bird feeder. 1.1 The songbird identifier hears birdsong.

2. Alice determines that they are not songbirds. 2.1 The songbird identifier recognizes the song as
from an unwanted bird.

3. Alice presses the remote control button. 3.1 The songbird identifier sends a message to the
feeding doors to close.

4. The feeding doors close.

5. The birds give up and fly away. 5.1 The songbird identifier hears birdsong.

 5.2 The songbird identifier recognizes the song as
from a songbird.

6. Alice presses the remote control button. 6.1 The songbird identifier sends a message to the
feeding doors to open.

7. The feeding doors open again.

These two paths aren’t exactly the same. For instance, in the Main Path, Alice sees the birds give up

and fly away before she presses the remote control button. In the alternate path, the bird song identifier
must wait until it hears birdsong before it can consider opening the feeding doors again. So we could
easily make these two different use cases. It depends on you. Use cases are there to illustrate different
scenarios in the use of the program so you can represent them in any way you want. If you want to break
this use case up into two different ones, feel free. Just be consistent. You’re still managing change.

ACT TWO, Scene 2: In Which the Design Will also Change,
for the Better
As we’ve said before, it is difficult to separate analysis and design. The temptation for every programmer,
particularly beginning programmers, is to start writing code now. That temptation bleeds over into
doing analysis, design, and coding all at once and thinking about all three phases together. Unless your
program is just about 10 lines long, this is usually a bad idea. It’s nearly always better to abstract out
requirements and architectural ideas from your low-level design and coding. Chapters 5 and 6 talked
about this separation more.

Separating object-oriented analysis and design is a particularly difficult task. In analysis we are
trying to understand the problem and the problem domain from an object-oriented point of view. That
means we start thinking about objects and their interactions with each other very early in the process.

CHAPTER 9 OBJECT-ORIENTED ANALYSIS AND DESIGN

108

Even our use cases are littered with loaded object words. Analysis and design are nearly inseparable,
when you are “doing analysis” you can’t help but “think design” as well. So what should you do when
you really want to start thinking about design?

Your design must produce, at minimum, the classes in your system, their public interfaces, and their
relationships to other classes, especially base or super classes. If your design methodology produces
more than that, ask yourself if all the pieces produced by that methodology have value over the lifetime
of the program. If they do not, maintaining them will cost you. Members of development teams tend not
to maintain anything that does not contribute to their productivity; this is a fact of life that many design
methods don’t account for.

All software design problems can be simplified by introducing an extra level of conceptual
indirection. This one idea is the basis of abstraction, the primary feature of object-oriented
programming. This is why in UML, what we call inheritance in Java is called generalization. The idea is
to identify common features in two or more classes and abstract those features out into a higher level,
more general class, that the lower level classes then inherit from.

When designing, make your classes as atomic as possible; that is, give each class a single, clear
purpose. This is the Single Responsibility Principle that we’ll talk more about in the next chapter on
design principles.7 If your classes or your system design grows too complicated, break complex classes
into simpler ones. The most obvious indicator of this is sheer size: if a class is big, chances are it’s doing
too much and should be broken up.

You also need to look for and separate things that change from things that stay the same. That is,
search for the elements in a program that you might want to change without forcing a redesign, then
encapsulate those elements in classes.

All of these guidelines are key to managing the changes in your design. In the end you want a clean,
understandable design that is easy to maintain.

ACT THREE, Scene 1: In Which We Do Design

Your goal is to invent and arrange objects in a pleasing fashion. Your application will
be divided into neighborhoods where clusters of objects work toward a common goal.
Your design will be shaped by the number and quality of abstractions and by how well
they complement one another. Composition, form, and focus are everything.

—Rebecca Wirfs-Brock and Alan McKean8

Identifying objects (or object classes) is a difficult part of object-oriented design. There is no ‘magic
formula’ for object identification. It relies on the skill, experience and domain knowledge of system
designers (that would be you). Object identification is an iterative process. You are not likely to get it
right the first time.

You begin finding objects by looking for real-world analogues in your requirements. That gets you
started, but it’s only the first step. Other objects hide in the abstraction layers of your domain. Where to
find these hidden objects? You can look to your own knowledge of the application domain, you can look

7 Martin, 2009.
8 Wirfs-Brock, R. and A. McKean. Object Design: Roles Responsibilities, and Collaborations. (Boston, MA,

Addison-Wesley, 2003).

CHAPTER 9 OBJECT-ORIENTED ANALYSIS AND DESIGN

109

for operations that crop up in your requirements and in your architectural concepts of the system. You
can even look to your own past experience designing other systems.

Steps to finding candidate objects in your system:

1. Write a set of use cases describing how the application will work for a number
of different scenarios. remember, each use case must have a goal. Remember
that a scenario is a path through a use case. If you have use cases with
alternate paths as we saw above, your use case may represent several
scenarios.

2. Identify the actors in each use case, the operations they need to perform, and
the other things they need to use in performing their actions.

3. Name and describe each candidate object. Base the identification on tangible
things in the application domain (like nouns). Use a behavioral approach and
identify objects based on what participates in what behavior (use verbs).

4. Objects can manifest themselves in a number of ways. They can be

• External entities that produce or consume information.

• Things that are part of the information domain (reports, displays, and the
like).

• Occurrences or events that occur within the system.

• Internal producers (objects that make something).

• Internal consumers (objects that consume what producers make).

• Places (remote systems, databases, and so on).

• Structures (windows, frames).

• People (well people are objects, right? We have state and behavior, no?)

• Things that are owned or used by other objects (like bank accounts, or
automobile parts).

• Things that are lists of other objects (like parts lists, any kind of collection,
and so on).

8. Organize the candidate objects into groups. Each group represents a cluster of
objects that work together to solve a common problem in your application.
Each object will have several characteristics:

• Required information: The object has information that must be
remembered so the system can function.

• Needed services: The object must provide services relating to the system
goals.

• Common attributes: The attributes defined for the object must be common
to all instances of the object.

• Common operations: The operations defined for the object must be
common to all instances of the object.

CHAPTER 9 OBJECT-ORIENTED ANALYSIS AND DESIGN

110

9. Look at the groups you’ve created and see if they represent good abstractions
for objects and that work in the application. Good abstractions will help make
your application easier to re-work when you inevitably need to change some
feature or relationship in the application.

ACT FOUR, Scene 1: In Which We Philosophize on Abstraction
Let's change tack here and talk about a different example. Alice and Bob (remember them?) have just
moved to a new city and they need to transfer their old Second City Bank and Trust bank accounts to
First Galactic Bank. Alice and Bob are typically middle class and have several bank accounts they need to
transfer: a checking account, a passbook savings account, and an investment account. (Luckily for them,
First Galactic also handles investments – shares in Venusian Mining are particularly hot this year.)

Nobody actually opens a “bank account;” they open different types of accounts that each have
different characteristics. You can write checks on a checking account, but you can’t write checks on a
passbook savings account. You can earn interest on a savings account, but you normally don’t earn
interest on a checking account; you pay a monthly service fee instead. But, all different types of bank
accounts have some things in common. All of them use your personal information (name, social security
number, address, city, state, ZIP), all of them allow you to deposit money and withdraw money.

So when putting together a program that handles “bank accounts” you may realize that there will be
common attributes and behaviors among several classes. Let’s look at some classes for a bank account
example, shall we?

Since we know that checking accounts, savings accounts, and investment accounts are all different,
let’s first create three different classes and see what we’ve got (see Figure 9-3).

Figure 9-3. Bank Accounts with a lot in common

Notice that all three classes have a lot in common. One of the things we always try to do, no matter
what design or coding techniques we’re using is to avoid duplication of design and code. This is what
abstraction is all about! If we abstract out all the common elements of these three classes, we can create
a new (super) class, BankAccount, that incorporates all of them. The CheckingAcct, SavingsAcct, and
InvestmentAcct classes can then inherit from BankAccount.

So here’s BankAccount, in Figure 9-4.

x

CHAPTER 9 OBJECT-ORIENTED ANALYSIS AND DESIGN

111

Figure 9-4. A cleaner BankAccount class

But wait! Is the BankAccount class one that we would want to instantiate? If you look, you’ll see that
each of the other classes is much more specific than the BankAccount class is. So there isn’t enough
information in the BankAccount class for us to use. This means we’ll always be inheriting from it, but
never instantiating it. It’s a perfect abstract class. (Note the little bit of UML below – class diagrams of
abstract classes put the class name in italics.) See Figure 9-5.

Figure 9-5. The BankAccount as an abstract class

Abstract classes are templates for actual concrete classes. They encapsulate shared behavior and
define the protocol for all subclasses. The abstract class defines behavior and sets a common state, and
then concrete subclasses inherit and implement that behavior. You can’t instantiate an abstract class; a
new concrete class must be created that extends the abstract class. Whenever you find common
behavior in two or more places, you should look to abstract that behavior into a class and then reuse that
behavior in the common concrete classes.

Here’s what we end up with after abstracting out all the personal data and common behavior into
the BankAccount abstract class. Notice one more little bit of UML here – the new UML arrow types – open

CHAPTER 9 OBJECT-ORIENTED ANALYSIS AND DESIGN

112

arrow ends. These open arrows indicate inheritance; so the CheckingAcct class inherits all the attributes
and methods from the BankAccount abstract class. UML calls it generalization because the super class
generalizes the subclasses. That’s why the arrows point up to the super class. See Figure 9-6.

Figure 9-6. The concrete account classes inherit from BankAccount

Now let's move on to explain in detail a number of object-oriented design principles that we’ve just
hinted at so far.

Conclusion
In object-oriented analysis and design it’s best to keep in mind your objectives. In analysis you’re
refining the feature list you’ve created and producing a model of what the customer wants. You want to
end up with a description of what the program is supposed to do, its essential features. This creates a
conceptual model of the problem domain and its solution. The model is made up of a number of things,
including use cases, user stories, preliminary class diagrams, user interface storyboards, and possibly
some class interface descriptions.

In design you’re taking that conceptual model and creating the classes that will end up being code.
You want to end up with a description of how the program will implement the conceptual model and do
what the customer wants. This is an object model of the solution. This model is made up of groups of
related class diagrams, their associations and descriptions of how they interact with each other. This
includes the programming interface for each class. This design is an abstraction of the class details and
code you'll create later. From here you should be able to get to coding pretty quickly.

CHAPTER 9 OBJECT-ORIENTED ANALYSIS AND DESIGN

113

References
Beck, K. Extreme Programming Explained: Embrace Change. (Boston, MA: Addison-Wesley, 2000).

Cockburn, A. (2000). Writing Effective Use Cases. (Boston, MA: Addison-Wesley, 2000).

Fowler, M.UML Distilled. (Boston, MA: Addison-Wesley, 2000).

McLaughlin, Brett D., et. al. Head First Object-Oriented Analysis & Design. (Sebastopol, CA: O’Reilly

Media, Inc., 2007).

Meyer, Bertrand. Object-Oriented Software Construction. (Upper Saddle River , NJ: Prentice Hall, 1988).

Martin, Robert, Single Responsibility Principle. www.butunclebob.com/ArticleS

.UncleBob.PrinciplesOfOod. Retrieved on December 10, 2009.

Wirfs-Brock, R. and A. McKean. Object Design: Roles Responsibilities, and Collaborations. (Boston, MA,

Addison-Wesley, 2003).

http://www.butunclebob.com/ArticleS

C H A P T E R 10

115

Object-Oriented Design Principles

Devotion to the facts will always give the pleasures of recognition; adherence to the
rules of design, the pleasures of order and certainty.

—Kenneth Clark

How can I qualify my faith in the inviolability of the design principles? Their virtue is
demonstrated. They work.

—Edgar Whitney

Now that we’ve spent some time looking at object-oriented analysis and design, let's recapitulate some
of what we’ve already seen and add some more pithy prose. First, let's talk about some common design
characteristics.

First, designs have a purpose. They describe how something will work in a context, using the
requirements (lists of features, user stories, and use cases) to define the context. Second, designs must
have enough information in them so that someone can implement them. You need enough details in the
design so that someone can come after you and implement the program correctly. Next, there are
different styles of design, just like there are different types of house architectures. The type of design you
want depends on what it is you’re being required to build. It depends on the context (see, we’re back to
context); if you’re an architect, you’ll design a different kind of house at the sea shore than you will in the
mountains. Finally, designs can be expressed at different levels of detail. When building a house, the
framing carpenter needs one level of detail, the electrician and plumber another, and the finish
carpenter yet another.

There are a number of rules of thumb about object-oriented design that have evolved over the last
few decades. These design principles act as guidelines for you the designer to abide by so that your
design ends up being a good one, easy to implement, easy to maintain, and one that does just what your
customer wants. We’ve looked at several of them already in previous chapters, and here I’ve pulled out
ten fundamental design principles of object-oriented design that are likely to be the most useful to you
as you become that designer extraordinaire. I’ll list them here and then explain them and give examples
in the rest of the chapter.

CHAPTER 10 OBJECT-ORIENTED DESIGN PRINCIPLES

116

Our List of Fundamental Object-Oriented Design Principles
Here are the ten fundamental principles:

1. Encapsulate things in your design that are likely to change.

2. Code to an interface rather than to an implementation.

3. The Open-Closed Principle (OCP): Classes should be open for extension and

closed for modification.

4. The Don’t Repeat Yourself Principle (DRY): Avoid duplicate code. Whenever

you find common behavior in two or more places, look to abstract that

behavior into a class and then reuse that behavior in the common concrete

classes. Satisfy one requirement in one place in your code.

5. The Single Responsibility Principle (SRP): Every object in your system should

have a single responsibility, and all the objects services should be focused on

carrying out that responsibility. Another way of saying this is that a cohesive

class does one thing well and doesn’t try to do anything else. This implies that

higher cohesion is better. It also means that each class in your program should

have only one reason to change.

6. The Liskov Substitution Principle (LSP): Subtypes must be substitutable for

their base types. (in other words, inheritance should be well designed and well

behaved.)

7. The Dependency Inversion Principle (DIP): Don’t depend on concrete classes;

depend on abstractions.

8. The Interface Segregation Principle (ISP): Clients shouldn’t have to depend on

interfaces they don’t use.

9. The Principle of Least Knowledge (PLK) (also known as the Law of Demeter):

Talk only to your immediate friends.

10. The Principle of Loose Coupling: Objects that interact should be loosely

coupled with well-defined interfaces.

As you probably notice, there’s some overlap here, and one or more of the design principles may
depend on others. That’s okay. It’s the fundamentals that count. Let’s go through these one at a time.

CHAPTER 10 OBJECT-ORIENTED DESIGN PRINCIPLES

117

Encapsulate Things in Your Design That Are Likely to Change
This first principle means to protect your classes from unnecessary change by separating the features
and methods of a class that remain relatively constant throughout the program from those that will
change. By separating the two types of features, we isolate the parts that will change a lot into a separate
class (or classes) that we can depend on changing, and we increase our flexibility and ease of change. We
also leave the stable parts of our design alone, so that we just need to implement them once and test
them once. (Well, you hope.) This protects the stable parts of the design from any unnecessary changes.

Let's create a very simple class Violinist. Figure 10-1 is a class diagram for the Violinist class.

Figure 10-1. A Violinist

Notice that the setUpMusic() and tuneInstrument() methods are pretty stable. But what about the
play() method? It turns out that there are several different types of playing styles for violins – classical,
bluegrass, and Celtic, just to name three. So that means that the play() method will vary, depending on
the playing style. Because we have a behavior that will change depending on the playing style, maybe we
should abstract that behavior out and encapsulate it in another class? If we do that, then we get
something like Figure 10-2.

Figure 10-2. Violinist and playing styles

Notice that we’re using association between the Violinist class and the ViolinStyle abstract class.
This allows Violinist to use the concrete classes that inherit the abstract method from the abstract
ViolinStyle class. We’ve abstracted out and encapsulated the play() method – which will vary – in a
separate class so that we can isolate any changes we want to make to the playing style from the other
stable behaviors in Violinist.

CHAPTER 10 OBJECT-ORIENTED DESIGN PRINCIPLES

118

Code to an Interface Rather Than to an Implementation
The normal response to this design principle is, “Huh? What does that mean?” Well, here’s the idea. This
principle – like many of the principles in this chapter - has to do with inheritance and how you use it in
your program. Say you have a program that will model different types of geometric shapes in two
dimensions. We’ll have a class Point that will represent a single point in 2D, and we’ll have an interface
named Shape that will abstract out a couple of things that all shapes have in common – areas and
perimeters. (okay, circles and ellipses call it circumference; bear with me.) So here’s what we’ve got (see
Figure 10-3).

Figure 10-3. A simple Point class and the common Shape Interface

If we want to create concrete classes of some different shapes, we’ll implement the Shape interface.
This means that the concrete classes must implement each of the abstract methods in the Shape
interface. See Figure 10-4.

Figure 10-4. Rectangle, Circle, and Triangle all implement Shape

So now we’ve got a number of classes that represent different geometric shapes. How do we use
them? Say we’re writing an application that will manipulate a geometric shape. We can do this in two
different ways. First, we can write a separate application for each geometric shape. See Figure 10-5.

CHAPTER 10 OBJECT-ORIENTED DESIGN PRINCIPLES

119

Figure 10-5. Using the geometric objects.

What’s wrong with these apps? Well, we’ve got three different applications doing the same thing. If

we want to add another shape, say a rhombus, we’d have to write two new classes, the Rhombus class,
which implements the Shape interface, and a new RhombusApp class. Yuk! This is inefficient. We’ve coded
to the implementation of the geometric shape rather than coding to the interface itself.

So how do we fix this? The thing to realize is that the interface is the top of a class hierarchy of all the
classes that implement the interface. As such it’s a class type and we can use it to help us implement
polymorphism in our program. In this case, since we have some number of geometric shapes that
implement the Shape interface we can create an array of Shapes that we can fill up with different types of
shapes and then iterate through. In Java we’ll use the List collection type to hold our shapes:

import java.util.*;

/**
 * ShapeTest - test the Shape interface implementations.
 *
 * @author fred
 * @version 1.0
 */
public class ShapeTest
{
 public static void main(String [] args)
 {
 List<Shape> figures = new ArrayList<Shape>();

 figures.add(new Rectangle(10, 20));
 figures.add(new Circle(10));
 Point p1 = new Point(0.0, 0.0);

CHAPTER 10 OBJECT-ORIENTED DESIGN PRINCIPLES

120

 Point p2 = new Point(5.0, 1.0);
 Point p3 = new Point(2.0, 8.0);
 figures.add(new Triangle(p1, p2, p3));

 Iterator<Shape> iter = figures.iterator();

 while (iter.hasNext()) {
 Shape nxt = iter.next();
 System.out.printf("area = %8.4f perimeter = %8.4f\n",
 nxt.computeArea(), nxt.computePerimeter());
 }
 }
}

So when you code to the interface, your program becomes easier to extend and modify. Your
program will work with all the interface’s subclasses seamlessly.

As an aside, the principles above let you know that you should be constantly reviewing your design.
Changing your design will force your code to change because of the need to refactor. Your design is
iterative. Pride kills good design; don’t be afraid to revisit your design decisions. (Hey! Maybe that’s
another design principle!)

The Open-Closed Principle (OCP)
Classes should be open for extension and closed for modification.1

Find the behavior that does not vary and abstract that behavior up into a super/base class. That
locks the base code away from modification but all subclasses will inherit that behavior. You are
encapsulating the behavior that varies in the subclasses (those classes that extend the base class) and
closing the base class from modification. The bottom line here is that in your well-designed code, you
add new features not by modifying existing code (it’s closed for modification), but by adding new code
(it’s open for extension).

The BankAccount class example that we did in the previous chapter is a classic example of the Open-
Closed Principle at work. In that example, we abstracted all the personal information into the abstract
BankAccount class, closed it from modification and then extended that class into the different types of
bank accounts. In this situation it is very easy to add new types of bank accounts just by extending the
BankAccount class again. We avoid duplication of code, and we preserve the integrity of the BankAccount
properties. See Figure 10-6.

1 Larman, C. “Protected Variation: The Importance of Being Closed.” IEEE Software 18(3): 89-91. 2001.

CHAPTER 10 OBJECT-ORIENTED DESIGN PRINCIPLES

121

Figure 10-6. The classic BankAccount example for OCP

For example, in the BankAccount class we define the withdraw() method that allows a customer to
withdraw funds from an account. But the way in which withdrawals occur can differ in each of the
extended account classes. While the withdraw() method is closed for modification in the BankAccount
class it can be overridden in the subclasses to implement the specific rules for that type of account and
thus extend the power of the method. It’s closed for modification but open for extension.

The Open-Closed Principle doesn’t have to be limited to inheritance either. If you have several
private methods in a class, those methods are closed for modification, but if you then create one or more
public methods that use the private methods, you’ve opened up the possibility of extending those
private methods by adding functionality in the public methods. Think outside the box – er, class.

Don’t Repeat Yourself Principle (DRY)
Avoid duplicate code by abstracting out things that are common and placing those things in a single
location.2

DRY is the motherhood and apple pie design principle. It’s been handed down ever since developers
started thinking about better ways to write programs. Go back and look at Chapters 6 and 7 if you don’t

2 Hunt, A. and D. Thomas.The Pragmatic Programmer: From Journeyman to Master. (Boston, MA:

Addison-Wesley, 2000.)

CHAPTER 10 OBJECT-ORIENTED DESIGN PRINCIPLES

122

believe me. With DRY you have each piece of information and each behavior in a single place in the
design. Ideally you have one requirement in one place. This means that you should create your design so
that there is one logical place where a requirement is implemented. Then if you have to change the
requirement you have only one place to look to make the change. You also remove duplicate code and
replace it with method calls. If you are duplicating code, you are duplicating behavior.

DRY doesn’t have to apply just to your code either. It’s always a good idea to comb your feature list
and requirements for duplications. Rewriting requirements to avoid duplicating features in the code will
make your code much easier to maintain.

Consider the final version of the B4++ bird feeder that we discussed in the last chapter. The last thing
we worked on was adding a song identifier to the feeder so that the feeding doors would open and close
automatically. But let's look at the two use cases we ended up with (see Table 10-1).

Table 10-1. The Song Identifier Use Case and Its Alternate

Main Path Alternate Path

1. Alice hears or sees birds at the bird feeder. 1.1 The songbird identifier hears birdsong.

2. Alice determines that they are not songbirds. 2.1 The songbird identifier recognizes the song as
from an unwanted bird.

3. Alice presses the remote control button. 3.1 The song bird identifier sends a message to the
feeding doors to close.

4. The feeding doors close.

5. The birds give up and fly away. 5.1 The songbird identifier hears birdsong.

 5.2 The songbird identifier recognizes the song as
from a songbird.

6. Alice presses the remote control button. 6.1 The songbird identifier sends a message to the
feeding doors to open.

7. The feeding doors open again.

Notice that we’re opening and closing the feeding doors in two different places, via the remote

control and via the song identifier. But if you think about it, regardless of where we request the doors to
be open or closed, they always open and close in the same way. So this is a classic opportunity to
abstract out the open and close door behavior and put them in a single place, say the FeedingDoor class.
DRY at work!

CHAPTER 10 OBJECT-ORIENTED DESIGN PRINCIPLES

123

The Single Responsibility Principle (SRP)
This principle says that a class should have one, and only one, reason to change.3

Here’s an example of the overlap between these design principles that was mentioned above: SRP,
the first principle about encapsulation, and DRY all say similar, but slightly different things.
Encapsulation is about abstracting behavior and putting things in your design that are likely to change in
the same place. DRY is about avoiding duplicating code by putting identical behaviors in the same place.
SRP is about designing your classes so that each does just one thing, and does it very well.

Every object should have a single responsibility and all the object’s services are targeted towards
carrying out that responsibility. Each class should have only one reason to change. Put simply, this means
to beware of having your class try to do too many things.

As an example, let's say we’re writing the embedded code for a mobile phone. After months (really)
of discussions with the marketing folks, our first cut at a MobilePhone class looks like Figure 10-7.

Figure 10-7. A very busy MobilePhone class

This class seems to incorporate a lot of what we would want a mobile phone to do, but it violates the
SRP in several different ways. This class is not trying to do a single thing, it is trying to do way too many
things – make and receive phone calls (who does that, anyway?), create, send, and receive text messages,
create, send and receive pictures, browse the Internet. The class doesn’t have a single responsibility. It
has many. But we don’t want a single class to be impacted by these completely different forces. We don’t
want to modify the MobilePhone class every time the picture format is changed, or every time the browser
changes. Rather, we want to separate these functions out into different classes so that they can change
independently of each other. So how do we recognize the things that should move out of this class, and
how do we recognize the things that should stay? Have a look at Figure 10-8.

3 McLaughlin, Brett D., et. al., Head First Object-Oriented Analysis & Design. (Sebastopol, CA: O’Reilly

Media, Inc., 2007.)

CHAPTER 10 OBJECT-ORIENTED DESIGN PRINCIPLES

124

Figure 10-8. Mobile phone classes each with a single responsibility

In this example, we ask the question, “What does the mobile phone do (to itself)?” as opposed to,
“What services are offered by the mobile phone?” By asking questions like this, we can start to separate
out the responsibilities of the objects in the design. In this case, we can see that the phone itself can get
its own phone number, initialize itself, and connect itself to the mobile phone network. The services
offered, on the other hand, are really independent of the actual mobile phone, and so can be separated
out into PhoneCall, TextMsg, and Picture classes. So we divide up the initial one class into four separate
classes, each with a single responsibility. This way we can change any of the four classes without
affecting the others. We’ve simplified the design (although we’ve got more classes), and made it easier to
extend and modify. Is that a great principle, or what?

Liskov Substitution Principle (LSP)
Subclasses must be substitutable for their base class..4 This principle says that inheritance should be well
designed and well behaved. In any case a user should be able to instantiate an object as a subclass and
use all the base class functionality invisibly.

In order to illustrate the LSP, most books give an example that violates the Substitution Principle
and say, “don’t do that.” Why should we be any different? One of the best and canonical examples of
violating the Liskov Substitution Principle is the Rectangle/Square example. The example itself is all over
the Internet; Robert Martin gives a great variation on this example in his book Agile Software

4 Wintour, Damien. “The Liskov Substitution Principle.” 1988. Downloaded on September 14, 2010 from

www.necessaryandsufficient.net/2008/09/design-guidelines-part3-the-liskov-substitution-

principle/.

CHAPTER 10 OBJECT-ORIENTED DESIGN PRINCIPLES

125

Development, Principles, Patterns, and Practices,5 and we’ll follow his version of the example. Here it is in
Java.

Say you have a class Rectangle that represents the geometric shape of a rectangle:

/**
 * class Rectangle.
 */
public class Rectangle
{
 private double width;
 private double height;

 /**
 * Constructor for objects of class Rectangle
 */
 public Rectangle(double width, double height) {
 this.width = width;
 this.height = height;
 }

 public void setWidth(double width) {
 this.width = width;
 }

 public void setHeight(double height) {
 this.height = height;
 }

 public double getHeight() {
 return this.height;
 }

 public double getWidth() {
 return this.width;
 }
}

And, of course, one of your users wants to have the ability to manipulate squares as well as
rectangles. You, being the bright math student you are, already know that squares are just a special case
of rectangles; in other words a Square IS-A Rectangle. Being a great object-oriented designer as well, you
know all about inheritance. So you create a Square class that inherits from Rectangle.

/**
 * class Square
 */
public class Square extends Rectangle

5 Martin, R. C. Agile Software Development: Principles, Patterns, and Practices. (Upper Saddle River, NJ:

Prentice Hall, 2003.)

CHAPTER 10 OBJECT-ORIENTED DESIGN PRINCIPLES

126

{
 /**
 * Constructor for objects of class Square
 */
 public Square(double side) {
 super(side, side);
 }

 public void setSide(double side) {
 super.setWidth(side);
 super.setHeight(side);
 }

 public double getSide() {
 return super.getWidth();
 }
}

Well, this seems to be okay. Notice that because the width and height of a Square are the same, we
couldn’t run the risk of changing them individually, so setSide() uses setWidth() and setHeight() to set
both for the sides of a Square. No big deal, right?

Well, if we have a function like:

void myFunc(Rectangle r, double newWidth) {
 r.setWidth(newWidth);
}

and we pass myFunc() a Rectangle object, it works just fine, changing the width of the Rectangle. But
what if we pass myFunc() a Square object? Well, it turns out that in Java the same thing happens as before,
but that’s wrong. It violates the integrity of the Square object by just changing its width without changing
its height as well. So we’ve violated the LSP here and the Square can not substitute for a Rectangle
without changing the behavior of the Square. The LSP says that the subclass (Square) should be able to
substitute for the superclass (Rectangle), but it doesn’t in this case.

Now we can get around this. We can override the Rectangle class’ setWidth() and setHeight()
methods in Square like this:

public void setWidth(double w) {
 super.setWidth(w);
 super.setHeight(w);
}

 public void setHeight(double h) {
 super.setWidth(h);
 super.setHeight(h);
}

These will both work and we’ll get the right answers and preserve the invariants of the Square object,
but where’s the point in that? If we have to override a bunch of methods we’ve inherited, then what’s the
point of using inheritance to begin with? That’s what the LSP is all about: getting the behavior of derived
classes right and thus getting inheritance right. If we think of the base class as being a contract that we
adhere to (remember the Open-Closed Principle?), then the LSP is saying that you must adhere to the
contract even for derived classes. Oh, by the way, this works in Java because Java public methods are all

CHAPTER 10 OBJECT-ORIENTED DESIGN PRINCIPLES

127

virtual methods, and are thus able to be overridden. If we had defined setWidth() and setHeight() in
Rectangle with a final keyword or if they had been private, then we couldn’t have overridden them.

In this example, while a square is mathematically a specialized type of rectangle and one where the
invariants related to rectangles still hold, that mathematical definition just doesn't work in Java. In this
case you don’t want to have Square be a subclass of Rectangle; inheritance doesn't work for you in this
case, because you think about rectangles having two different kinds of sides – length and width - and
squares having only one kind of side. So if a Square class inherits from a Rectangle class the image of
what a Square is versus what a Rectangle is gets in the way of the code. Inheritance is just the wrong
thing to use here.

How can you tell when you’re likely to be violating the Liskov Substitution Principle? Indications
that you’re violating LSP include:

• A subclass doesn’t keep all the external observable behavior of its super class.

• A subclass modifies, rather than extends, the external observable behavior of its
super class.

• A subclass throws exceptions in an effort to hide certain behavior defined in its
super class.

• A subclass that overrides a virtual method defined in its super class using an
empty implementation in order to hide certain behavior defined in its super class.

• Method overriding in derived classes is the biggest cause of LSP violations.6

Sometimes inheritance just isn’t the right thing to do. Luckily, you’re not screwed here. You’ve got
options.

It turns out there are other ways to share the behavior and attributes of other classes. The three
most common are delegation, composition, and aggregation.

Delegation – it’s what every manager should do. Give away work and let someone else do it. If you
want to use the behaviors in another class but you don’t want to change that behavior consider using
delegation instead of inheritance. Delegation says to give responsibility for the behavior to another class;
this creates an association between the classes. Association in this sense means that the classes are
related to each other, usually through an attribute or a set of related methods. Delegation has a great
side benefit. It shields your objects from any implementation changes in other objects in your program;
you’re not using inheritance, so encapsulation protects you.7 Let's show a bit of how delegation works
with an example.

When last we left Alice and Bob and their B4++, Alice was tired of using the remote to open and close
the feeding doors to keep away the non-song birds. So they’d requested yet another new feature – an
automatic song identifier. With the song identifier the B4++ itself would recognize songbird songs and
open the doors, and keep them closed for all other birds. We can think of this in a couple of ways.

The BirdFeeder class, because of the Single Responsibility Principle, shouldn’t do the identification of
bird songs, but it should know what songs are allowed. We’ll need a new class, SongIdentifier, that will
do the actual song identification. We’ll also need a Song object that contains a birdsong. Figure 10-9
shows what we’ve got so far.

6 Wintour, 1998.
7 Mclaughlin, 2007.

CHAPTER 10 OBJECT-ORIENTED DESIGN PRINCIPLES

128

Figure 10-9. A first cut at the song identifier feature

Now, the BirdFeeder knows about birdsong and keeps a list of the allowed songs for the feeder. The
SongIdentifier has the single job of identifying a given song. Now, there are two ways that this can
happen. The first is that the SongIdentifier class can do the work itself in the identify() method. That
would mean that SongIdentifier would need an equals() method in order to do the comparison
between two songs (the allowed song from the door, and the song that the new B4++ hardware just sent
to us). The second way of identifying songs is for the Song class to do it itself, using its own equals()
method. Which should we choose?

Well, if we do all the identification in the SongIdentifier class, that means that any time anything
changes in a Song, that we’ll have to change both the Song class and the SongIdentifier class. This
doesn’t sound optimal. But! If we delegate the song comparison work to the Song class, then the
SongIdentifier’s identify() method could just take a Song as an input parameter and call that method
and we’ve isolated any Song changes to just the Song class. Figure 10-10 shows the revised class diagrams.

Figure 10-10. Simplifying SongIdentifier and Song

And our corresponding code might look like:

public class SongIdentifier {
 private BirdFeeder feeder;
 private FeedingDoor door;
 public SongIdentifier(BirdFeeder feeder) {
 this.door = feeder.getDoor();
 }
 public void identify(Song song) {
 List<Song> songs = feeder.getSongs();
 Iterator<Song> song_iter = songs.iterator();

CHAPTER 10 OBJECT-ORIENTED DESIGN PRINCIPLES

129

 while (song_iter.hasNext()) {
 Song nxtSong = song_iter.next();
 if (nxtSong.equals(song)) {
 door.open();
 return;
 }
 }
 door.close();
 }
}

public class Song {
 private File song;
 public Song(File song) {
 this.song = song;
 }
 public File getSong() {
 return this.song;
 }
 public boolean equals(Object newSong) {
 if (newSong instanceof Song) {
 Song newSong2 = (Song) newSong;
 if (this.song.equals(newSong2.song)) {
 return true;
 }
 }
 return false;
 }
}

In this implementation, if we change anything with regards to a Song , then the only changes we
make will be in the Song class, and SongIdentifier is insulated from those changes. The behavior of the
Song class doesn’t change, although how it implements that behavior might. SongIdentifier doesn’t care
how the behavior is implemented, as long as it is always the same behavior. BirdFeeder has delegated
the work of handling birdsong to the SongIdentifier class and SongIdentifier has delegated the work of
comparing songs to the Song class, all without using inheritance. What a concept.

Delegation allows you to give away the responsibility for a behavior to another class and not have to
worry about changing the behavior in your class. You can count on the behavior in the delegated class
not changing. But sometimes you will want to use an entire set of behaviors simultaneously, and
delegation doesn’t work for that. Instead, if you want to have your program use that set of behaviors you
need to use composition. We use composition to assemble behaviors from other classes.

Say that you’re putting together a space-based role playing game (RPG), Space Rangers. One of the
things you’ll model in your game is the spaceships themselves. Spaceships will have lots of different
characteristics. For example, there are different types of ships, shuttles, traders, fighters, freighters,
capital ships. Each ship will also have different characteristics, weapons, shields, cargo capacity, number
of crew, and so on. But what will all the ships have in common?

Well, if you want to create a generic Ship class, it will be hard to gather all these things together in a
single Ship superclass so you can create subclasses for things like Shuttle, Fighter, Freighter, and the
like. They are all just too different. This seems to imply that inheritance isn’t the way to go here. So back
to our question – what do all the ships have in common?

CHAPTER 10 OBJECT-ORIENTED DESIGN PRINCIPLES

130

We can say that all the Ships in Space Rangers have just two things in common – a ship type, and a
set of properties that relate to that ship type. This gets us to our first class diagram, shown in Figure
10-11.

Figure 10-11. What do all Spaceships have in common?

This allows us to store the space ship type and a map of the various properties for an instance of a
ship. It means we can then develop the properties independently from the ships and then different ships
can share similar properties. For example, all ships can have weapons, but they can have different ones
with different characteristics. This leads us to develop a weapons interface that we can then use to
implement particular classes. We get to use these weapons in our SpaceShip by using composition.
Remember that composition allows us to use an entire family of behaviors that we can be guaranteed
won’t change. See Figure 10-12.

Figure 10-12. Using composition to allow the SpaceShip to use Weapons

Remember that the open triangle in the UML diagram means inheritance (or in the case of an
interface, it means implements). The closed diamond in UML means composition. So in this design we
can add several weapons to our properties Map and each weapon can have different characteristics, but
all of them exhibit the same behavior. Isn’t composition grand?

You should also note that in composition the component objects (Weapons) become part of a larger
object (SpaceShip) and when the larger object goes away (you get blown up), so do the components. The
object that is composed of other behaviors owns those behaviors. When that object is destroyed, so are
all of its behaviors. The behaviors in a composition don’t exist outside of the composition itself. When
your SpaceShip is blown up, so are all your weapons.

CHAPTER 10 OBJECT-ORIENTED DESIGN PRINCIPLES

131

Of course, sometimes you want to put together a set of objects and behaviors in such a way that
when one of them is removed, the others continue in existence. That’s what aggregation is all about. If
the behaviors need to persist, then you must aggregate. Aggregation is when one class is used as a part of
another class, but still exists outside of that other class. If the object does make sense existing on its own,
then use aggregation, otherwise use composition. For example, a library is an example of aggregation.
Each book makes sense on its own, but the aggregation of them all is a library. The key is to show an
instance where it makes sense to use a component outside a composition implying that it should have a
separate existence.

In Space Rangers, we can have Pilot objects in addition to SpaceShip objects. A Pilot can also carry
weapons. Different ones, of course; Pilots probably don’t carry Cannon objects with them! Say a Pilot is
carrying around a HandBlaster, so in object-oriented speak he’s using the behaviors of the HandBlaster.
If the Pilot is accidentally crushed by a mad SpaceCow, is the weapon destroyed along with the Pilot?
Probably not, hence the need for a mechanism where the HandBlaster can be used by a Pilot but has an
existence outside of the Pilot class. Ta, da! Aggregation!

So we’ve seen three different mechanisms that allow objects to use the behaviors of other objects,
none of which require inheritance. As it’s said in OOA&D, “If you favor delegation, composition, and
aggregation over inheritance your software will usually be more flexible and easier to maintain, extend
and reuse.”8

The Dependency Inversion Principle (DIP)
Robert C. Martin introduced the Dependency Inversion Principle in his C++ Report and later in his
classic book “Agile Software Development.”9 In his book, Martin defined the DIP as

a. High-level modules should not depend on low-level modules. Both should
depend on abstraction.

b. Abstractions should not depend on details. Details should depend on
abstractions.

The simple version of this is: don’t depend on concrete classes; depend on abstractions. Martin’s
contention is that object-oriented design is the inverse of traditional structured design. In structured
design as we saw in Chapter 7, one either works from the top-down, pushing details and design
decisions as low in the hierarchy of software layers as possible. Or one works from the bottom-up,
designing low-level details first, and later putting together a set of low-level functions into a single
higher-level abstraction. In both these cases, the higher level software depends on decisions that are
made at the lower levels, including interface and behavioral decisions.

Martin contends that for object-oriented design that this is backward. The Dependency Inversion
Principle implies that higher-level (more abstract) design levels should create an interface that lower
(more concrete) levels should code to. This will mean that as long as the lower level – concrete – classes
code to the interface of the upper level abstraction that the upper level classes are safe. As Martin puts it,
“The modules that contain the high-level business rules should take precedence over, and be

8 McLaughlin, 2007.
9 Martin, 2003.

CHAPTER 10 OBJECT-ORIENTED DESIGN PRINCIPLES

132

independent of, the modules that contain the implementation details. High-level modules simply
should not depend on low-level modules in any way.”

Here’s a simple example. Traditionally, in structured design we write many programs with the
general format of:

11. Get input data from somewhere.

12. Process the data.

13. Write the data to somewhere else.

In this example, the Processor uses the Collector to get data, it then packages the data and uses the
Writer to write the data to, say, a database. If we draw this out, we get something that looks like Figure
10-13.

Figure 10-13. A traditional input-process-output model

One problem with this implementation is that the Processor must create and use the Writer whose
interface and parameter types it must know in order to write correctly. This means that the Processor
must be written to a concrete implementation of a Writer and so must be re-written if we want to
change what kind of Writer we want. Say the first implementation writes to a File, if we then want to
write to a printer, or a database, we need to change Processor every time. This is not very reusable. So
the Dependency Inversion Principle says that the Processor should be coded to an interface (we abstract
Processor) and then the interface is implemented in separate concrete classes for each type of Writer
destination. The resulting design looks like Figure 10-14.

CHAPTER 10 OBJECT-ORIENTED DESIGN PRINCIPLES

133

Figure 10-14. Using an interface to allow different writer implementations

In this way, different writers can be added and as long as they adhere to the interface, Processor
never needs to change. Note that the DIP is closely related to Principle #2, Code to an Interface.

The Interface Segregation Principle (ISP)
Clients shouldn’t have to depend on interfaces they don’t use. In particular, they shouldn’t have to
depend on methods they don’t use.10

We’ve talked a lot about interfaces in this chapter. Coding to interfaces, using interfaces to abstract
out common details, and so on. We use interfaces to make our code more flexible and maintainable. So
overall, interfaces are a great thing, right? Well, young Skywalker, you must beware of interfaces as well.

One of the greatest temptations with respect to interfaces is to make them bigger. If an interface is
good, then a bigger interface must be better, right? After all, you can then use the interface is way more
objects and the user just has to not implement certain methods that they don’t need. Ack! By doing that
you are ruining the cohesion of your interface. By “generalizing” an interface too much you are moving
away from that single lightning bolt of a set of methods that are all closely related to each other to a
jumble of methods that say hello to each other in passing. Remember cohesion is good. Your
applications should be cohesive and the classes and interfaces they depend on should also be cohesive.

You make your interfaces less cohesive, and begin to violate the Interface Segregation Principle
when you start adding new methods to your interface because one of the subclasses that implements the
interface needs it – and others do not. So what’s the answer here? How do we keep our interfaces
cohesive and still make them useful for a range of objects?

The answer is: make more interfaces. The Interface Segregation Principle implies that instead of
adding new methods that are only appropriate to one or a few implementation classes, that you make a
new interface. You divide your bloated interface into two or more smaller, more cohesive interfaces. That

10 Martin, 2003.

CHAPTER 10 OBJECT-ORIENTED DESIGN PRINCIPLES

134

way, new classes can just implement the interfaces that they need and not implement ones that they
don’t.

The Principle of Least Knowledge (PLK)
(Also known as the Law of Demeter). Talk only to your immediate friends.11

The complement to strong cohesion in an application is loose coupling. That’s what the Principle of
Least Knowledge is all about. It says that classes should collaborate indirectly with as few other classes as
possible.12 Here’s an example.

You’ve got a computer system in your car – we all do these days. Say you’re writing an application
that graphs temperature data in the car. There are a number of sensors that provide temperature data
and that are part of a family of sensors in the car’s engine. Your program should select a sensor, gather
and plot its temperature data. (This example is derived from one found in Hunt).13 Part of your program
might look like:

public void plotTemperature(Sensor theSensor) {
 double temp = theSensor.getSensorData().getOilData().getTemp();
 …
}

This will likely work – once. But now you’ve coupled your temperature plotting method to the
Sensor, SensorData, and OilSensor classes. Which means that a change to any one of them could affect
your plotTemperature() method and cause you to have to refactor your code. Not good.

This is what the PLK urges you to avoid. Instead of linking your method to a hierarchy and having to
traverse the hierarchy to get the service you’re looking for, just ask for the data directly

public void plotTemperature(double theSensor) {
 …
}
…
plotTemperature(aSensor.getTemp());

Yup, we had to add a method to the Sensor class to get the temperature for us, but that’s a small
price to pay for cleaning up the mess (and the possible errors) above. Now your class is just collaborating
directly with one class, and letting that class take care of the others. Of course, your Sensor class will do
the same thing with SensorData, and so on.

This leads us to a corollary to the PLK – keep dependencies to a minimum. This is the crux of loose
coupling. By interacting with only a few other classes, you make your class more flexible and less likely to
contain errors.

11 Martin, 2003.

.12 Lieberherr, K., I. Holland, et al. Object-Oriented Programming: An Objective Sense of Style. OOPSLA ’88,

Association for Computing Machinery, 1988.
13 Hunt, 2000.

CHAPTER 10 OBJECT-ORIENTED DESIGN PRINCIPLES

135

Class Design Guidelines for Fun and Enjoyment
Finally, just so we shouldn’t exit the chapter without yet another list, we present a list of 24 class design
guidelines. These guidelines are somewhat more specific than the general design guidelines that we
have described above, but they are handy to have around. Cut them out and burn them into your brain.

These 24 class design guidelines are taken from Davis14 and McConnell.15

1. Present a consistent level of abstraction in the class interface.

2. Be sure you understand what abstraction the class is implementing.

3. Move unrelated information to a different class (ISP).

4. Beware of erosion of the class’s interface when you are making changes. (ISP).

5. Don’t add public members that are inconsistent with the interface abstraction.

6. Minimize accessibility of classes and members (OCP).

7. Don’t expose member data in public.

8. Avoid putting private implementation details into the class’s interface.

9. Avoid putting methods into the public interface.

10. Watch for coupling that’s too tight (PLK).

11. Try to implement “has a” relations through containment within a class (SRP).

12. Implement “is a” relations through inheritance (LSP).

13. Only inherit if the derived class is a more specific version of the base class.

14. Be sure to inherit only what you want to inherit (LSP).

15. Move common interfaces, data, and operations as high in the inheritance
hierarchy as possible (DRY).

16. Be suspicious of classes of which there is only one instance.

17. Be suspicious of base classes that only have a single derived class.

18. Avoid deep inheritance trees (LSP).

19. Keep the number of methods in a class as small as possible.

20. Minimize indirect method calls to other classes (PLK).

21. Initialize all member data in all constructors, if possible.

22. Eliminate data-only classes.

14 Davis, A. M. 201 Principles of Software Development. (New York, NY: McGraw-Hill, Inc., 1995.)

15 McConnell, Steve, Code Complete, 2nd Edition. (Redmond, WA: Microsoft Press, 2004.)

CHAPTER 10 OBJECT-ORIENTED DESIGN PRINCIPLES

136

23. Eliminate operation-only classes.

24. Oh, and be careful out there.… (OK, I added this one.)

Conclusion

In this chapter we examined a number of rules of thumb about object-oriented design that have evolved
over the last few decades. These design principles act as guidelines for you the designer to abide by so
that your design ends up being a good one, easy to implement, easy to maintain, and one that does just
what your customer wants. Importantly, these design principles give guidance when you're feeling your
way from features to design. They talk about ways to examine and implement the important object-
oriented principles of inheritance, encapsulation, polymorphism, and abstraction. They also reinforce
basic design principles like cohesion and coupling. Burn these principles into your brain, OO designer.

References
Davis, A. M. 201 Principles of Software Development. (New York, NY: McGraw-Hill, Inc., 1995.)

Hunt, A. and D. Thomas.The Pragmatic Programmer: From Journeyman to Master. (Boston, MA:

Addison-Wesley, 2000.)

Larman, C. “Protected Variation: The Importance of Being Closed.” IEEE Software 18(3): 89-91. 2001.

Lieberherr, K., I. Holland, et al. Object-Oriented Programming: An Objective Sense of Style. OOPSLA ’88,

Association for Computing Machinery, 1988.

Martin, R. C. Agile Software Development: Principles, Patterns, and Practices. (Upper Saddle River, NJ:

Prentice Hall, 2003.)

McConnell, Steve, Code Complete, 2nd Edition. (Redmond, WA: Microsoft Press, 2004.)

McLaughlin, Brett D., et. al., Head First Object-Oriented Analysis & Design. (Sebastopol, CA: O’Reilly

Media, Inc., 2007.)

Wintour, Damien. “The Liskov Substitution Principle.” 1988. Downloaded on September 14, 2010 from

www.necessaryandsufficient.net/2008/09/design-guidelines-part3-the-liskov-substitution-

principle/.

C H A P T E R 11

137

Design Patterns

Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in such a
way that you can use this solution a million times over, without ever doing it the same
way twice.

— Christopher Alexander1

Do you reinvent the wheel each time you write code? Do you have to re-learn how to iterate through an
array every time you write a program? Do you have to re-invent how to fix a dangling else in every
function you write? Do you need to relearn insertion sort or binary search every time you want to use
them? Of course not!

Over the time you’ve spent writing programs you’ve learned a set of idioms that you employ
whenever you’re writing code. For example, if you need to iterate through all the elements of an array in
Java you’re likely to do the following:

for (int i = 0; i < myArray.length; i++) {
 System.out.printf(" %d ", myArray[i]);
}

or

for (int nextElement: myArray) {
 System.out.printf(" %d ", nextElement);
}

and the code just flows out of your fingertips as you type. These code patterns are sets of rules and
templates for code that you accumulate as you gain more experience writing programs.

Design patterns are the same thing – but for your design. The famous architect Christopher
Alexander, in his book A Pattern Language, defined patterns for design in architecture. The same ideas

1Alexander, C., S. Ishikawa, et al. A Pattern Language: Towns, Buildings, Construction. (Oxford, UK:

Oxford University Press, 1977.)

CHAPTER 11 DESIGN PATTERNS

138

carry over into software design. If you go back and read the Alexander quote at the top of this chapter,
you’ll see the following three key elements in Alexander’s definition of design pattern:

• Recurring : The problem that evokes the design pattern must be a common one.

• Core solution: The pattern provides a template for the solution; it tries to extract
out the essence of the solution.

• Reuse: The pattern must be easily reusable when the same problem appears in
different domains.

In fact, you’ve already seen at least one design pattern so far in this book: the Model-View-Controller
pattern (MVC) that we discussed in Chapter 5 is one of the earliest published examples of a software
design pattern.2 The MVC design pattern is used with programs that use graphical user interfaces. It
divides the program into three parts: the Model that contains the processing rules for the program, the
View that presents the data and the interface to the user, and the Controller that mediates
communication between the Model and the View. In a typical object-oriented implementation, each of
these abstractions becomes a separate object.

The Gang of Four (Gamma, Helm, Johnson, and Vlissides), in their seminal book on design patterns,
Design Patterns: Elements of Reusable Object-Oriented Software,3 define a design pattern as something
that “names, abstracts, and identifies the key aspects of a common design structure that makes it useful
for creating a reusable object-oriented design.” In other words, a design pattern is a named abstraction
from a concrete example that represents a recurring solution to a particular, but common, problem –
recurring, core solution, reuse.

But why do we need design patterns in the first place? Why can’t we just get along with the object-
oriented design principles we studied in Chapter 10 and with our old favorites, abstraction, inheritance,
polymorphism, and encapsulation?

Well, it turns out that design is hard. That’s why. Design for re-use is even harder. Design is also
much more of an art than a science or an engineering discipline. Experienced software designers rarely
start from first principles; they look for similarities in the current problem to problems they’ve solved in
the past. And they bring to the design table the set of design idioms that they’ve learned over time.
Design patterns provide a shared vocabulary that makes this expert knowledge available to everyone.

Design Patterns and the Gang of Four
In their book, the Gang of Four describe design patterns as having four essential features:

• The Pattern Name: “… a handle we can use to describe a design problem, its solution, and

consequences in a word or two. Naming a pattern immediately increases our design

vocabulary.”

• The Problem: Describes when to use the pattern. “It explains the problem and its context.”

2Krasner, G. E. and S. T. Pope. “A cookbook for using the Model-View-Controller user interface paradigm

in Smalltalk-80.” Journal of Object-Oriented Programming 1(3): 26-49. 1988.

3Gamma, E., Helm, R., Johnson, R., Vlissides. Design Patterns: Elements of Reusable Object-Oriented

Software. (Boston, MA: Addison-Wesley, 1995.)

CHAPTER 11 DESIGN PATTERNS

139

• The Solution: “… describes the elements that make up the design, their relationships,

responsibilities, and collaborations…the pattern provides an abstract description of a design

problem and how a general arrangement of elements solves it.”

• The Consequences: The results and trade-offs of applying the pattern to a problem. These

include time and space trade-offs, but also flexibility, extensibility, and portability, among

others.4

Design patterns are classified using two criteria, scope and purpose. Scope deals with the
relationships between classes and objects. Static relationships between classes are fixed at compile time,
whereas, dynamic relationships apply to objects and these relationships can change at run-time.
Purpose, of course, deals with what the pattern does with respect to classes and objects. Patterns can
deal with object creation, composition of classes or objects, or the ways in which objects interact and
distribute responsibilities in the program.

The Gang of Four describe 23 different design patterns in their book, dividing them into three
different classes of patterns: creational, structural, and behavioral.

• Creational design patterns are those that deal with when and how objects are created. These

patterns typically create objects for you, relieving you of the need to instantiate those objects

directly.

• Structural design patterns are those that describe how objects are composed into larger

groups,

• Behavioral design patterns generally talk about how responsibilities are distributed in the

design and how communication happens between objects.

The list is not meant to be complete, and over the 15 years since the publication of the Gang of
Four’s Design Patterns book, many more patterns have been added to this original list by developers
everywhere. A recent Google search for the phrase “design patterns” yielded 2.5 million hits, so lots of
object-oriented developers have jumped on the design patterns bandwagon.

The Classic Design Patterns
The 23 (classic) design patterns described by the Gang of Four are (in the remainder of this chapter we’ll
go over the six design patterns that are in italics):

Creational Patterns
1. Abstract factory

2. Builder

3. Factory Method

4Gamma et. al, 1995.

CHAPTER 11 DESIGN PATTERNS

140

4. Prototype

5. Singleton

Structural Patterns
6. Adapter

7. Bridge

8. Composite

9. Decorator

10. Façade

11. Flyweight

12. Proxy

Behavioral Patterns
13. Chain of responsibility

14. Command

15. Interpreter

16. Iterator

17. Mediator

18. Memento

19. Observer

20. State

21. Strategy

22. Template method

23. Visitor

Patterns We Can Use
The six patterns in this section are a representative sample of the classic design patterns, and are six that
you’ll find the most useful right away.

Creational Patterns
Creational Patterns all have to do with creating objects. If we think about class definitions as templates
for producing objects, then these patterns are all about how to create those templates. The two patterns
we'll look at next, Singleton and Factory show us two different ways of thinking about creating objects.

CHAPTER 11 DESIGN PATTERNS

141

The Singleton Pattern
Singleton5 is almost certainly the easiest of the Design Patterns to understand and to code. The idea is
simple. You are writing a program and you have a need for one – and only one – instance of a class. And
you need to enforce that “and only one” requirement. Examples of programs that would use a Singleton
pattern are things like print spoolers, window managers, device drivers, and the like.

So what are the implications of the “one, and only one” requirement? Well, first, it means your
program can only say “new Singleton()” once, right? But what’s to stop other objects in your program (or
objects in the program that you didn’t write) from issuing another “new Singleton()”? The answer is –
nothing! As long as your class can be instantiated once, other objects should be able to instantiate it
again and again. Well, bummer.

So what we need to do is to create a class that can be instantiated once and only once and which
doesn’t use new to do the instantiation. Huh?

You heard me right: we need a class that can be instantiated without using new. Go ahead, think
about it.

Here’s what we’ll do. The method that gets called when an object is instantiated is the constructor.
In Java you can say new Singleton() because the Singleton() constructor is public – it’s visible from
outside the class definition. If we want to keep the constructor so we can make instances of Singleton
objects, but we don’t want anyone to be able to use new to do that, we must make the constructor
private. “But wait!” you cry, “if the constructor is private then we can’t instantiate the object at all!” Au
contraire, dear reader. If the constructor is private, then it can only be accessed from inside the class
definition, so it’s entirely possible to instantiate the object from within the class definition itself!

“But wait again!” you say. “How do we get to the constructor from outside the class definition?” Well,
in Java is there a way to access a method inside a class without having to have an instantiation of the
class? (Think the Math class.)

Aha! Class methods! If you create a public method that is static (a class method) then that method is
visible outside the class definition without having the object actually instantiated. So, if we create a class
with a private constructor and then use a static method to create an instance of the class, you can
control how many instances of the class you create. Here’s the code:

public class Singleton {
 // this is the instance that will hang around
 private static Singleton uniqueInstance;
 // the private constructor – can't be accessed from outside
 private Singleton() {
 // do stuff here to initialize the instance
 }
 // here's the static method we'll use to create the instance
 public static Singleton getInstance() {
 if (uniqueInstance == null) {
 uniqueInstance = new Singleton();
 }
 return uniqueInstance;
 }
 // Other methods – after all Singleton is a real class
}

and in order to use the Singleton class we’d do something like:

5Gamma et. al, 1995

CHAPTER 11 DESIGN PATTERNS

142

public class SingletonTest {

 public static void main(String [] args) {
 Singleton mySingle;
 mySingle = Singleton.getInstance();
 // and we do other stuff here
 }
}

When we instantiate the Singleton instance by calling the getInstance() method, it will test to see if
we’ve done this before. If not, it creates the instance using the private constructor in the Singleton class.
If the instance already exists (the uniqueInstance variable is not null) then we just return the reference
to the object. Told you it was simple.

This version of the Singleton pattern isn’t without its problems; for one thing, it can fail if you are
writing a multi-threaded Java program. The solution above is not “thread safe.” It's possible that in
between the test for the existing of a Singleton instance and the actual creation of an instance that your
program could be swapped out while another thread executes. When it swaps back in, it could
erroneously create another instance of the Singleton. There are relatively easy solutions to this.

The simplest way to make your Singleton pattern thread-safe is to make the getInstance() method
a synchronized method. That way it will execute to completion and not be swapped out. Here’s a version
of the getInstance() method that is thread safe:

 public synchronized static Singleton getInstance() {
 if (uniqueInstance == null) {
 uniqueInstance = new Singleton();
 }
 return uniqueInstance;
 }

Notice that the only difference is the inclusion of the synchronized keyword in the method
signature.

On to the next pattern.

The Factory Pattern
Say you’ve got a small company and your company is making ice cream. Because you’re a small
company, your factory can only make one type of ice cream at a time, so you have to tell the workers on
any given day what kind of ice cream they’re making that day. Of course, you don’t change the different
ice cream recipes every day, and you don’t change the basic makeup of the factory every day, but you do
change which ice cream is being manufactured, packaged, and shipped each day. And, of course, you
have a program to model your factory. So the question is, how do you write the program in such a way
that you don’t have to change it every day? And how do you write it so you don’t need to change (most)
of it when you add a new ice cream flavor? That’s where the Factory design pattern comes in.

A Factory pattern (also called a Factory Method pattern)6 creates objects for you. You use it when you
need to create several types of objects that are usually related to each other – they usually have the same
abstract parent class - but are different. You ask the factory to create an object of type X and it creates
one; you ask it to create an object of type Y and it creates one. This forces the creation of concrete classes

6Gamma, et. al, 1995.

CHAPTER 11 DESIGN PATTERNS

143

to be relegated to subclasses of an interface that knows how to create concrete classes, and keeps your
other classes closed for modification. All without changing X or Y or the factory. In our example we can
create Vanilla, Chocolate, or Strawberry ice cream objects, using an IceCreamFactory class to generate
the different types of ice cream. The Factory pattern allows you to define an interface for creating a
family of objects, and it allows subclasses to decide which members of the family to instantiate. It defers
instantiation down into the subclasses.

In our example, we’ll have several classes:

IceCream: An interface that defines our ice cream objects

VanillaIceCream: A concrete class that inherits from IceCream

ChocolateIceCream: A concrete class that inherits from IceCream

StrawberryIceCream: A concrete class that inherits from IceCream

Factory: An interface that defines the methods used to make IceCream objects

IceCreamFactory: Our concrete implementation of the Factory interface that
makes different IceCream objects

IceCreamStore: A driver class that lets us make and sell ice cream

Our IceCream interface could look like:

public interface IceCream {
 public void yummy();
 // plus other methods
}

and our ice cream flavors end up as concrete classes:

public class VanillaIceCream implements IceCream {
 public void yummy() {
 System.out.println("Vanilla!");
 }
}

public class ChocolateIceCream implements IceCream {
 public void yummy() {
 System.out.println("Chocolate!");
 }
}

public class StrawberryIceCream implements IceCream {
 public void yummy() {
 System.out.println("Strawberry!");
 }
}

The Factory pattern depends on defining an interface for the factory and then allowing subclasses
that implement that interface to actually create the objects; our Factory interface will look something
like the following:

public interface Factory {
 public IceCream makeIceCream(String type);

CHAPTER 11 DESIGN PATTERNS

144

 // and other methods here to sell, package and transport
 // the ice cream
}

And finally, our concrete IceCreamFactory which will implement the makeIceCream() method from the
Factory interface and actually make an IceCream object looks like this:

public class IceCreamFactory implements Factory {
 public IceCream makeIceCream(String type) {
 IceCream newIceCream = null;
 if (type.equals("Vanilla")) {
 newIceCream = new VanillaIceCream();
 } else if (type.equals("Chocolate")) {
 newIceCream = new ChocolateIceCream();
 } else if (type.equals("Strawberry")) {
 newIceCream = new StrawberryIceCream();
 }
 return newIceCream;
 }
}

In order to test our factory we create a driver – our ice cream store!

public class IceCreamStore {
 public static void main (String [] args) {
 IceCreamFactory myStore = new IceCreamFactory();
 IceCream vanilla = myStore.makeIceCream("Vanilla");
 vanilla.yummy();
 IceCream choco = myStore.makeIceCream("Chocolate");
 choco.yummy();
 IceCream straw = myStore.makeIceCream("Strawberry");
 straw.yummy();
 }
}

Figure 11-1 shows what these look like in a version of UML.

CHAPTER 11 DESIGN PATTERNS

145

Figure 11-1. The Ice Cream Store using an IceCreamFactory

What to notice about this Factory pattern example? Well, how about the following:

• The factory method (makeIceCream()) encapsulates the creation of the IceCream
object. Our driver just tells the factory which ice cream to make.

• The Factory interface provides the interface for the subclasses to create the actual
objects.

• The IceCreamFactory concrete class actually creates the objects by implementing
the makeIceCream() method. This also implies that other concrete classes that
implement Factory could do the same.

• This leaves the IceCream classes alone, and makes it easier for the IceCreamStore to
create new objects.

• Notice also that the IceCreamStore class only deals with IceCream objects. It
doesn’t have to know anything about particular types of ice cream. The concrete
IceCream objects implement the methods from the IceCream interface and the
IceCreamStore just uses them regardless of which type of IceCream you’ve created.

• It also means that you can change the implementation of a particular type of
IceCream without changing either the interface or the IceCreamStore. What a
concept!

CHAPTER 11 DESIGN PATTERNS

146

Structural Patterns
Structural patterns help you put objects together so you can use them more easily. They are all about
grouping objects together and providing ways for objects to coordinate to get work done. Remember,
composition, aggregation, delegation, and inheritance are all about structure and coordination. The
Structural pattern we'll look at here – the Adapter – is all about getting classes to work together.

The Adapter Pattern
So here’s the problem. You’ve got a client program Foo that wants to access another class or library or
package, Bar. The problem is, Foo is expecting a particular interface and that interface is different from
the public interface that Bar presents to the world. What are you to do?

Well, you could rewrite Foo to change the interface it expects to conform to the interface that Bar is
presenting. But if Foo is large, or if it’s being used by other classes, that may not be a viable possibility.
Or you could rewrite Bar, so it presents the interface that Foo is expecting. But maybe Bar is a
commercial package and you don’t have the source code?

That’s where the Adapter design pattern comes in.7 You use the Adapter pattern to create an
intermediate class that wraps the Bar interface inside a set of methods that presents the interface that
Foo is looking for. Here’s the idea: the Adapter can interface with Foo on one side and with Bar on the
other. So the interface to Bar doesn’t have to change, and Foo users gets the interface they expects.
Everyone is happy! By the way, the Adapter design pattern is also called the Wrapper pattern because it
wraps an interface.8 See Figure 11-2.

Figure 11-2. The Adapter lets Foo use Bar

There are two ways to implement adapters: class adapters, where the adapter will inherit from the
target class, and object adapters that use delegation to create the adapter. Note the difference: a class

7Gamma et. al, 1995.
8Gamma et. al, 1995.

CHAPTER 11 DESIGN PATTERNS

147

adapter subclasses an existing class and implements a target interface. An object adapter subclasses a
target class and delegates to an existing class. Figure 11-3 is the UML for a generic class adapter.

Figure 11-3. A class adapter example

Note that the Adapter class inherits from the Adaptee class and implements the same Target
interface that the Client class uses. Here’s the code for this example:

public class Client
{
 public static void main(String [] args) {
 Target myTarget = new Adapter();

 System.out.println(myTarget.sampleMethod(12));
 }
}

public interface Target
{
 int sampleMethod(int y);
}

public class Adapter extends Adaptee implements Target
{
 public int sampleMethod(int y) {
 return myMethod(y);
 }
}

public class Adaptee
{
 public Adaptee() {
 }

 public int myMethod(int y) {
 return y * y;
 }
}

CHAPTER 11 DESIGN PATTERNS

148

The object adapter, on the other hand still implements the Target interface, but uses composition
with the Adaptee class in order to accomplish the wrapping; it will look like:

public class Adapter implements Target
{
 Adaptee myAdaptee = new Adaptee();

 public int sampleMethod(int y) {
 return myAdaptee.myMethod(y);
 }
}

In both cases, the Client doesn’t have to change! That’s the beauty of Adapter. You can change

which Adaptee you’re using, by changing the Adapter and not the Client.

Behavioral Patterns
Where creational patterns are all about how to create new objects, and structural patterns are all about
getting objects to communicate and cooperate, behavioral patterns are all about getting objects to do
things. They examine how responsibilities are distributed in the design and how communication
happens between objects. The three patterns we’ll look at here all describe how to assign behavioral
responsibilities to classes. The Iterator pattern is about how to traverse a collection of objects. The
Observer pattern tells us how to manage push and pull state changes. The Strategy pattern lets us select
different behaviors behind a single interface.

The Iterator Pattern
If you’ve programmed in Java, you have seen iterators. We’ll get to that, but let's start at the beginning. If
you have a collection of elements, you can organize them in many different ways. They can be arrays,
linked lists, queues, hash tables, sets, and so on. Each of these collections will have its own unique set of
operations, but there’s usually one operation that you might want to perform on all of them – traverse
the entire collection from beginning to end, one element at a time. Oh, and you want to traverse the
elements in such a way that you don’t need to know the internal structure of the collection. And you may
want to be able to traverse the collection backwards, and you may want to have several traversals going
on at the same time.

That’s what the Iterator pattern is for.9 The Iterator pattern creates an object that allows you to
traverse a collection, one element at a time.

Because of the requirement that you don’t need to know about the internal structure of the
collection, an Iterator object doesn’t care about sorting order; it just returns each object as it’s stored in
the collection, one at a time from first to last. The simplest iterator needs just two methods

• hasNext(): Which returns a true if there is an element to be retrieved, i.e. we’ve not
reached the end of the collection yet; and false if there’s no elements left.

• getNextElement(): Which returns the next element in the collection.

9Gamma et. al, 1995.

CHAPTER 11 DESIGN PATTERNS

149

In the Iterator Pattern, we have an Iterator interface that is implemented to make a concrete Iterator
object that is used by a concrete Collections object. Both of these are used by a client that creates the
Collection and gets the iterator from there. Figure 11-4 is the UML version of this from Gamma et. al.

Figure 11-4. An example of using the Iterator Pattern

You can see that the client class uses the Collection and the Iterator interfaces, and the
Concrete_Iterator is part of and uses the Concrete_Collection. Note that the Collection_Interface will
contain an abstract method to create an iterator for the Collection. This method is implemented in the
Concrete_Collection class and when the client calls the method, a Concrete_Iterator is created and
passed to the client to use.

Starting in version 1.2, Java contained the Java Collections Framework (JCF) that included a
number of new classes and interfaces to allow you to create collections of objects, including an Iterator
interface. All of these new types contained iterators. Java even included (just for collections of type List)
an expanded Iterator called a ListIterator. With the ListIterator you can go backwards through the
list.

Typical Iterator code in Java using both the Iterator and the ListIterator implementations:

/**
 * Iterate through elements Java ArrayList using an Iterator
 * We then use ListIterator to go backwards through the same
 * ArrayList
*/

import java.util.ArrayList;
import java.util.Iterator;
import java.util.ListIterator;

public class ArrayListIterator {
 public static void main(String[] args) {
 //create an ArrayList object
 ArrayList<Integer> arrayList = new ArrayList<Integer>();
 //Add elements to Arraylist
 arrayList.add(1);
 arrayList.add(3);
 arrayList.add(5);
 arrayList.add(7);
 arrayList.add(11);
 arrayList.add(13);
 arrayList.add(17);

CHAPTER 11 DESIGN PATTERNS

150

 //get an Iterator object for ArrayList

 Iterator iter = arrayList.iterator();

 System.out.println("Iterating through ArrayList elements");
 while(iter.hasNext()) {
 System.out.println(iter.next());
 }

 ListIterator list_iter = arrayList.listIterator(arrayList.size());

 System.out.println("Iterating through ArrayList backwards");
 while(list_iter.hasPrevious()) {
 System.out.println(list_iter.previous());
 }
 }
}

Note that when we create the ListIterator object, we pass it the number of elements in the
ArrayList. This is to set the cursor that the ListIterator object uses to point to just past the last element
in the ArrayList so it can then look backwards using the hasPrevious() method. In both the Iterator
and ListIterator implementations in Java, the cursor always points between two elements so that the
hasNext() and hasPrevious() method calls make sense; for example, when you say iter.hasNext(),
you’re asking the iterator if there is a next element in the collection. Figure 11-5 is the abstraction of
what the cursors look like.

Figure 11-5. Cursors in the Iterator Abstraction

Finally, some iterators will allow you to insert and delete elements in the collection while the
iterator is running. These are called robust iterators. The Java ListIterator interface (not the Iterator)
allows both insertion (via the add() method) and deletion (via the remove() method) in an iterator with
restrictions. The add() method only adds to the position immediately before the one that would be the
next element retrieved by a next() or immediately after the next element that would be returned by a
previous() method call. The remove() method can only be called between successive next() or previous()
method calls, it can’t be called twice in a row, and never immediately after an add() method call.

The Observer Pattern
I love NPR’s Talk of the Nation: Science Friday radio show (http://sciencefriday.com). But I hardly get
to listen to it when it is broadcast because it’s on from 2:00–4:00 PM EST on Fridays and, because I work
for a living (snicker), I can’t listen to it then. But I subscribe to the podcast and so every Saturday
morning I get a new podcast of SciFri so I can listen to it on my iPod while I mow the lawn. If I ever get
tired of SciFri, I can just unsubscribe and I won’t get any new podcasts. That, ladies and gentlemen, is
the Observer Pattern.

http://sciencefriday.com

CHAPTER 11 DESIGN PATTERNS

151

According to the Gang of Four, the Observer Pattern “...defines a one-to-many dependency between
objects so that when one object changes state, all of its dependents are notified and updated
automatically.”10 So in my SciFri example, NPR is the “publisher” of the SciFri podcast, and all of us who
“subscribe” (or register) to the podcast are the observers. We wait for the SciFri state to change (a new
podcast gets created) and then we get updated automatically by the publisher. How the updates happen
differentiates between two different types of Observer – push and pull. In a push Observer, the Publisher
(also known as the Subject in object-oriented speak) changes state and then pushes the new state out to
all the Observers. In a pull Observer, the Subject changes state, but doesn’t provide a full update until the
Observers ask for it – they pull the update from the Subject. In a variation of the pull model, the Subject
may provide a minimal update to all the Observers notifying them that the state has changed, but the
Observers still need to ask for the details of the new state.

So with the Observer pattern, we need a Subject interface so that the Subject and the Observer and
the Client all can tell what the state interface they’re using is. We also need an Observer interface that
just tells us how to update an Observer. Our publisher will then implement the Subject interface and the
different “listeners” will implement the Observer interface. Figure 11-6 is a UML diagram of this.

Figure 11-6. The canonical Observer Pattern

The client class is missing, but it will use both the ConcreteSubject and ConcreteObserver classes.
Here’s a simple implementation of a push model version of all of these. Remember, it’s push model
because the ConcreteSubject object is notifying all the Observers whether they request it or not.

First, the Subject interface that tells us how to register, remove, and notify the Observers.

public interface Subject
{
 public void addObserver(Observer obs);
 public void removeObserver(Observer obs);
 public void notifyAllObservers();
}

Next, the implementation of the Subject interface. This class is the real publisher, so it also needs
the attributes that form the state of the Subject. In this simple version we use an ArrayList to hold all the
Observers.

import java.util.ArrayList;

10Gamma et. al, 1995.

CHAPTER 11 DESIGN PATTERNS

152

public class ConcreteSubject implements Subject
{
 private ArrayList<Observer> observerList;
 // these two variables are our state
 private int foo;
 private String bar;

 public ConcreteSubject() {
 observerList = new ArrayList<Observer>();
 this.foo = 0;
 this.bar = "Hello";
 }

 public void addObserver(Observer obs) {
 observerList.add(obs);
 }

 public void removeObserver(Observer obs) {
 observerList.remove(obs);
 }

 public void notifyAllObservers() {
 for (Observer obs: observerList) {
 obs.update(this.foo, this.bar);
 }
 }

 public void setState(int foo, String bar) {
 this.foo = foo;
 this.bar = bar;
 notifyAllObservers();
 }
}

Next, the Observer interface that tells us how to update our Observers.

public interface Observer
{
 public void update(int foo, String bar);
}

And then the implementation of the Observer interface.

public class ConcreteObserver implements Observer
{
 private int foo;
 private String bar;
 Subject subj;

 /**
 * Constructor for objects of class ConcreteObserver
 */
 public ConcreteObserver(Subject subj) {

CHAPTER 11 DESIGN PATTERNS

153

 this.subj = subj;
 subj.addObserver(this);
 }

 public void update(int foo, String bar)
 {
 this.foo = foo;
 this.bar = bar;
 show();
 }

 private void show() {
 System.out.printf("Foo = %s Bar = %s\n", this.foo, this.bar);
 }
}

And finally, the driver program that creates the publisher and each of the observers and puts them
all together.

public class ObserverDriver
{
 public static void main(String [] args) {
 ConcreteSubject subj = new ConcreteSubject();

 ConcreteObserver obj = new ConcreteObserver(subj);

 subj.setState(12, "Monday");
 subj.setState(17, "Tuesday");
 }
}

And the output of executing the driver (which all comes from the show() method in the
ConcreteObserver object will look like:

Foo = 12 Bar = Monday

Foo = 17 Bar = Tuesday

In many ways, the Observer design pattern works like the Java events interface. In Java you create a
class that registers as a “listener” (our Observer) for a particular event type. You also create a method
that is the actual observer and which will respond when the event occurs. When an event of that type
occurs, the Java events object (our Subject) notifies your observer by making a call to the method you
wrote, passing the data from the event to the observer method – Java events use the push model of the
Observer pattern.

For example, if you create a Button object in a Java program, you use the addActionListener()
method of the Button object to register to observe ActionEvents. When an ActionEvent occurs all the
ActionListeners are notified by having a method named actionPerformed() called. This means that your
Button object must implement the actionPerformed() method to handle the event.

CHAPTER 11 DESIGN PATTERNS

154

The Strategy Pattern
Sometimes you have an application where you have several ways of doing a single operation or you have
several different behaviors, each with a different interface. One of the ways to implement something like
this is using a switch statement like so:

switch (selectBehavior) {
 case Behavior1:
 Algorithm1.act(foo);
 break;
 case Behavior2:
 Algorithm2.act(foo, bar);
 break;
 case Behavior3:
 Algorithm3.act(1, 2, 3);
 break;
}

The problem with this type of construct it that if you add another behavior, you need to change this
code and potentially all the other code that has to select different behaviors. Not good.

The Strategy design pattern gets you around this. It says that if you have several behaviors
(algorithms) you need to select from dynamically, you should make sure that they all adhere to the same
interface – a Strategy interface – and then that they are selected dynamically via a driver, called the
Context, that is told which to call by the client software. The Strategy pattern embodies two of our
fundamental object-oriented design principles—encapsulate the idea that varies and code to an
interface, not an implementation. Figure 11-7 is what a Strategy setup will look like.

Figure 11-7. A typical Strategy Pattern layout

Some examples of when you might use the Strategy pattern are

• Capture video using different compression algorithms

• Compute taxes for different types of entities (people, corporations, non-profits)

• Plot data in different formats (line graphs, pie charts, bar graphs)

• Compress audio files using different formats

In each of these examples you can think of having the application program telling a driver – the
Context – which of the strategies to use and then asking the Context to perform the operation.

CHAPTER 11 DESIGN PATTERNS

155

As an example, let’s say you are a newly minted CPA and you’re trying to write your own software to
compute your customers tax bills. (Why a CPA would write her own tax program, I have no idea; work
with me on this.) Initially, you’ve divided your customers into individuals who only file personal income
taxes, corporations who file corporate income taxes, and not-for-profit organizations who file hardly any
taxes at all. Now, all of these groups have to compute taxes so the behavior of a class to compute taxes
should be the same for all; but they’ll compute taxes in different ways. So what we need is a Strategy
setup that will use the same interface – to encapsulate what varies in our application, and to code the
concrete classes to an interface – and allow our client class to select which type of tax customer to use.
Figure 11-8 is a diagram of what our program will look like.

Figure 11-8. Using the Strategy pattern to select a Tax behavior

We create a TaxStrategy interface that all the concrete TaxStrategy classes will implement.

public interface TaxStrategy {
 public double computeTax(double income);
}

Since the only thing that varies here is how the tax is computed, our TaxStrategy interface just
includes the computeTax() method.

Then we create each of the concrete TaxStrategy classes, each of which implement the tax
computation for that particular type of customer

public class PersonalTaxStrategy implements TaxStrategy {
 private final double RATE = 0.25;

 public double computeTax(double income) {
 if (income <= 25000.0) {
 return income * (0.75 * RATE);
 } else {
 return income * RATE;
 }
 }
}

CHAPTER 11 DESIGN PATTERNS

156

public class CorpTaxStrategy implements TaxStrategy {

 private final double RATE = 0.45;

 public double computeTax(double income) {
 return income * RATE ;
 }
}

public class NFPTaxStrategy implements TaxStrategy {
 private final double RATE = 0.0;

 public double computeTax(double income) {
 return income * RATE;
 }
}

Next, we create the Context class that does the heavy lifting of creating strategy objects requested by
the client program and executing the correct ones.

public class TaxPayerContext {
 private TaxStrategy strategy;
 private double income;
 /** constructor for Context */
 public TaxPayerContext(TaxStrategy strategy, double income) {
 this.strategy = strategy;
 this.income = income;
 }
 public double getIncome() {
 return income;
 }
 public void setIncome(double income) {
 this.income = income;
 }
 public TaxStrategy getStrategy() {
 return strategy;
 }
 public void setStrategy(TaxStrategy strategy) {
 this.strategy = strategy;
 }
 public double computeTax() {
 return strategy.computeTax(income);
 }
}

Note that here we write a separate version of the computeTax() method (we’re not overriding the
method because we’re not extending any of the concrete classes – the Strategy pattern uses composition,
not inheritance). This version calls the computeTax() method of the strategy that the client has selected.

Finally, we implement the client that controls who gets instantiated and when.

public class StrategyClient {
 public static void main(String [] args) {
 double income;

CHAPTER 11 DESIGN PATTERNS

157

 TaxPayerContext tp;

 income = 35000.00;
 tp = new TaxPayerContext(new PersonalTaxStrategy(),
 income);
 System.out.println("Tax is " + tp.computeTax());

 tp.setStrategy(new CorpTaxStrategy());
 System.out.println("Tax is " + tp.computeTax());
 }
}

The client class selects which algorithm to use and then gets the context object to execute it. This
way we’ve encapsulated the tax computation in separate classes. We can easily add new customer types
just by adding new concrete TaxStrategy classes and making the change in the client to use that new
concrete type. Piece of cake!

Conclusion
Design Patterns are a reusable, commonly occurring core solution to a design problem. They are not a
finished design. Rather a design pattern is a template you can use to solve similar problems in many
different domains. Design patterns offer you proven strategies for solving common proglems and so they
can help speed up your design process. And because these patterns describe proven solutions they can
help reduce defects in your design as well.

Be careful, though. Like all design techniques, design patterns are heuristics and so there will be
cases where they just don't fit. Trying to squeeze a pattern into a problem where it just doesn't belong is
adking for trouble.

The goal of design patterns is to define a common vocabulary for design. They may not get us all the
way there but design patterns, plus the design principles described in Chapter 10, get us a long way
down that road.

References
Alexander, C., S. Ishikawa, et al. A Pattern Language: Towns, Buildings, Construction. (Oxford, UK:

Oxford University Press, 1977.)

Freeman, E. and E. Freeman Head First Design Patterns. (Sebastopol, CA: O’Reilly Media, Inc., 2004.)

Gamma, E., Helm, R., Johnson, R., Vlissides. Design Patterns: Elements of Reusable Object-Oriented

Software. (Boston, MA: Addison-Wesley, 1995.)

Krasner, G. E. and S. T. Pope. “A cookbook for using the Model-View-Controller user interface paradigm

in Smalltalk-80.” Journal of Object-Oriented Programming 1(3): 26-49. 1988.

Lieberherr, K., I. Holland, et al. Object-Oriented Programming: An Objective Sense of Style. OOPSLA ’88,

Association for Computing Machinery, 1988.

Martin, R. C. Agile Software Development: Principles, Patterns, and Practices. (Upper Saddle River, NJ:

Prentice Hall, 2003.)

C H A P T E R 12

159

Code Construction

Mostly, when you see programmers, they aren’t doing anything. One of the attractive
things about programmers is that you cannot tell whether or not they are working
simply by looking at them. Very often they’re sitting there seemingly drinking coffee
and gossiping, or just staring into space. What the programmer is trying to do is get a
handle on all the individual and unrelated ideas that are scampering around in his
head.

—Charles M. Strauss

Great software, likewise, requires a fanatical devotion to beauty. If you look inside
good software, you find that parts no one is ever supposed to see are beautiful too. I’m
not claiming I write great software, but I know that when it comes to code I behave in
a way that would make me eligible for prescription drugs if I approached everyday life
the same way. It drives me crazy to see code that’s badly indented, or that uses ugly
variable names.

—Paul Graham, “Hackers and Painters,” 2003

Well, finally we’re getting to the real heart of software development – writing the code. The assumption
here is that you already do know how to write code in at least one programming language; this chapter
presents examples in a few languages, each chosen for the appropriate point being made. The purpose
of this chapter is to provide some tips for writing better code. Because we can all write better code.

For plan-driven process folks (see Chapter 2), coding is the tail that wags the development-process
dog. Once you finish detailed requirements, architecture, and detailed design, the code should just flow
out of the final design, right? Not. In 20 years of industry software development experience, I never saw
this happen. Coding is hard; translating even a good, detailed design into code takes a lot of thought,
experience, and knowledge, even for small programs. Depending on the programming language you are
using and the target system, programming can be a very time-consuming and difficult task. On the other
hand, for very large projects that employ dozens or even hundreds of developers, having a very detailed
design is critical to success, so don’t write off the plan-driven process just yet.

For the agile development process folks, coding is it. The agile manifesto
(http://agilemanifesto.org) says it at the very beginning, “Working software over comprehensive
documentation.” Agile developers favor creating code early and often; they believe in delivering software

http://agilemanifesto.org

CHAPTER 12 CODE CONSTRUCTION

160

to their customers frequently, and using feedback from the customers to make the code better. They
welcome changes in requirements and see them as an opportunity to refactor the code and make the
product more usable for their customer. This doesn’t mean that coding gets any easier when using an
agile process; it means that your focus is different. Rather than focus on requirements and design and
getting them nailed down as early as possible, in agile processes you focus on delivering working code to
your customer as quickly and as often as possible. You change the code often, and the entire team owns
all the code and so has permission to change anything if it's appropriate.

Your code has two audiences:

• The machine that’s the target of the compiled version of the code, what will
actually get executed.

• The people, including yourself, who will read it in order to understand it and
modify it.

To those ends, your code needs to fulfill the requirements, implement the design, and also be
readable and easy to understand. We’ll be focusing on the readability and understandability parts of
these ends first, and then look at some issues related to performance and process. This chapter will not
give you all the hints, tips, and techniques for writing great code; there are entire books for that, some of
which are in the references at the end of this chapter. Good luck!

Before we continue, I’d be remiss if I didn’t suggest the two best books on coding around. The first is
Steve McConnell’s Code Complete 2: A Practical Handbook of Software Construction, a massive, 960-
page, tome that takes you through what makes good code.1 McConnell discusses everything from
variable names, to function organization, to code layout, to defensive programming, to controlling
loops. It is in McConnell’s book where the “software construction” metaphor comes from. The metaphor
suggests that building a software application is similar to constructing a building. Small buildings (Fido’s
dog house, for example) are easier to build, require less planning, and are easier to change (refactor) if
something goes wrong. Larger buildings (your house) require more detail, more planning, and more
coordination largely because it’s more than a one-person job. Really big buildings (skyscrapers) require
many detailed levels of both design and planning, close coordination, and many processes to handle
change and errors. Although the building construction model isn’t perfect – it doesn’t handle
incremental development well and McConnell also talks about an accretion model where one layer of
software is added to an existing layer much like a pearl is created in an oyster – the metaphor gives you a
clear view of the idea that software gets much more complicated and difficult to build, the larger it gets.

The second classic book is Hunt and Thomas’, The Pragmatic Programmer.2 The book is organized
as 46 short sections containing 70 tips that provide a clear vision of how you should act as a
programmer. It provides practical advice on a range of topics from source code control, to testing, to
assertions, to the DRY principle, some of which we’ll cover later in this chapter. Hunt and Thomas
themselves do the best job of describing what the book and what pragmatic programming is all about,

Programming is a craft. At its simplest, it comes down to getting a computer to do
what you want it to do (or what your user wants it to do). As a programmer, you are

1 McConnell, S. Code Complete 2: A Practical Handbook of Software Construction. Redmond, WA,

Microsoft Press, 2004).

2 Hunt, A. and D. Thomas. The Pragmatic Programmer: From Journeyman to Master. (Boston, MA:

Addison-Wesley, 2000).

CHAPTER 12 CODE CONSTRUCTION

161

part listener, part advisor, part interpreter, and part dictator. You try to capture
elusive requirements and find a way of expressing them so that a mere machine can
do them justice. You try to document your work so that others can understand it, and
you try to engineer your work so that others can build on it. What’s more, you try to do
all this against the relentless ticking of the project clock. You work small miracles
every day. It’s a difficult job.3

A coding example
In Code Complete, Steve McConnell gives an example of bad code that is worth examining so we can
begin to see what the issues of readability, usability, and understandability are about. I’ve converted it
from C++ to Java, but the example is basically McConnell’s.4 Here’s the code; we’ll look for what’s wrong
with it.

void HandleStuff(CORP_DATA inputRec, int crntQtr, EMP_DATA empRec, Double estimRevenue,
 double ytdRevenue, int screenx, int screeny, Color newColor, Color prevColor, StatusType
 status, int expenseType) {
int i;
for (i = 0; i < 100; i++)
 {
 inputRec.revenue[i] = 0;
 inputRec.expense[i] = corpExpense[crntQtr][i];
 }
UpdateCorpDatabase(empRec);
estimRevenue = ytdRevenue * 4.0 / (double) crntQtr;
newColor = prevColor;
status = SUCCESS;
if (expenseType == 1) {
 for (i = 0; i < 12; i++)
 profit[i] = revenue[i] – expense.type1[i];
 }
else if (expenseType == 2) {
 profit[i] = revenue[i] – expense.type2[i];
 }
else if (expenseType == 3)
 profit[i] = revenue[i] – expense.type3[i];
 }

So what’s wrong with this code? Well, what isn’t? Let's make a list

• Because this is Java, it should have a visibility modifier. No, it’s not required, but
you should always put one in. You are not writing for the compiler here, you are
writing for the human. Visibility modifiers make things explicit for the human
reader.

3 Hunt, 2000.
4 McConnell, 2004, p. 162.

CHAPTER 12 CODE CONSTRUCTION

162

• The method name is terrible. HandleStuff doesn’t tell you anything about what
the method does.

• Oh, and the method does too many things. It seems to compute something called
profit based on an expenseType. But it also seems to change a color and indicate a
success. Methods should be small. They should do just one thing.

• Where are the comments? There is no indication of what the parameters are or
what the method is supposed to do. All methods should tell you at least that.

• The layout is just awful. And it’s not consistent. The indentation is wrong.
Sometimes the curly braces are part of the statement, and sometimes they’re
separators. And are you sure that that last right curly brace really ends the
method?

• The method doesn’t protect itself from bad data. If the crntQtr variable is zero,
then the division in line 8 will return a divide-by-zero exception.

• The method uses magic numbers including 100, 4.0, 12, 2, and 3. Where do they
come from? What do they mean? Magic numbers are bad.

• The method has way too many input parameters. If we knew what the method was
supposed to do maybe we could change this.

• There are also at least two input parameters – screenx and screeny – that aren’t
used at all. This is an indication of poor design; this method’s interface may be
used for more than one purpose and so it is “fat,” meaning it has to accommodate
all the possible uses.

• The variables corpExpense and profit are not declared inside the method, so they
are either instance variables or class variables. This can be dangerous. Because
instance and class variables are visible inside every method in the class, we can
also change their values inside any method, generating a side effect. Side effects
are bad.

• Finally, the method doesn’t consistently adhere to the Java naming conventions.
Tsk, tsk.

So this example is terrible code for a bunch of different reasons. In the rest of the chapter we’ll take a
look at the general coding rules that are violated here and give suggestions for how to make your code
correct, readable, and maintainable.

Functions and Methods and Size, Oh My!
First things first. Your classes, functions, and methods should all do just one thing. This is the
fundamental idea behind encapsulation. Having your methods do just one thing isolates errors and
makes them easier to find. It encourages re-use because small, single feature methods are easier to use
in different classes. Single feature (and single layer of abstraction) classes are also easier to re-use.

Single feature implies small. Your methods/functions should be small. And I mean small – 20 lines
of executable code is a good upper bound for a function. Under no circumstances should you write 300
line functions. I know, I’ve done it. It’s not pretty. Back in Chapter 7 we talked about stepwise refinement
and modular decomposition. Taking an initial function definition and re-factoring it so that it does just a
single small thing will decompose your function into two or more smaller, easier to understand and

CHAPTER 12 CODE CONSTRUCTION

163

easier to maintain functions. Oh, and as we’ll see in Chapter 14, smaller functions are easier to test
because they require fewer unit tests (they have fewer ways to get through the code). As the book said,
Small is Beautiful.

Formatting, Layout, and Style
Formatting, layout, and style are all related to how your code looks on the page. It turns out that, as we
saw above, that how your code looks on the page is also related to its correctness. McConnell’s
Fundamental Theorem of Formatting says “good visual layout shows the logical structure of a program.”5
Good visual layout not only makes the program more readable, it helps reduce the number of errors
because it shows how the program is structured. The converse is also true; a good logical structure is
easier to read. So the objectives of good layout and formatting should be

• to accurately represent the logical structure of your program;

• to be consistent so there are few exceptions to whatever style of layout you’ve
chosen;

• to improve readability for humans; and

• to be open to modifications. (You do know you’re code is going to be modified,
right?)

General Layout Issues and Techniques
Most layout issues have to do with laying out blocks of code; there are different types of block layout,
some of which are built into languages, some you get to choose on your own. The three most prevalent
kinds of block layouts are built-in block boundaries, begin-end block boundaries, and emulating built-in
blocks.

Some languages have built-in block boundaries for every control structure in the language. In this
case you have no choice; because the block boundary element is a language feature you must use it.
Languages that have built-in block boundaries include Ada, PL/1, Lisp and Scheme, and Visual Basic. As
an example, an if-then statement in Visual Basic looks like

if income > 25000 then
 statement1
 statement2
else
 statement3
 …
end if

You can’t write a control structure in Visual Basic without using the ending block element, so blocks
are easier to find and distinguish.

But, most languages don’t have built-in block boundary lexical elements. Most languages use a
begin-end block boundary requirement. With this requirement, a block is a sequence of zero or more
statements (where a statement has a particular definition) that is delimited by begin and end lexical

5 McConnell, 2004.

CHAPTER 12 CODE CONSTRUCTION

164

elements. The most typical begin and end elements are the keywords begin and end, or left and right
curly braces { and }. So, for example

Pascal:
if income > 25000 then
 begin
 statement1;
 statement2
 end
else
 statement3;

C/C++/Java:
if (income > 25000)
{
 statement1;
 statement2;
} else
 statement3;

Note in both examples that a single statement is considered a block and does not require the block
delimiter elements. Note also in Pascal the semi-colon is the statement separator symbol, so is required
between statements, but because else and end are not the end of a statement, you don’t use a semi-
colon right before else or end (confused? most people are); in C, C++, and Java, the semi-colon is the
statement terminator symbol, and must be at the end of every statement. This is easier to remember and
write; you just pretty much put a semi-colon everywhere except after curly braces. Simplicity is good.

Finally, when we format a block we can try to emulate the built-in block boundary in languages that
don’t have it by requiring that every block use the block delimiter lexical elements.

C/C++/Java:
if (income > 25000) {
 statement1;
 statement2;
} else {
 statement3;
}

In this example, we want to pretend that the left and right curly braces are part of the control
structure syntax, and so we use them to delimit the block, no matter how large it is. To emphasize that
the block delimiter is part of the control structure, we put it on the same line as the beginning of the
control statement. We can then line up the closing block boundary element with the beginning of the
control structure. This isn’t a perfect emulation of the built-in block element language feature, but it
comes pretty close and has the advantage that you’re less likely to run into problems with erroneous
indentation like the following:

C/C++/Java:
if (income > 25000)

CHAPTER 12 CODE CONSTRUCTION

165

 statement1;
 statement2;
 statement3;

In this example, the erroneous indentation for statement2 and statement3 can lead the reader to
believe that they are part of the if statement. The compiler is under no such illusions.

Overall, using an emulating block-boundaries style works very well, is readable, and clearly
illustrates the logical structure of your program. It’s also a great idea to put block boundaries around
every block, including just single statement blocks. That lets you eliminate the possibility of the
erroneous indentation error above. So if you say

if (income > 25000) {
 statement1;
}

it's then clear that in

if (income > 25000) {
 statement1;
}
 statement2;
 statement3;

that statement2 and statement3 are not part of the block, regardless of their indentation. It also means
that you can now safely add extra statements to the block without worrying about whether they are in
the block or not

if (income > 25000) {
 statement1;
 statement2;
 statement3;
 statement4;
 statement5;
}

White Space
White space is your friend. You wouldn’t write a book with no spaces between words, or line breaks
between paragraphs, or no chapter divisions, would you? Then why would you write code with no white
space? White space allows you to logically separate parts of the program and to line up block separators
and other lexical elements. It also lets your eyes rest between parts of the program. Resting your eyes is a
good thing. The following are some suggestions on the use of white space:

• Use blank lines to separate groups (just like paragraphs).

• Within a block align all the statements to the same tab stop (the default tab width
is normally four spaces).

• Use indentation to show the logical structure of each control structure and block.

• Use spaces around operators.

• In fact, use spaces around array references and function/method arguments as
well.

CHAPTER 12 CODE CONSTRUCTION

166

• Do not use double indentation with begin-end block boundaries.

Block and Statement Style Guidelines
As mentioned previously, the “emulating block boundaries” style works well for most block-structured
languages.

• Use more parentheses than you think you’ll need. I especially use parentheses
around all my arithmetic expressions – mostly just to make sure I haven’t screwed
up the precedence rules.

fx = ((a + b) * (c + d)) / e;

• Format single statement blocks consistently. Using the emulating block-
boundaries technique:

if (average > MIN_AVG) {
 avg = MIN_AVG;
}

• For complicated conditional expressions, put separate conditions on separate
lines.

if (('0' <= inChar && inChar <= '9') ||
 ('a' <= inChar && inChar <= 'z') ||
 ('A' <= inChar && inChar <= 'Z')) {
 mytext.addString(inChar);
 mytext.length++;
}

• Wrap individual statements at column 70 or so. This is a holdover from the days of
80-column punch cards, but it’s also a great way to make your code more
readable. Having very long lines of code forces your readers to scroll horizontally,
or it makes them forget what the heck was at the beginning of the line!

• Don’t use goto, no matter what Don Knuth says.6 Some languages, like Java, don’t
even have goto statements. Most don’t need them (assembly languages excepted).
Take the spirit of Knuth’s paper and only use gotos where they make real sense
and make your program more readable and understandable.

• Use only one statement per line. (Do not write code as if you were entering the
annual International Obfuscated C Code Contest! www.ioccc.org.) This

g.setColor(Color.blue); g.fillOval(100, 100, 200, 200);
mytext.addString(inChar);mytext.length++;System.out.println();

• is legal, but just doesn’t look good, and it’s easy to just slide right over that
statement in the middle. This

6 Knuth, D. “Structured Programming with goto Statements.” ACM Computing Surveys 6(4): 261-301.

1974.

http://www.ioccc.org

CHAPTER 12 CODE CONSTRUCTION

167

g.setColor(Color.blue);
g.fillOval(100, 100, 200, 200);

mytext.addString(inChar);
mytext.length++;
System.out.println();

• looks much, much better.

Declaration Style Guidelines
Just like in writing executable code, your variable declarations need to be neat and readable.

• Use only one declaration per line. Well, I go both ways on this one. While I think
that

int max,min,top,left,right,average,bottom,mode;

• is a bit crowded; I’d rewrite this as

int max, min;
int top, bottom;
int left, right;
int average, mode;

• Not one per line, but the variables that are related are grouped together. That
makes more sense to me.

• Declare variables close to where they are used. Most procedural and object-
oriented programming languages have a declaration before use rule, requiring that
you declare a variable before you can use it in any expression. In the olden days,
say in Pascal, you had to declare variables at the top of your program (or
subprogram) and you couldn’t declare variables inside blocks. This had the
disadvantage that you might declare a variable pages and pages before you’d
actually use it. (But see the section later in this chapter where I talk about how
long your functions should be.)

• These days you can normally declare variables in any block in your
program. The scope of that variable is the block in which it is declared and all the
blocks inside that block.

• This tip says that it’s a good idea to declare those variables in the closest
block in which they are used. That way you can see the declaration and the use the
variables right there.

• Order declarations sensibly

• Group by types and usage (see the previous example).

• Use white space to separate your declarations. Once again, white space is
your friend. The key idea in these last couple of tips is to make your
declarations visible and to keep them near the code where they will be used.

CHAPTER 12 CODE CONSTRUCTION

168

• Don’t nest header files – ever! (This is for you C and C++ programmers.) Header
files are designed so that you only need to define constants, declare global
variables, and declare function prototypes once, and you can then re-use the
header file in some (possibly large) number of source code files. Nesting header
files hides some of those declarations inside the nested headers. This is bad –
because visibility is good. It allows you to erroneously include a header file more
than once, which leads to redefinitions of variables and macros and errors.

The only header files you might nest in your own header files are system headers
like stdio.h or stdlib.h and I’m not even sure I like that.

• Don’t put source code in your header files – ever! (Again, this is for you C and C++
programmers.) Headers are for declarations, not for source code. Libraries are for
source code. Putting a function in a header file means that the function will be re-
defined every place you include the header. This can easily lead to multiple
definitions – which the compiler may not catch until the link phase. The only
source that should be in your headers are macro definitions in #define pre-
processor statements and even those should be used carefully.

Commenting Style Guidelines
Just like white space, comments are your friend. Every programming book in existence tells you to put
comments in your code – and none of them (including this one) tell you just where to put comments,
and what a good comment should look like. That’s because how to write good, informative comments
falls in the “it depends” category of advice. A good, informative comment depends on the context in
which you are writing it, so general advice is pretty useless. The only good advice about writing
comments is – just do it. Oh, and since you’ll change your code – do it again. That’s the second hardest
thing about comments – keeping them up to date. So here’s my piece of advice, write comments when
you first write your program. This gives you an idea of where they should be. Then, when you finish your
unit testing of a particular function, write a final set of comments for that function by updating the ones
that are already there. That way, you’ll come pretty close to having an up-to-date set of comments in the
released code.

• Indent a comment with its corresponding statement. This is important for
readability because then the comment and the code line up.

/* make sure we have the right number of arguments */
if (argc < 2) {
 fprintf(stderr, "Usage: %s <filename>\n", argv[0]);
 exit(1);
}

• Set off block comments with blank lines. Well, I go both ways on this one. If you
line up the start and end of the block comments on lines by themselves, then you
don’t need the blank lines. If, on the other hand, you stick the end of comment
marker at the end of a line, you should use a blank line to set it apart from the
source code. So if you do this

/*
 * make sure we have the right number of arguments
 * from the command line
 */

CHAPTER 12 CODE CONSTRUCTION

169

if (argc < 2) {
 fprintf(stderr, "Usage: %s <filename>\n", argv[0]);
 exit(1);
}

• you don’t need the blank line; but if you do

/* make sure we have the right number of arguments
 from the command line */

if (argc < 2) {
 fprintf(stderr, "Usage: %s <filename>\n", argv[0]);
 exit(1);
}

• then you do (but I wouldn’t recommend this style in the first place).

• Don’t let comments wrap – use block comments instead. This usually occurs if
you tack a comment onto the end of a line of source code

if (argc < 2) { // make sure we have the right number of arguments from the
command line

• Don’t do this. Make this a block comment above the if statement instead
(see the bullet point above). It’s just way easier to read.

• All functions/methods should have a header block comment. The purpose of this
bit of advice is so that your reader knows what the method is supposed to do. The
necessity of this is mitigated if you use good identifier names for the method name
and the input parameters. Still, you should tell the user what the method is going
to do and what the return values, if any are. See the tip below for the version of this
advice for Java programmers. In C++ we can say:

#include <string>
/*
 * getSubString() - get a substring from the input string.
 * The substring starts at index start
 * and goes up to but doesn't include index stop.
 * returns the resulting substring.
 */
string getSubString(string str, int start, int stop) { }

• In Java use JavaDoc comments for all your methods. JavaDoc is built into the Java
environment and all Java SDKs come with the program to generate JavaDoc web
pages, so why not use it? JavaDoc can provide a nice overview of what your class is
up to at very little cost. Just make sure and keep those comments up to date!

/**
 * getSubString() - get a substring from the input string.
 * The substring starts at index start
 * and goes up to but doesn't include index stop.
 * @param str the input string
 * @param start the integer starting index
 * @param stop the integer stopping index
 * @return the resulting substring.

CHAPTER 12 CODE CONSTRUCTION

170

 */
String getSubString(String str, int start, int stop) { }

• Use fewer, but better comments. This is one of those useless motherhood and
apple pie pieces of advice that everyone feels obliged to put in any discussion of
comments. OK, so you don’t need to comment ever line of code. Everyone knows
that

index = index + 1; // add one to index

• is pretty stupid. So don’t do it. Enough said.

• “Self-documenting code” is an ideal. Self documenting code is the Holy Grail of
lazy programmers who don’t want to take the time to explain their code to
readers. Get over it. Self documenting code is the Platonic ideal of coding that
assumes that everyone who reads your code can also read your mind. If you have
an algorithm that’s at all complicated, or input that is at all obscure, you need to
explain it. Don’t depend on the reader to grok every subtlety of your code. Explain
it. Just do it.

Identifier Naming Conventions
As Rob Pike puts it so well in his terrific white paper on programming style, “Length is not a virtue in a
name; clarity of expression is.”7As Goldilocks would put it, you need identifier names that are not too
long, not too short, but just right. Just like comments, this means different things to different people.
Common sense and readability should rule.

• All identifiers should be descriptive.
Remember, someday you may be back to look at your code again. Or, if you’re
working for a living, somebody else will be looking at your code. Descriptive
identifiers make it much, much easier to read your code and figure out what you
were trying to do at 3:00 AM. A variable called interestRate is much easier to
understand than ir. Sure, ir is shorter and faster to type, but believe me, you’ll
forget what it stood for about 10 minutes after you ship that program. Reasonably
descriptive identifiers can save you a lot of time and effort.

• OverlyLongVariableNamesAreHardToRead (and type)
On the other hand, don’t make your identifiers too long. For one thing they are
hard to read, for another they don’t really add anything to the context of your
program, they use up too much space on the page, and finally, they’re just plain
ugly.

• Andtheyareevenharderwhenyoudontincludeworddivisions

7 Pike, Rob, Notes on Programming in C, retrieved from

http://www.literateprogramming.com/pikestyle.pdf on 29 September 2010. 1999.

6

http://www.literateprogramming.com/pikestyle.pdf

CHAPTER 12 CODE CONSTRUCTION

171

Despite what Rob Pike says [Pike80, p. 2], using camel case (those embedded
capital letters that begin new words in your identifiers) can make your code easier
to read. Especially if the identifier isn’t overly long. At least to me, maxPhysAddr is
easier to read than maxphysaddr.

• And single-letter variable names are cryptic, but useful.

Using single letter variable names for things like mortgage payments, window
names, or graphics objects is not a good example of readability. M, w, and g don’t
mean anything even in the context of your code. mortpmnt, gfxWindow, gfxObj have
more meaning. The big exception here is variables intended as index values – loop
control variables and array index variables. Here, i, j, k, l, m, etc. are easily
understandable, although I wouldn’t argue about using index, or indx instead.

for (int i = 0; i < myArray.length; i++) {
 myArray[i] = 0;
}

• looks much better and is just as understandable as

for (int arrayIndex = 0; arrayIndex < myArray.length; arrayIndex++) {
 myArray[arrayIndex] = 0;
}

• Adhere to the programming language naming conventions when they exist.

• Somewhere, sometime, you’ll run into a document called Style Guide or
something like that. Nearly every software development organization of any size
has one. Sometimes you’re allowed to violate the guidelines, and sometimes
during a code review you’ll get dinged for not following the guidelines and have to
change your code.

• If you work in a group with more than one developer, style guidelines are a
good idea. They give all your code a common look and feel and they make it easier
for one developer to make changes to code written by somebody else.

• A common set of guidelines in a Style Guide is about naming conventions.
Naming conventions tell you what your identifier names should look like for each
of the different kind of identifiers. Java has a common set of naming conventions:

• For classes and interfaces: The identifier names should be nouns, using
both upper and lowercase alphanumerics and with the first character of the
name capitalized.

public class Automobile {}
public interface Shape {}

• For methods: The identifier names should be verbs, using both upper and
lowercase alphanumerics and with the first character of the name in lower
case.

private double computeAverage(int [] list)

• For variables: The identifier names should use both upper and lowercase
alphanumerics, with the first character of the name in lower case. Variable
names should not start with $ or _ (underscore).

CHAPTER 12 CODE CONSTRUCTION

172

double average;
String firstSentence;

• For all identifiers (except constants), camel case should be used, so that
internal words are capitalized.

long myLongArray;

• For constants: All letters should be uppercase and words should be
separated by underscores.

static final int MAX_WIDTH = 80;

Defensive Programming
By defensive programming we mean that your code should protect itself from bad data. The bad data
can come from user input via the command line, a graphical text box or form, or a file. Bad data can also
come from other routines in your program via input parameters like in the first example above.

How do you protect your program from bad data? Validate! As tedious as it sounds, you should
always check the validity of data that you receive from outside your routine. This means you should
check the following

• Check the number and type of command line arguments.

• Check file operations.

• Did the file open?

• Did the read operation return anything?

• Did the write operation write anything?

• Did we reach EOF yet?

• Check all values in function/method parameter lists.

• Are they all the correct type and size?

• You should always initialize variables and not depend on the system to do the
initialization for you.

What else should you check for? Well, here’s a short list:

• Null pointers (references in Java)

• Zeros in denominators

• Wrong type

• Out of range values

As an example, here’s a C program that takes in a list of house prices from a file and computes the
average house price from the list. The file is provided to the program from the command line.

/*
 * program to compute the average selling price of a set of homes.
 * Input comes from a file that is passed via the command line.

CHAPTER 12 CODE CONSTRUCTION

173

 * Output is the Total and Average sale prices for
 * all the homes and the number of prices in the file.
 *
 * jfdooley
 */
#include <stdlib.h>
#include <stdio.h>

int main(int argc, char **argv)
{
 FILE *fp;
 double totalPrice, avgPrice;
 double price;
 int numPrices;

 /* check that the user entered the correct number of args */
 if (argc < 2) {
 fprintf(stderr,"Usage: %s <filename>\n", argv[0]);
 exit(1);
 }

 /* try to open the input file */
 fp = fopen(argv[1], "r");
 if (fp == NULL) {
 fprintf(stderr, "File Not Found: %s\n", argv[1]);
 exit(1);
 }
 totalPrice = 0.0;
 numPrices = 0;

 while (!feof(fp)) {
 fscanf(fp, "%10lf\n", &price);
 totalPrice += price;
 numPrices++;
 }

 avgPrice = totalPrice / numPrices;
 printf("Number of houses is %d\n", numPrices);
 printf("Total Price of all houses is $%10.2f\n", totalPrice);
 printf("Average Price per house is $%10.2f\n", avgPrice);

 return 0;
}

Assertions Can Be Your Friend
Defensive programming means that using assertions is a great idea if your language supports them. Java,
C99, and C++ all support assertions. Assertions will test an expression that you give them and if the
expression is false, it will throw an error and normally abort the program. You should use error handling
code for errors you think might happen – erroneous user input, for example – and use assertions for
errors that should never happen – off by one errors in loops, for example. Assertions are great for testing

6

CHAPTER 12 CODE CONSTRUCTION

174

your program, but because you should remove them before giving programs to customers (you don’t
want the program to abort on the user, right?) they aren’t good to use to validate input data.

Exceptions and Error Handling
We’ve talked about using assertions to handle truly bad errors, ones that should never occur in
production. But what about handling “normal” errors? Part of defensive programming is to handle errors
in such a way that no damage is done to any data in the program or the files it uses, and so that the
program stays running for as long as possible (making your program robust).

Let's look at exceptions first. You should take advantage of built-in exception handling in whatever
programming language you’re using. The exception handling mechanism will give you information
about what bad thing has just happened. It’s then up to you to decide what to do. Normally in an
exception handling mechanism you have two choices, handle the exception yourself, or pass it along to
whoever called you and let them handle it. What you do and how you do it depends on the language
you’re using and the capabilities it gives you. We’ll talk about exception handling in Java later.

Error Handling
Just like with validation, you’re most likely to encounter errors in input data, whether it’s command line
input, file handling, or input from a graphical user interface form. Here we’re talking about errors that
occur at run time. Compile time and testing errors are covered in the next chapter on debugging and
testing. Other types of errors can be data that your program computes incorrectly, errors in other
programs that interact with your program, the operating system for instance, race conditions, and
interaction errors where your program is communicating with another and your program is at fault.

The main purpose of error handling is to have your program survive and run correctly for as long as
possible. When it gets to a point where your program cannot continue, it needs to report what is wrong
as best as it can and then exit gracefully. Exiting is the last resort for error handling. So what should you
do? Well, once again we come to the “it depends” answer. What you should do depends on what your
program’s context is when the error occurs and what its purpose is. You won’t handle an error in a video
game the same way you handle one in a cardiac pacemaker. In every case, your first goal should be – try
to recover.

Trying to recover from an error will have different meanings in different programs. Recovery means
that your program needs to try to either ignore the bad data, fix it, or substitute something else that is
valid for the bad data. See McConnell8 for a further discussion of error handling. Here are a few examples
of how to recover from errors,

• You might just ignore the bad data and keep going, using the next valid piece of
data. Say your program is a piece of embedded software in a digital pressure
gauge. You sample the sensor that returns the pressure 60 times a second. If the
sensor fails to deliver a pressure reading once, should you shut down the gauge?
Probably not; a reasonable thing to do is just skip that reading and set up to read
the next piece of data when it arrives. Now if the pressure sensor skips several
readings in a row, then something might be wrong with the sensor and you should
do something different (like yell for help).

8 McConnell, 2004.

CHAPTER 12 CODE CONSTRUCTION

175

• You might substitute the last valid piece of data for a missing or wrong piece.
Taking the digital pressure gauge again, if the sensor misses a reading, since each
time interval is only a sixtieth of a second, it’s likely that the missing reading is
very close to the previous reading. In that case you can substitute the last valid
piece of data for the missing value.

• There may be instances where you don’t have any previously recorded valid data.
Your application uses an asynchronous event handler, so you don’t have any
history of data, but your program knows that the data should be in a particular
range. Say you’ve prompted the user for a salary amount and the value that you
get back is a negative number. Clearly no one gets paid a salary of negative dollars,
so the value is wrong. One way (probably not the best) to handle this error is to
substitute the closest valid value in the range, in this case a zero. Although not
ideal, at least your program can continue running with a valid data value in that
field.

• In C programs, nearly all system calls and most of the standard library functions
return a value. You should test these values! Most functions will return values that
indicate success (a non-negative integer) or failure (a negative integer, usually -1).
Some functions return a value that indicates how successful they were. For
example, the printf() family of functions returns the number of characters
printed, and the scanf() family returns the number of input elements read. Most
C functions also set a global variable named errno that contains an integer value
that is the number of the error that occurred. The list of error numbers is in a
header file called errno.h. A zero on the errno variable indicates success. Any
other positive integer value is the number of the error that occurred. Because the
system tells you two things, (1) an error occurred, and (2) what it thinks is the
cause of the error, you can do lots of different things to handle it, including just
reporting the error and bailing out. For example, if we try to open a file that doesn’t
exist, the program

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

int main(int argc, char **argv)
{
 FILE *fd;
 char *fname = "NotAFile.txt";

 if ((fd = fopen(fname, "r")) == NULL) {
 perror("File not opened");
 exit(1);
 }
 printf("File exists\n");
 return 0;
}

• will return the error message

File not opened: No such file or directory

CHAPTER 12 CODE CONSTRUCTION

176

• if the file really doesn’t exist. The function perror() reads the errno variable
and using the string provided plus a standard string corresponding to the error
number, writes an error message to the console’s standard error output. This
program could also prompt the user for a different file name or it could substitute
a default file name. Either of these would allow the program to continue rather
than exiting on the error.

• There are other techniques to use in error handling and recovery. These examples
should give you a flavor of what you can do within your program. The important
idea to remember here is to attempt recovery if possible, but most of all, don’t fail
silently!

Exceptions in Java
Some programming languages have built-in error reporting systems that will tell you when an error
occurs, and leave it up to you to handle it one way or another. These errors that would normally cause
your program to die a horrible death are called exceptions. Exceptions get thrown by the code that
encounters the error. Once something is thrown, it’s usually a good idea if someone catches it. This is the
same with exceptions. So there are two sides to exceptions that you need to be aware of when you’re
writing code:

• When you have a piece of code that can encounter an error you throw an
exception. Systems like Java will throw some exceptions for you. These exceptions
are listed in the Exception class in the Java API documentation (see
http://download.oracle.com/javase/6/docs/api). You can also write your own
code to throw exceptions. We’ll have an example later in the chapter.

• Once an exception is thrown, somebody has to catch it. If you don’t do anything in
your program, this uncaught exception will percolate through to the Java Virtual
Machine (the JVM) and be caught there. The JVM will kill your program and
provide you with a stack backtrace that should lead you back to the place that
originally threw the exception and show you how you got there. On the other
hand, you can also write code to encapsulate the calls that might generate
exceptions and catch them yourself using Java’s S try...catch mechanism. Java
requires that some exceptions must be caught. We’ll see an example later.

Java has three different types of exceptions – checked exceptions, errors, and unchecked exceptions.
Checked exceptions are those that you should catch and handle yourself using an exception handler; they
are exceptions that you should anticipate and handle as you design and write your code. For example, if
your code asks a user for a file name, you should anticipate that they will type it wrong and be prepared
to catch the resulting FileNotFoundException. Checked exceptions must be caught.

Errors on the other hand are exceptions that usually are related to things happening outside your
program and are things you can’t do anything about except fail gracefully. You might try to catch the
error exception and provide some output for the user, but you will still usually have to exit.

The third type of exception is the runtime exception. Runtime exceptions all result from problems
within your program that occur as it runs and almost always indicate errors in your code. For example, a
NullPointerException nearly always indicates a bug in your code and shows up as a runtime exception.
Errors and runtime exceptions are collectively called unchecked exceptions (that would be because you
usually don’t try to catch them, so they’re unchecked). In the program below we deliberately cause a
runtime exception:

http://download.oracle.com/javase/6/docs/api

CHAPTER 12 CODE CONSTRUCTION

177

public class TestNull {
 public static void main(String[] args) {
 String str = null;
 int len = str.length();
 }
}

This program will compile just fine, but when you run it you’ll get this as output:

Exception in thread "main" java.lang.NullPointerException

 at TestNull.main(TestNull.java:4)

This is a classic runtime exception. There’s no need to catch this exception because the only thing
we can do is exit. If we do catch it, the program might look like:

public class TestNullCatch {
 public static void main(String[] args) {
 String str = null;

 try {
 int len = str.length();
 } catch (NullPointerException e) {
 System.out.println("Oops: " + e.getMessage());
 System.exit(1);
 }
 }
}

which gives us the output

Oops: null

Note that the getMessage() method will return a String containing whatever error message Java
deems appropriate – if there is one. Otherwise it returns a null. This is somewhat less helpful than the
default stack trace above.

Let's rewrite the short C program above in Java and illustrate how to catch a checked exception.

import java.io.*;
import java.util.*;

public class FileTest
{
 public static void main(String [] args)
 {
 File fd = new File("NotAFile.txt");
 System.out.println("File exists " + fd.exists());

CHAPTER 12 CODE CONSTRUCTION

178

 try {
 FileReader fr = new FileReader(fd);
 } catch (FileNotFoundException e) {
 System.out.println(e.getMessage());
 }
 }
}

and the output we get when we execute FileTest is

File exists false

NotAFile.txt (No such file or directory)

By the way, if we don’t use the try-catch block in the above program, then it won’t compile. We get
the compiler error message

FileTestWrong.java:11: unreported exception java.io.FileNotFoundException; must be caught or
declared to be thrown

 FileReader fr = new FileReader(fd);

 ^

1 error

Remember, checked exceptions must be caught. This type of error doesn’t show up for unchecked
exceptions. This is far from everything you should know about exceptions and exception handling in
Java; start digging through the Java tutorials and the Java API!

The Last Word on Coding
Coding is the heart of software development. Code is what you produce. But coding is hard; translating
even a good, detailed design into code takes a lot of thought, experience, and knowledge, even for small
programs. Depending on the programming language you are using and the target system, programming
can be a very time-consuming and difficult task. That's why taking the time to make your code readable
and have the code layout match the logical structure of your design is essential to writing code that is
understandable by humans and that works. Adhering to coding standards and conventions, keeping to a
consistent style, and including good, accurate comments will help you immensely during debugging and
testing. And it will help you six months from now when you come back and try to figure out what the
heck you were thinking here.

CHAPTER 12 CODE CONSTRUCTION

179

And finally,

I am rarely happier than when spending an entire day programming my computer to
perform automatically a task that it would otherwise take me a good ten seconds to do
by hand.

—Douglas Adams, “Last Chance to See”

References
Hunt, A. and D. Thomas. The Pragmatic Programmer: From Journeyman to Master. (Boston, MA:

Addison-Wesley, 2000).

Knuth, D. “Structured Programming with goto Statements.” ACM Computing Surveys 6(4): 261-301. 1974.

Krasner, G. E. and S. T. Pope. “A cookbook for using the Model-View-Controller user interface paradigm

in Smalltalk-80.” Journal of Object-Oriented Programming 1(3): 26-49. 1988.

Lieberherr, K., I. Holland, et al. Object-Oriented Programming: An Objective Sense of Style. OOPSLA ’88,

Association for Computing Machinery, 1988.

Martin, R. C. Agile Software Development: Principles, Patterns, and Practices. (Upper Saddle River, NJ:

Prentice Hall, 2003).

McConnell, S. Code Complete 2: A Practical Handbook of Software Construction. Redmond, WA,

Microsoft Press, 2004).

Pike, Rob, Notes on Programming in C, retrieved from

http://www.literateprogramming.com/pikestyle.pdf on 29 September 2010. 1999.

http://www.literateprogramming.com/pikestyle.pdf

C H A P T E R 13

181

Debugging

As soon as we started programming, we found to our surprise that it wasn’t as easy to
get programs right as we had thought. Debugging had to be discovered. I can
remember the exact instant when I realized that a large part of my life from then on
was going to be spent in finding mistakes in my own programs.

—Maurice Wilkes, 1949

It is a painful thing to look at your own trouble and know that you yourself and no
one else has made it.

—Sophocles

Congratulations! You’ve finished writing your code so now it’s time to get it working. I know. You’re
thinking, “I can write perfect code; I’m careful. I won’t have any errors in my program.” Get over it. Every
programmer thinks this at one point or another. There’s just no such thing as a perfect program.
Humans are imperfect (thankfully). So we all make mistakes when we write code. After writing code for
over 40 years I’ve gotten to the point where most of the time my programs that are less than about 20
lines long don’t have any obvious errors in them and lots of times they even compile the first time. I
think that’s a pretty good result. You should shoot for that.

Getting your program to work is a process with three parts, the order of which is the subject of some
debate. The three parts are

• Debugging

• Reviewing/inspecting

• Testing

Debugging is the process of finding the root cause of an error and fixing it. This doesn’t mean
treating the symptoms of an error by coding around it to make it go away; it means to find the real
reason for the error and fixing that piece of code so the error is removed. Debugging is normally done
once you finish writing the code and before you do a code review or unit testing (but see test-driven
development later in this chapter).

Reviewing (or inspecting) is the process of reading the code as it sits on the page and looking for
errors. The errors can include errors in how you’ve implemented the design, other kinds of logic errors,

CHAPTER 13 DEBUGGING

182

wrong comments, etc. Reviewing code is an inherently static process because the program isn’t running
on a computer – you’re reading it off a screen or a piece of paper. So although reviewing is very good for
finding static errors, it can’t find dynamic or interaction errors in your code. That’s what testing is for.
We’ll talk more about reviews and inspections in the next chapter.

Testing, of course is the process of finding errors in the code, as opposed to fixing them, which is
what debugging is all about. Testing occurs, at minimum, at the following three different levels:

• Unit testing: Where you test small pieces of your code, notably at the function or
method level.

• Integration testing: Where you put together several modules or classes that relate
to each other and test them together.

• System testing: Where you test the entire program from the user’s perspective; this
is also called black-box testing, because the tester doesn’t know how the code was
implemented, all they know is what the requirements are and so they’re testing to
see if the code as written implements all the requirements correctly.

We’ll focus on debugging in this chapter.

What’s an Error, Anyway?
We define three types of errors in code

• Syntactic errors

• Semantic errors

• Logic errors

Syntactic errors are errors you make with respect to the syntax of the programming language you’re
using. Spelling a keyword wrong, failing to declare a variable before you use it, forgetting to put that
closing curly brace in a block, forgetting the return type of a function, and forgetting that semi-colon at
the end of a statement are all typical examples of syntactic errors. Syntactic errors are by far the easiest
to find, because the compiler finds nearly all of them for you. Compilers are very rigid taskmasters when
it comes to enforcing lexical and grammar rules of a language so if you get through the compilation
process with no errors and no warnings, then it’s very likely your program has no syntax errors left.
Notice the “and no warnings” in the previous sentence. You should always compile your code with the
strictest syntax checking turned on, and you should always eliminate all errors and warnings before you
move on to reviews or testing. If you are sure you’ve not done anything wrong syntactically, then that’s
just one less thing to worry about while you’re finding all the other errors! And the good news is that
modern integrated development environments (IDEs) do this for you automatically once you've set up
the compiler options. So once you set the warning and syntax checking levels, every time you make a
change, the IDE will automatically re-compile your file and let you know about any syntactic errors!

Semantic errors, on the other hand, occur when you fail to create a proper sentence in the
programming language. You do this because you have some basic misunderstanding about the grammar
rules of the language. Not putting curly braces around a block, accidentally putting a semi-colon after
the condition in an if or while statement in C/C++ or Java, forgetting to use a break; statement at the
end of a case statement inside a switch, are all classic examples of semantic errors. Semantic errors are
harder to find because they are normally syntactically correct pieces of code so the compiler passes your
program and it compiles correctly into an object file. It’s only when you try to execute your program that
semantic errors surface. The good news is that they’re usually so egregious that they show up pretty
much immediately. The bad news is they can be very subtle. For example, in this code segment

CHAPTER 13 DEBUGGING

183

while (j < MAX_LEN);
{
 // do stuff here
 j++;
}

the semi-colon at the end of the while statement’s conditional expression is usually very hard to see,
your eyes will just slide right over it; but its effect is to either put the program into an infinite loop,
because the loop control variable j is never being incremented, or to never execute the loop, but then
erroneously execute the block because it is no longer semantically connected to the while statement.

The third type of error, logic errors, are by far the most difficult to find and eradicate. A logic error is
one that occurs because you’ve made a mistake in translating the design into code. These errors include
things like computing a result incorrectly, off-by-one errors in loops (which can also be a semantic error
if your off-by-one error is because you didn’t understand array indexing, for example),
misunderstanding a network protocol, returning a value of the wrong type from a method, and so on.
With a logic error, either your program seems to execute normally, but you get the wrong answers, or it
dies a sudden and horrible death because you’ve walked off the end of an array, tried to dereference a
null pointer, or tried to go off and execute code in the middle of a data area. It’s not pretty.

Unit testing involves finding the errors in your program, and debugging involves finding the root
cause and fixing those errors. Debugging is about finding out why an error occurs in your program. You
can look at errors as opportunities to learn more about the program, and about how you work and
approach problem solving. Because after all, debugging is a problem solving activity, just as developing a
program is problem solving. Look at debugging as an opportunity to learn about yourself and improve
your skill set.

What Not To Do
Just like in any endeavor, particularly problem solving endeavors, there’s a wrong way and a right way to
approach the task. Here are a few things you shouldn’t do as you approach a debugging problem.1

First of all, don’t guess about where the error might be. This implies that (1) you don’t know anything
about the program you’re trying to debug, and (2) you’re not going about the job of finding the root
cause of the error systematically. Stop, take a deep breath, and start again.

Don’t fix the symptom, fix the problem. Lots of times you can “fix” a problem by forcing the error to
go away by adding code. This is particularly true if the error involves an outlier in a range of values. The
temptation here is to special case the outlier by adding code to handle just that case. Don’t do it! You
haven’t fixed the underlying problem here; you’ve just painted over it. Trust me, there’s some other
special case out there waiting to break free and squash your program. Study the program, figure out
what it’s doing at that spot, and fix the problem. You’ll thank me later.

Avoid denial. It’s always tempting to say “the compiler must be wrong” or “the system must be
broken” or “Ralph’s module is obviously sending me bad data” or “that’s impossible” or some such
excuse. Buck up here, developer. If you just “changed one thing” and the program breaks, then guess
who probably just injected an error into the program? Or at the very least uncovered one? Review the
quote from Sophocles at the beginning of this chapter, “... you yourself and no one else has made it.” You
will make mistakes. We all do. The best attitude to display is, “by golly, this program can’t beat me, I’m
going to fix this thing!” One of the best discussions of careful coding and how hard it is to write correct

1 McConnell, S. Code Complete 2: A Practical Handbook of Software Construction. (Redmond, WA:

Microsoft Press, 2004).

CHAPTER 13 DEBUGGING

184

programs is the discussion of how to write binary search in Column 5 of Jon Bentley’s Programming
Pearls.2 You should read it.

An Approach to Debugging
Here’s an approach to debugging that will get the job done. Remember, you’re solving a problem here
and the best way to do that is to have a systematic way of sneaking up on the problem and whacking it
on the head. The other thing to remember about debugging is that, like a murder mystery, you’re
working backwards from the conclusion.3 The bad thing has already happened – your program failed.
Now you need to examine the evidence and work backwards to a solution.

1. Reproduce the problem reliably.

2. Find the source of the error.

3. Fix the error (just that one).

4. Test the fix (now you’ve got a regression test for later).

5. Optionally look for other errors in the vicinity of the one you just fixed.

Reproduce the Problem Reliably
This is the key first step. If your error only shows up periodically it will be much, much harder to find.
The classic example of how hard this can be is the “but it works fine on my computer” problem. This is
the one sentence you never want to hear. This is why people in tech support retire early. Reproducing
the problem – in different ways if possible – will allow you to see what’s happening and will give you a
clear indication of where the problem is occurring. Luckily for you, most errors are easy to find. Either
you get the wrong answer and you can look for where the print statement is located and work backwards
from there, or your program dies a horrible death and the system generates a stack trace for you. The
Java Virtual Machine does this automatically for you. With other languages, you may need to use a
debugger to get the stack trace.

Remember, errors are not random events. If you think the problem is random, then it’s usually one
of the following:

• An initialization problem: This can be that you’re depending on a side effect of the
variable definition to initialize the variable and it’s not acting as you expect.

• A timing error: Something is happening sooner or later than you expect.

• A dangling pointer problem: You returned a pointer from a local variable and the
memory in which that local variable was stored has been given back to the system.

• A buffer overflow or walking off the end of an array: You have a loop that iterates
through a collection and you’re walking off the end and stomping on either a piece
of code, or another variable or the system stack.

2 Bentley, J. Programming Pearls, 2nd Edition. (Reading, MA, Addison-Wesley: 2000).

3 Kernighan, B. W. and R. Pike. The Practice of Programming. (Boston, MA, Addison-Wesley, 1999).

CHAPTER 13 DEBUGGING

185

• A concurrency issue (a race condition): In a multi-threaded application or in an
application that uses shared memory you’ve not synchronized your code and a
variable you need to use is getting overwritten by someone else before you can get
to it.

Reproducing the problem is not enough, however. You should reproduce it using the simplest test
case that will cause the error to occur. It’s a matter of eliminating all the other possibilities so you can
focus on the single one (well, maybe one or two) that probably causes the error. One way to do this is to
try to reproduce the problem using half the data you had the first time. Pick one half or the other. If the
error still occurs, try it again. If the error doesn’t happen, try the other half of the data. If there’s still no
error, then try with three-quarters of the data. You get the idea. You’ll know when you’ve found the
simplest case because with anything smaller the behavior of the program will change; either the error
will disappear, or you’ll get a slightly different error.

Find the Source of the Error
Once you can reproduce the problem from the outside, you can now find where the error is occurring.
Once again, we need to do this systematically. For most errors this is easy. There are a number of
techniques you can use.

• Gather data: Since you’ve now got a test case that will reproduce the error, gather
data from running the test case. The data can include what kinds of input data
cause the error, what do you have to do to get it to appear – the exact steps you
need to execute, how long it takes to appear, and what exactly happens. Once you
have this data you can form an hypothesis on where the error is in the code. For
most types of errors, you’ll have some output that is correct and then either the
program crashes or you get bad output. That will help isolate the error.

• Read the code: What a concept! The first thing you should do once you’ve run your
test case is examine the output, make a guess where the error might be (look at the
last thing that got printed and find that print statement in the program), and then
sit back, grab a cup of coffee, and just read the code. Understanding what the code
is trying to do in the area where the error occurs is key to figuring out what the fix
should be. It’s also key to finding the source of the error in the first place. Nine
times out of ten, if you just sit back and read the code for five minutes or so you’ll
find just where the error is. Don’t just grab the keyboard and start hacking away.
Read the code.

• Insert print statements: The simplest thing to do once you figure out what output is
incorrect is to start putting print statements at that point and at other interesting
points in the code. Interesting points can be the entrance and exit to functions,
“Entering sort routine”, “Exiting partition routine”, and so on. When using an
integrated development environment (IDE) there are built-in debugging features,
including setting breakpoints, watchpoints, the ability to step through code, etc.
that make inserting print statements less useful. I’ll come back to some of these
below.

CHAPTER 13 DEBUGGING

186

• You can also put print statements at the top and bottom of loops, at the beginning
of the then and else blocks of if-statements, in the default case of a switch
statement, etc. Unless something very spooky is going on you should be able to
isolate where the error is occurring pretty quickly using this method. Once again,
work your way backwards from the point where you think the error makes itself
known. Remember that many times where an error exhibits its behavior may be
many lines of code after where the error actually occurs.

• In some languages you can encase your print statements inside debugging blocks
that you can turn on and off on the command line when you compile. In C/C++
you can insert

 #ifdef DEBUG
 printf("Debug statement in sort routine\n");
 #endif

• blocks in various places and then when you compile the program you can either
put a #define DEBUG in a header file or you can compile using gcc -DDEBUG foo.c
and the printf function call will be included in your program. Leaving out the
#define or the -DDEBUG will remove the printf function call from the executable
program (but not your source). Beware though that this technique makes your
program harder to read because of all the DEBUG blocks scattered around the code.
You should remove DEBUG blocks before your program releases. Unfortunately,
Java doesn’t have this facility because it doesn’t have a pre-processor. However all
is not lost. You can get the same effect as the #ifdef DEBUG by using a named
boolean constant. Here’s an example of code:

public class IfDef {
 final static boolean DEBUG = true;

 public static void main(String [] args) {
 System.out.printf("Hello, World \n");

 if (DEBUG) {
 System.out.printf("max(5, 8) is %d\n", Math.max(5, 8));
 System.out.printf("If this prints, the code was

included\n");
 }
 }
}

• In this example we set the boolean constant DEBUG to true when we want to turn
the DEBUG blocks on, and we’ll then turn it to false when we want to turn them off.
This isn’t perfect because you have to re-compile every time you want to turn
debugging on and off, but you have to do that with the C/C++ example above as
well.

• Look for patterns: The next thing to try is to see if there’s a pattern to the code or
the error that you’ve seen before. As you gain more programming experience and
get a better understanding of how you program and what kind of mistakes you
make, this will be easier.

CHAPTER 13 DEBUGGING

187

• The extra semi-colon at the end of the while loop above is one example of a
mistake that can be a pattern. Another is

for (int j = 0; j <= myArray.length; j++) {
 // some code here
}

• where you will step off the end of the array because you’re testing for <= rather
than <. This is the classic off-by-one error.

• A classic in C/C++ is using one = where you meant to use two == in a conditional
expression. Say you’re checking an array of characters for a particular character in
a C/C++ program

 for (int j = 0; j < length; j++) {
 if (c = myArray[j]) {
 pos = j;
 break;
 }
 }

• the single equals sign will cause the if statement to stop early every time; pos will
always be zero. By the way, Java doesn’t let you get away with this. It gives you an
error that says the type of the assignment expression is not a boolean.

 TstEql.java:10: incompatible types
 found : char
 required: boolean
 if (c = myArray[j]) {
 ^
 1 error

• This is because in Java, just like in C and C++ an assignment operator returns a
result and every result has a type. In this case, the result type is char but the if-
statement is expecting a boolean expression there. The Java compiler checks for
this because it’s more strongly typed than C and C++; their compilers don't do the
check.

• Forgetting a break statement in a switch is another.

 switch(selectOne) {
 case 'p': operation = "print";
 break;
 case 'd': operation = "display";
 default: operation = "blank";
 break;
 }

• will reset operation to blank because there is no break statement after the second
case.

• Explain the code to someone: How many times have you started explaining a
problem to one of your peers and two minutes later, all of a sudden, you solve it.
When you start explaining the problem to someone else, you’re really explaining it
to yourself as well. That’s when the inspiration can hit. Give it a try.

CHAPTER 13 DEBUGGING

188

• Other problems. I’ve only scratched the surface of the possible errors you can
make and find in your code. Because there are nearly an infinite number of
programs you can write in any given programming language, there are nearly an
infinite number of ways to insert errors into them. Memory leaks, typing mistakes,
side effects from global variables, failure to close files, not putting a default case in
a switch statement, accidentally overriding a method definition, bad return types,
hiding a global or instance variable with a local variable, there are thousands of
them.

Don’t be discouraged, though. Most errors you’ll make really are simple. Most of them you’ll catch
during code reviews and unit tests. The ones that escape into system test or (heaven forbid) released
code are the really interesting ones. Debugging is a great problem solving exercise. Revel in it.

Debugging Tools
So far the only debugging tools we’ve talked about using are compilers to remove syntax errors and
warnings, print statements you can insert in your code to give you data on what is happening where, and
inline debugging statements that you can compile in or out. There are other tools you can use that will
help you find the source of an error. The first among these are debuggers.

Debuggers are special programs that execute instrumented code and allow you to peek inside the code
as it’s running to see what’s going on. Debuggers allow you to stop your running code (breakpoints),
examine variable values as the code executes (watchpoints), step into and out of functions, and even
make changes to the code and the data while the program is running. Debuggers are the easiest way to
get a stack trace for C and C++ programs. For C and C++ developers, the gdb debugger that comes with
nearly all Unix and Linux systems (and the development tool packages for Mac OS X and Windows) is
usually the debugger of choice. For Java, Gdb is also integrated in some interactive development
environments like Eclipse (www.eclipse.org/), and also comes with a graphical user interface in the
DDD debugger (www.gnu.org/software/ddd/). The NetBeans IDE (www.netbeans.org) comes with its
own graphical debugger. The Java debuggers in Eclipse and NetBeans allow you to set breakpoints at
individual lines of code, they let you watch variables values change via watchpoints, and they allow you
to step through the code one line or one method at a time. Gdb does all the things mentioned above and
more, but you should use it, and any other debugger cautiously. Debuggers, by their nature, have tunnel
vision when it comes to looking at code. They are great at showing you all the code for the current
function, but they don’t give you a feel for the organization of the program as a whole. They also don’t
give you a feel for complicated data structures and it’s hard to debug multi-threaded and multi-process
programs using a debugger. Multi-threaded programs are particularly hard for a number of reasons, one
of which is that while executing timing is crucial for the different threads, and running a multi-threaded
program in a debugger changes the timing.

Fix the Error (Just That One)!
Once you’ve found where the error is, you need to come up with a fix for it. Most of the time the fix is
obvious and simple because the error is simple. That’s the good news. But sometimes while you can find
the error, the fix isn’t obvious, or the fix will entail rewriting a large section of code. In cases like this be
careful! Take the time necessary to understand the code, and then rewrite the code and fix the error
correctly. The biggest problem in debugging is haste.

When you are fixing errors remember two things:

• Fix the actual error; don’t fix the symptom.

http://www.eclipse.org/
http://www.gnu.org/software/ddd/
http://www.netbeans.org

CHAPTER 13 DEBUGGING

189

• Only fix one error at a time.

This second item is particularly important. We’ve all been in situations where you’re fixing an error
and you find another one in the same piece of code. The temptation is to fix them both right then and
there. Resist! Fix the error you came to fix. Test it and make sure the fix is correct. Integrate the new code
back into the source code base. Then you can go back to step 1 and fix the second error. You might ask,
“Why do all this extra work when I can just make the fix right now?”

Well, here’s the situation. By the time you get to this step in the debugging process you already have
a test for the first error, you’ve educated yourself about the code where the error occurs, you’re ready to
make that one fix. Why should you confuse the issue by fixing two things now? Besides, you don’t have a
test for the second error. So how do you test that fix? Trust me, it’s a little more work, but doing the fixes
one at a time will save you lots of headaches down the road.

Test the Fix
Well, this sounds obvious, doesn’t it? But you’d be surprised how many fixes don’t get tested. Or if
they’re tested, it’s a simple test with generic sample data and no attempt to see if your fix broke anything
else.

First of all, re-run the original test that uncovered the error. Not just the minimal test that you came
up with in step 1, but the first test that caused the error to appear. If that test now fails (in the sense that
the error does not occur any more), then that’s a good sign you’ve at least fixed the proximate cause of
the error. Then run every other test in your regression suite (see the next chapter for more discussion on
regression tests) so you can make sure you’ve not re-broken something that was already fixed. Finally,
integrate your code into the source code base, check out the new version and test the entire thing. If all
that still works, then you’re in good shape. Go have a beer.

Look for More Errors
Well, if there was one error in a particular function or method, then there might be another, right? So
while you’re here, you might as well take a look at the code in the general vicinity of the error you just
fixed and see if anything like it happens again. This is another example of looking for patterns. Patterns
are there because developers make the same mistakes over and over again (we’re human, after all). Grab
another cup of coffee and a doughnut and read some more code. It won’t hurt to take a look at the whole
module or class and see if there are other errors or opportunities for change. In the agile world, this is
called refactoring. This means rewriting the code to make it simpler. Making your code simpler will make
it clearer, easier to read, and it will make finding that next error easier. So have some coffee and read
some code.

Source Code Control
In some of the paragraphs above we’ve made mention of a source code base and integrating changes
into that base. That is a sneaky way of starting a brief discussion of source code control, also known as
software version control.

Whenever you work on a project, whether you are the only developer or you are part of a team, you
should keep backups of the work you’re doing. That’s what a version control system (VCS) does for you,
but with a twist. A VCS will not only keep a backup of all the files you create during a project, but it will
keep track of all the changes you’ve made to them, so that in addition to saying, “Give me the latest
version of PhoneContact.java,” you can say, “I want the version of PhoneContact.java from last
Thursday.”

CHAPTER 13 DEBUGGING

190

A VCS keeps a repository of all the files you’ve created and added to it for your project. The
repository can be a flat file or a more sophisticated database. A client program allows you access the
repository and retrieve different versions of one or more of the files stored there. Normally, if you just ask
the VCS for a particular file or files, you get the latest version. Whatever version of the file you extract
from the repository, it’s called the working copy in VCS-speak. Extracting the file is called a check out.

If you are working on a project all alone, then the working copy you check out from the VCS
repository is the only one out there and any changes that you make will be reflected in the repository
when you check the file back in. The cool part of this is that if you make a change and it’s wrong, you can
just check out a previous version that doesn’t have the change in it. The other interesting part of a VCS is
when there is more than one developer working on a project. When you’re working on a development
team, it’s quite likely that somebody else on the team may check out the same file that you did. This
brings up the problem of file sharing. The problem here is if both of you make changes to the file and
then both want to check the file back into the repository who gets to go first and whose changes end up
in the repository? Ideally, both, right?

Well, maybe not. Say Alice and Bob both check out PhoneContact.java from the repository and each
of them makes changes to it. Bob checks his version of PhoneContact.java back into the repository and
goes to lunch. A few minutes later Alice checks in her version of PhoneContact.java. Two problems
occur. (1) if Alice hasn’t made any changes in the same lines of code that Bob did, her version is still
newer than Bob’s and it hides Bob’s version in the repository. Bob’s changes are still there, but they are
now in an older version than Alice’s. (2) Worse, if Alice did make changes to some of the same code that
Bob did, then her changes actually overwrite Bob’s and main.c is a very different file. Bummer. So we
don’t want either of these situations to occur. How do we avoid this problem?

Version control systems use the following two different strategies to avoid this collision problem.:

• lock-modify-unlock

• copy-modify-merge

Using Lock-Modify-Unlock
The first strategy is lock-modify-unlock. In this strategy, Bob checks out PhoneContact.java and locks it
for edit. This means that Bob now has the only working copy of PhoneContact.java that can be changed.
If Alice tries to check out PhoneContact.java she gets a message that she can only check out a read-only
version and so can’t check it back in until Bob gives up his lock. Bob makes his changes, checks
PhoneContact.java back in, and then releases the lock. Alice can now check out and lock an editable
version of PhoneContact.java (which now includes Bob’s changes) and make her own changes and
check the file back in, giving up her lock. The lock-modify-unlock strategy has the effect of serializing
changes in the repository.

This serialization of changes is the biggest problem with lock-modify-unlock. While Bob has the file
checked out for editing, Alice can’t make her changes. She just sits around twiddling her thumbs until
Bob is done. Alice’s boss doesn’t like this thumb twiddling stuff. However, there is an alternative.

Using Copy-Modify-Merge
The second strategy is copy-modify-merge. In this strategy, Alice and Bob are both free to check out
editable copies of PhoneContact.java. Let's say that Alice makes her changes first and checks her new
version of the file back into the repository and goes out for cocktails. When Bob is finished making his
changes he tries to check his new version of PhoneContact.java into the repository only to have the VCS
tell him his version of the file is “out of date;” Bob can’t check in. What happened here? Well, the VCS
stamps each file that’s checked out with a timestamp and a version number. It also keeps track of what is
checked out and who checked it out and when. It checks those values when you try to check in.

CHAPTER 13 DEBUGGING

191

When Bob tried to check in, his VCS realized that the version of the code he was trying to check in
was older than the current version (the new one that Alice had checked in earlier), so it let him know
that. So what is Bob to do? That’s where the third part of copy-modify-merge comes in. Bob needs to tell
the VCS to merge his changes with the current version of PhoneContact.java and then check in the
updated version. This all works just fine if Alice and Bob have changed different parts of the file. If their
changes do not conflict, then the VCS can just do the merge automatically and check in the new file. A
problem occurs if Alice and Bob have made changes to the same lines of code in the file. In that case,
Bob must do a manual merge of the two files. Bob has to do this because the VCS isn’t smart enough to
choose between the conflicting changes. Usually, a VCS will provide some help in doing the merge, but
ultimately the merge decision must be Bob’s.

copy-modify-merge is the strategy used by most version control systems these days, including the
popular open-source version control system, subversion (http://subversion.apache.org).4 There is one
problem (well, okay, more than one, but we’ll just talk about this one) with copy-modify-merge. If your
repository allows you to store binary files, you can’t merge them. Say you have two versions of the same
jpg file. How do you decide which of the bits is correct? So in this case the VCS (subversion included) will
require you to use lock-modify-unlock.

Git (http://git.scm.com), the other candidate for most popular open-source version control system,
uses a model that has each developer have a local repository of the entire development history. When a
developer makes a change to a file, the changes are copied to the other local repositories. Git uses a
model called an incomplete merge along with a number of plug-in merge tools to coordinate merges
across repositories. Git's main virtue is speed. It may be the fastest distributed VCS around.

One Last Thought on Coding and Debugging – Pair Programming
Pair programming is a technique to improve software quality and programmer performance. It’s been
around for many years, but only recently been formalized [Williams00]. In pair programming two people
share one computer and one keyboard. One person “drives,” controlling the keyboard and writing the
code, and the other “navigates,” watching for errors in the code, suggesting changes and test cases.
Periodically the driver and the navigator switch places. Pairs can work together for long periods of time
on a project, or pairs can change with each programming task. Pair programming is particularly popular
in agile development environments; in the Extreme Programming process, all developers are required to
pair program and no code that has not been written by two people is allowed to be integrated into the
project [Beck00]. There have been several studies5 that show that pair programming decreases the
number of errors in code and improves the productivity of programmers. So this is our final debugging
technique – pair program!

Conclusion
Just like writing good, efficient code, debugging is a skill that all programmers need to acquire. Being a
careful coder will mean you have less debugging to do, but there will always be debugging. Programmers

4 Collins-Sussman, B., Fitzpatrick, B. W., and Pilato, C. M. Version Control with Subversion. (Sebastapol,

CA: O’Reilly Press, 2010). Retrieved from http://svnbook.red-bean.com/ on 15 October 2010.

5 Cockburn, A. and L. Williams. The Costs and Benefits of Pair Programming. Extreme Programming

Examined. (Boston, MA: Addison-Wesley Longman, 2001). Page 592.

http://subversion.apache.org
http://git.scm.com
http://svnbook.red-bean.com/

CHAPTER 13 DEBUGGING

192

are all human and we'll always make mistakes. Having a basket of debugging skills will help you find the
root causes of errors in your code faster and it will help you from injecting more errors. The combination
of reviews (Chapter 15), debugging and unit testing – as we'll see in the next chapter – is the knock-out
punch that a developer uses to release defect-free code.

References
Bentley, J. Programming Pearls, 2nd Edition. (Reading, MA, Addison-Wesley: 2000).

Chelf, B. “Avoiding the most common software development goofs.” Retrieved from

www.embedded.com/show/Article.jhtml?articleID=192800005 on October 2, 2006.

Cockburn, A. and L. Williams. The Costs and Benefits of Pair Programming. Extreme Programming

Examined. (Boston, MA: Addison-Wesley Longman, 2001). Page 592.

Collins-Sussman, B., Fitzpatrick, B. W., and Pilato, C. M. Version Control with Subversion. (Sebastapol,

CA: O’Reilly Press, 2010). Retrieved from http://svnbook.red-bean.com/ on 15 October 2010.

Kernighan, B. W. and R. Pike. The Practice of Programming. (Boston, MA, Addison-Wesley, 1999).

McConnell, S. Code Complete 2: A Practical Handbook of Software Construction. (Redmond, WA:

Microsoft Press, 2004).

http://www.embedded.com/show/Article.jhtml?articleID=192800005
http://svnbook.red-bean.com/

C H A P T E R 14

193

Unit Testing

More than the act of testing, the act of designing tests is one of the best bug preventers
known. The thinking that must be done to create a useful test can discover and
eliminate bugs before they are coded — indeed, test-design thinking can discover and
eliminate bugs at every stage in the creation of software, from conception to
specification, to design, coding and the rest.

—Boris Beizer

You can see a lot by just looking.

—Yogi Berra

As was emphasized in the last chapter, nobody’s perfect, including software developers. In Chapter 13
we talked about different things to look for when you know there are errors in your code. Now we’re
going to talk about how to find those errors. Of the three types of errors in your code, the compiler will
find the syntax errors and the occasional semantic error. In some language environments, the run-time
system will find others (to your users chagrin). The rest of the errors are found in two different ways –
testing, and code reviews and inspections. In this chapter, we’ll discuss testing, when to do it, what it is,
how to do it, what your tests should cover, and the limitations of testing. In the next chapter we’ll talk
about code reviews and inspections.

There are three levels of testing in a typical software development project: unit testing, integration
testing, and system testing. Unit testing is typically done by you, the developer. With unit testing, you’re
testing individual methods and classes, but you’re generally not testing larger configurations of the
program. You’re also not usually testing interfaces or library interactions – except those that your
method might actually be using. Because you are doing unit testing, you know how all the methods are
written, what the data is supposed to look like, what the method signatures are, and what the return
values and types should be. This is known as white-box testing. It should really be called transparent-box
testing, because the assumption is you can see all the details of the code being tested.

Integration testing is normally done by a separate testing organization. This is the testing of a
collection of classes or modules that interact with each other; its purpose is to test interfaces between
modules or classes and the interactions between the modules. Testers write their tests with knowledge of
the interfaces but not with information about how each module has been implemented. From that
perspective the testers are users of the interfaces. Because of this, integration testing is sometimes called
gray-box testing. Integration testing is done after unit tested code is integrated into the source code base.

x

CHAPTER 14 UNIT TESTING

194

A partial or complete version of the product is built and tested, to find any errors in how the new module
interacts with the existing code. This type of testing is also done when errors in a module are fixed and
the module is re-integrated into the code base.

System testing is normally done by a separate testing organization. This is the testing of the entire
program (the system). System testing is done on both internal baselines of the software product and on
the final baseline that is proposed for release to customers. The separate testing organization uses the
requirements and writes their own tests without knowing anything about how the program is designed
or written. This is known as black-box testing because the program is opaque to the tester except for the
inputs it takes and the outputs it produces. The job of the testers at this level is to make sure that the
program implements all the requirements. Black box testing can also include stress testing, usability
testing, and acceptance testing. End users may be involved in this type of testing.

The Problem with Testing
So, if we can use testing to find errors in our programs, why don’t we find all of them? After all, we wrote
the program, or at least the fix or new feature we just added, so we must understand what we just wrote.
We also wrote the tests. So why do so many errors escape into the next phase of testing or even into users
hands?

Well, there are two reasons we don’t find all the errors in our code. First, we’re not perfect. This
seems to be a theme here. But we’re not. If we made mistakes when we wrote the code, why should we
assume we won’t make some mistakes when we read it or try to test and fix it? This happens for even
small programs, but it’s particularly true for larger programs. If you have a 50,000 line program, that’s a
lot to read and understand and you’re bound to miss something. Also, static reading of programs won’t
help you find those dynamic interactions between modules and interfaces. So we need to test more
intelligently and combine both static (code reading) and dynamic (testing) techniques to find and fix
errors in programs.

The second reason that errors escape from one testing phase to another and ultimately to the user is
that software, more than any other product that humans manufacture, is very complex. Even small
programs have many pathways through the code and many different types of data errors that can occur.
This large number of pathways through a program is called a combinatorial explosion. Every time you
add an if statement to your program, you double the number of possible paths through the program.
Think about it; you have one path through the code if the conditional expression in the if statement is
true, and a different path if the conditional expression is false. Every time you add a new input value you
increase complexity and increase the number of possible errors. This means that, for large programs,
you can’t possibly test every possible path through the program with every possible input value. There
are an exponential number of code path/data value combinations to test every one.

So what to do? Well, if brute force won’t work, then you need a better plan. That plan is to identify
those use cases that are the most probable and test those. You need to identify the likely input data
values and the boundary conditions for data, and figure out what the likely code paths will be and test
those. That, it turns out, will get you most of the errors. Steve McConnell says in Code Complete that a
combination of good testing and code reviews can uncover more than 95% of errors in a good-sized
program.1 That’s what we need to shoot for.

1 McConnell, S. Code Complete 2: A Practical Handbook of Software Construction. (Redmond, WA:

Microsoft Press, 2004.)

CHAPTER 14 UNIT TESTING

195

That Testing Mindset
There’s actually another problem with testing – you. Well, actually, you, the developer. You see,
developers and testers have two different, one might say adversarial, roles to play in code construction.
Developers are there to take a set of requirements and produce a design that reflects the requirements
and write the code that implements the design. Your job as a developer is to get code to work.

A tester’s job, on the other hand, is to take those same requirements and your code and get the code
to break. Testers are supposed to do unspeakable, horrible, wrenching things to your code in an effort to
get the errors in it to expose themselves to the light of day. Their job is to break stuff. You the developer
then get to fix it. This is why being a tester can be a very cool job.

You can see where this might be an adversarial relationship. You can also see where developers
might make pretty bad testers. If your job is to make the code work, you’re not focused on breaking it. So
your test cases may not be the nasty, mean test cases that someone whose job it is to break your code
may come up with. In short, because they’re trying to build something beautiful, developers make lousy
testers. Developers tend to write tests using typical, clean data. They tend to have an overly optimistic
view of how much of their code that a test will exercise. They tend to write tests assuming that the code
will work; after all it’s their code, right?

This is why most software development organizations have a separate testing team, particularly for
integration and system testing. The testers write their own test code, create their own frameworks, do
the testing of all new baselines and the final release code, and report all the errors back to the developers
who then must fix them. The one thing testers normally do not do is unit testing. Unit testing is the
developer's responsibility, so you’re not off the hook here. You do need to think about testing, learn how
to write tests, how to run them, and how to analyze the results. You need to learn to be mean to your
code. And you still need to fix the errors.

When to Test?
Before I get around to discussing just how to do unit testing and what things to test, let’s talk about when
to test. Current thinking falls into two areas: the more traditional approach is to write your code, get it to
compile, so you’ve eliminated the syntax errors, and then write your tests and do your unit testing after
you feel the code for a function or a module is finished. This has the advantage that you’ve understood
the requirements and written the code and while you were writing the code you had the opportunity to
think about test cases. Then you can write clear test cases. In this strategy testing and debugging go hand
in hand and occur pretty much simultaneously. It allows you to find an error, fix it, and then re-run the
failed test right away.

A newer approach that flows out of the agile methodologies, especially out of Extreme
Programming, is called test-driven development (TDD). With TDD, you write your unit tests before you
write any code. Clearly if you write your unit tests first, they will all fail – at most you’ll have the stub of a
method to call in your test. But that’s a good thing because in TDD your goal when you write code is to
get all the tests to pass. So if you’ve written a bunch of tests, you then write just enough code to make all
the tests pass and then you know you’re done! This has the advantage of helping you keep your code
lean, which implies simpler and easier to debug. You can write some new code, test it; if it fails write
some more code, if it passes, stop. It also gives you, right up front, a set of tests you can run whenever
you make a change to your code. If the tests all still pass, then you haven’t broken anything by making
the changes. It also allows you to find an error, fix it, and then re-run the failed test right away.

So which way is better? Well, the answer is another of those “it depends” things. Generally, writing
your tests first gets you in the testing mind-set earlier and gives you definite goals for implementing the
code. On the other hand, until you do it a lot and it becomes second nature, writing tests first can be
hard because you have to visualize what you’re testing. It forces you to come to terms with the
requirements and the module or class design early as well. That means that design/coding/testing all

CHAPTER 14 UNIT TESTING

196

pretty much happen at once. This can make the whole code construction process more difficult. TDD
works well for small to medium sized projects (as do agile techniques in general), but it may be more
difficult for very large programs. TDD also works quite well when you are pair programming. In pair
programming, the driver is writing the code while the navigator is watching for errors and thinking about
testing. With TDD, the driver is writing a test while the navigator is thinking of more tests to write and
thinking ahead to the code. This process tends to make writing the tests easier and then flows naturally
into writing the code.

Give testing a shot both before and after and then you can decide which is best.

What to Test?
Now that we’ve talked about different phases of testing and when you should do your unit testing, it’s
time to discuss just what to test. What you’re testing falls into two general categories: code coverage and
data coverage.

• Code coverage has the goal of executing every line of code in your program at least
once with representative data so you can be sure that all the code functions
correctly. Sounds easy? Well, remember that combinatorial explosion problem for
that 50,000 line program.

• Data coverage has the goal of testing representative samples of good and bad data,
both input data and data generated by your program, with the objective of making
sure the program handles data and particularly data errors correctly.

Of course there is overlap between code coverage and data coverage; sometimes in order to get a
particular part of your program to execute you have to feed it bad data, for example. We’ll separate these
as best we can and come together when we talk about writing actual tests.

Code Coverage: Test Every Statement
Your objective in code coverage is to test every statement in your program. In order to do that, you need
to keep several things in mind about your code. Your program is made up of a number of different types
of code, each of which you need to test.

First, there’s straight line code. Straight line code illuminates a single path through your function or
method. Normally this will require one test – per different data type (see below for data coverage).

Next there is branch coverage. With branch coverage you want to test everywhere your program can
change directions. That means you need to look at control structures here. Take a look at every if and
switch statement, and every complex conditional expression – those that contain AND and OR operators
in them. For every if statement you’ll need two tests – one for when the conditional expression is true
and one for when it’s false. For every switch statement in your method you’ll need a separate test for
each case clause in the switch, including the default clause (all your switch statements have a default
clause, right?). The logical and (&&) and or (||) operators add complexity to your conditional expressions,
so you’ll need extra test cases for those.

Ideally, you’ll need four test cases for each (F-F, F-T, T-F, T-T), but if the language you are using uses
short-cut evaluation for logical operators, as do C/C++ and Java, then you can reduce the number of test
cases. For the or operator you’ll still need two cases if the first sub-expression is false, but you can just
use a single test case if the first sub-expression evaluates to true (the entire expression will always be
true). For the and operator, you’ll only need a single test if the first sub-expression evaluates to false
(the result will always be false) but you need both tests if the first sub-expression evaluates to true.

Then there is loop coverage. This is similar to branch coverage above. The difference here is that in
for, while, or do-while loops you have the best likelihood of introducing an off-by-one error and you

CHAPTER 14 UNIT TESTING

197

need to test for that explicitly. You’ll also need a test for a “normal” run through the loop, but you’ll need
to test for a couple of other things too. First will be the possibility for the pre-test loops that you never
enter the loop body – the loop conditional expression fails the very first time. Then you’ll need to test for
an infinite loop – the conditional expression never becomes false. This is most likely because you don’t
change the loop control variable in the loop body, or you do change it, but the conditional expression is
wrong from the get-go. For loops that read files, you normally need to test for the end-of-file marker
(EOF). This is another place where errors could occur either because of a premature end-of-file or
because (in the case of using standard input) end-of-file is never indicated.

Finally, there are return values. In many languages, standard library functions and operating system
calls all return values. For example, in C, the fprintf and fscanf functions return the number of
characters printed to an output stream and the number of input elements assigned from an input
stream, respectively. But hardly anyone ever checks these return values.2 You should!

Note that Java is a bit different than C or C++. In Java many of the similarly offending routines will
have return values declared void rather than int as in C or C++. So the above problem occurs much less
frequently in Java than in other languages. It's not completely gone however. While the
System.out.print() and System.out.println() methods in Java are both declared to return void, the
System.out.printf() method returns a PrintStream object that is almost universally ignored. In
addition, it’s perfectly legal in Java to call a Scanner's next() or nextInt() methods or any of the methods
that read data and not save the return value in a variable. Be careful out there.

Data Coverage: Bad Data Is Your Friend?
Remember in the chapter on Code Construction we talked about defensive programming, and that the
key to defending your program was watching out for bad data, detecting and handling it so that your
program can recover from bad data or at least fail gracefully. Well, this is where we see if your defenses
are worthy. Data coverage should examine two types of data, good data and bad data. Good data is the
typical data your method is supposed to handle. These tests will test data that is the correct type and
within the correct ranges. They are just to see if your program is working normally. This doesn’t mean
you’re completely off the hook here. There are still a few cases to test. Here’s the short list:

• Test boundary conditions. This means to test data near the edges of the range of
your valid data. For example, if your program is computing average grades for a
course, then the range of values is between 0 and 100 inclusive. So you should test
grades at, for example, 0, 1, 99, and 100. Those are all valid grades. But you should
also test at -1, and 101. Both of these are invalid values, but are close to the range.
In addition, if you are assigning letter grades, you need to check at the upper and
lower boundaries of each letter grade value. So if an F is any grade below a 60, you
need to check 59, 60, and 61. If you’re going to have an off-by-one error, that’s
where to check.

• Test typical data values. These are valid data fields that you might normally
expect to get. For the grading example above, you might check 35, 50, 67, 75, 88,
93, and so on. If these don’t work you’ve got other problems.

2 Kernighan, B. W. and R. Pike. The Practice of Programming. (Boston, MA: Addison-Wesley, 1999.)

CHAPTER 14 UNIT TESTING

198

• Test pre- and post-conditions. Whenever you enter a control structure – a loop or
a selection statement, or make a function call, you’re making certain assumptions
about data values and the state of your computations. These are pre-conditions.
And when you exit that control structure, you’re making assumptions about what
those values are now. These are post-conditions. You should write tests that make
sure that your assumptions are correct by testing the pre- and post-conditions. In
languages that have assertions (including C, C++, and Java), this is a great place to
use them.

Testing valid data and boundary conditions is one thing, but you also need to test bad data.

• Illegal data values. You should test data that is blatantly illegal to make sure that
your data validation code is working. We already mentioned testing illegal data
near the boundaries of your data ranges. You should also test some that are
blatantly out of the range.

• No data. Yup, test the case where you are expecting data and you get nothing. This
is the case where you’ve prompted a user for input and instead of typing a value
and hitting the return key, they just hit return. Or the file you’ve just opened is
empty. Or you’re expecting three files on the command line and you get none.
You’ve got to test all of these cases.

• Too little or too much data. You have to test the cases where you ask for three
pieces of data and only get two. Also the cases where you ask for three and you get
ten pieces of data.

• Uninitialized variables. Most language systems these days will provide default
initialization values for any variable that you declare. But you should still test to
make sure that these variables are initialized correctly. (Really, you should not
depend on the system to initialize your data anyway; you should always initialize it
yourself.)

Characteristics of Tests
Robert Martin, in his book Clean Code describes a set of characteristics that all unit tests should have
using the acronym F.I.R.S.T.:3

Fast. Tests should be fast. If your tests take a long time to run, you’re liable to
run them less frequently. So make your tests small, simple, and fast.

Independent. Tests should not depend on each other. In particular, one test
shouldn’t set up data or create objects that another test depends on For
example, the JUnit testing framework for Java has separate set-up and tear-
down methods that make the tests independent. We'll examine JUnit in more
detail later on.

3 Martin, R. C. Clean Code: A Handbook of Agile Software Craftsmanship. (Upper Saddle River, NJ:

Prentice-Hall, 2009.)

CHAPTER 14 UNIT TESTING

199

Repeatable. You should be able to run your tests any time you want, in any
order you want, including after you’ve added more code to the module.

Self-Validating. The tests should either just pass or fail; in other words, their
output should just be boolean. You shouldn’t have to read pages and pages of a
log file to see if the test passed or not.

Timely. This means you should write the tests when you need them, so that
they’re available when you want to run them. For agile methodologies that use
TDD, this means write the unit tests first, just before you write the code that
they will test.

Finally, its important that just like your functions, your tests should only test one thing; there should
be a single concept for each test. This is very important for your debugging work because if each test
only tests a single concept in your code, a test failure will point you like a laser at the place in your code
where your error is likely to be.

How to Write a Test
Before we go any further, let’s look a bit deeper into how to write a unit test. We will do this by hand now
to get the feel for writing tests and we'll examine how a testing framework helps us when we talk about
JUnit in the next section. We’ll imagine that we are writing a part of an application and go from there.
We’ll do this in the form of a user story, as it might be done in an Extreme Programming (XP)
environment.4

In XP the developers and the customer get together to talk about what the customer wants. This is
called exploration. During exploration the customer writes a series of stories that describe features that
they want in the program. These stories are taken by the developers and broken up into implementation
tasks and estimated. Pairs of programmers take individual tasks and implement them using TDD. We’ll
present a story, break it up into a few tasks, and implement some tests for the tasks just to give you and
idea of the unit testing process.

The Story
We want to take as input a flat file of phone contacts and we want to sort the file alphabetically and
produce an output table that can be printed.

Really, that’s all. Stories in XP projects are typically very short – the suggestion is that they be written
on 3 5 index cards.

So we can break this story up into a set of tasks. By the way, this will look suspiciously like a design
exercise; it is.

The Tasks
We need a class that represents a phone contact.

We need to create a phone contact.

4 Newkirk, J. and R. C. Martin. Extreme Programming in Practice. (Boston, MA, Addison-Wesley, 2001.)

CHAPTER 14 UNIT TESTING

200

We need to read a data file and create a list of phone contacts. (This may look
like two things, but it’s really just one thing – converting a file in to a list of
phone contacts.)

We need to sort the phone contacts alphabetically by last name.

We need to print the sorted list.

The Tests
First of all, we’ll collapse the first two tasks above into a single test. It makes sense once we’ve created a
phone contact class to make sure we can correctly instantiate an object; in effect we’re testing the class’
constructors. So let’s create a test.

In our first test we’ll create an instance of our phone contact object and print out the instance
variables to prove it was created correctly. We have to do a little design work first. We have to figure out
what the phone contact class will be called and what instance variables it will have.

A reasonable name for the class is PhoneContact, and as long as it’s alright with our customer, the
instance variables will be firstName, lastName, phoneNumber, and emailAddr. Oh, and they can all be String
variables. It’s a simple contact list. For this class we can have two constructors. A default constructor that
just initializes the contacts to null and a constructor that takes all four values as input arguments and
assigns them. That’s probably all we need at the moment. Here’s what the test may look like:

public class TestPhoneContact
{
 /**
 * Default constructor for test class TestPhoneContact
 */
 public TestPhoneContact() {
 }

 public void testPhoneContactCreation() {
 String fname = "Fred";
 String lname = "Flintstone";
 String phone = "800-555-1212";
 String email = "fred@knox.edu";

 PhoneContact t1 = new PhoneContact();
 System.out.printf("Phone Contact reference is %H\n", t1);

 PhoneContact t2 = new PhoneContact(fname, lname, phone, email);
 System.out.printf("Phone Contact:\n Name = %s\n Phone = %s\n Email = %s\n",
 t2.getName(), t2.getPhoneNum(),
 t2.getEmailAddr());
 }
}

Now this test will fail to begin with because we’ve not created the PhoneContact class yet. That’s
okay. So let's do that now. The PhoneContact class will be simple, just the instance variables, the two
constructors, and getter and setter methods for the variables. A few minutes later we have:

public class PhoneContact {
 /**
 * instance variables

mailto:fred@knox.edu

CHAPTER 14 UNIT TESTING

201

 */
 private String lastName;
 private String firstName;
 private String phoneNumber;
 private String emailAddr;

 /**
 * Constructors for objects of class PhoneContact
 */
 public PhoneContact() {
 lastName = "";
 firstName = "";
 phoneNumber = "";
 emailAddr = "";
 }

 public PhoneContact(String firstName, String lastName,
 String phoneNumber, String emailAddr) {
 this.lastName = lastName;
 this.firstName = firstName;
 this.phoneNumber = phoneNumber;
 this.emailAddr = emailAddr;
 }

 /**
 * Getter and Setter methods for each of the instance variables
 */
 public String getName() {
 return this.lastName + ", " + this.firstName;
 }

 public String getLastName() {
 return this.lastName;
 }

 public String getFirstName() {
 return this.firstName;
 }

 public String getPhoneNum() {
 return this.phoneNumber;
 }

 public String getEmailAddr() {
 return this.emailAddr;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public void setFirstName(String firstName) {

CHAPTER 14 UNIT TESTING

202

 this.firstName = firstName;
 }

 public void setPhoneNum(String phoneNumber) {
 this.phoneNumber = phoneNumber;
 }

 public void setEmailAddr(String emailAddr) {
 this.emailAddr = emailAddr;
 }
}

The last thing we need is a driver for the test we’ve just created. This will complete the scaffolding for
this test environment.

public class TestDriver
{
 public static void main(String [] args)
 {
 TestPhoneContact t1 = new TestPhoneContact();

 t1.testPhoneContactCreation();
 }
}

Now, when we compile and execute the TestDriver we’ll get displayed on the output console
something like this:

Phone Contact reference is 3D7DC1CB

Phone Contact:

 Name = Flintstone, Fred

 Phone = 800-555-1212

 Email = fred@knox.edu

The next task is to read a data file and create a phone contact list. Here, before we figure out the test
or the code we need to decide on some data structures.

Since the story says “flat file of phone contacts” we can just assume we’re dealing with a text file
where each line contains phone contact information. Say the format mirrors the PhoneContact class and
is “first_name last_name phone_number email_addr” one entry per line.

Next we need a list of phone contacts that we can sort later and print out. Because we want to keep
the list alphabetically by last name, we can use a TreeMap Java Collections type to store all the phone
contacts. Then we don’t even need to sort the list because the TreeMap class keeps the list sorted for us. It
also looks like we’ll need another class to bring the PhoneContact objects and the list operations together.
So what’s the test look like?

Well, in the interest of keeping our tests small and to adhere to the “a test does just one thing”
maxim, it seems like we could use two tests after all, one to confirm that the file is there and can be
opened, and one to confirm that we can create the PhoneContact list data structure. For the file opening

mailto:fred@knox.edu

CHAPTER 14 UNIT TESTING

203

test, it looks like we’ll need a new class that represents the phone contact list. We can just stub that class
out for now, creating a simple constructor and a stub of the one method that we’ll need to test. That way
we can write the test (which will fail because we don’t have a real method yet). The file opening test
looks like

 public void testFileOpen() {
 String fileName = "phoneList.txt";

 PhoneContactList pc = new PhoneContactList();
 boolean fileOK = pc.fileOpen(fileName);

 if (fileOK == false) {
 System.out.println("Open Failed");
 System.exit(1);
 }
 }

which we add to the testing class we created before. In the TestDriver class above we just add the line

t1.testFileOpen();

to the main() method. Once this test fails, you can then implement the new class, and fill in the stubs
that we created above. The new PhoneContactList class then looks like

import java.util.*;
import java.io.*;

public class PhoneContactList
{
 private TreeMap<String, PhoneContact> phoneList;
 private Scanner phoneFile;

 /**
 * Constructors for objects of class PhoneContactList
 */
 public PhoneContactList() {
 }

 public PhoneContactList(PhoneContact pc)
 {
 phoneList = new TreeMap<String, PhoneContact>();
 phoneList.put(pc.getLastName(), pc);
 }

 public boolean fileOpen(String name)
 {
 try {
 phoneFile = new Scanner(new File(name));
 return true;
 } catch (FileNotFoundException e) {
 System.out.println(e.getMessage());
 return false;
 }

CHAPTER 14 UNIT TESTING

204

 }
}

So this is how your test-design-develop process will work. Try creating the rest of the tests we listed
above and finish implementing the PhoneContactList class code. Good luck.

JUnit: A Testing Framework
In the previous section, we created our own test scaffolding, and hooked our tests into it. Many
development environments have the facilities to do this for you. One of the most popular for Java is the
JUnit testing framework that was created by Eric Gamma and Kent Beck (see www.junit.org).

JUnit is a framework for developing unit tests for Java classes. It provides a base class called
TestCase that you extend to create a series of tests for the class you are creating. JUnit contains a number
of other classes, including an assertion library used for evaluating the results of individual tests, and
several applications that run the tests you create. A very good FAQ for JUnit is at
http://junit.sourceforge.net/doc/faq/faq.htm#overview_1.

To write a test in JUnit, you must import the framework classes and then extend the TestCase base
class. A very simple test would look like this:

import junit.framework.TestCase;

public class SimpleTest extends TestCase {

 public SimpleTest(String name) {
 super(name);
 }

 public void testSimpleTest() {
 LifeUniverse lu = new LifeUniverse();
 int answer = lu.ultimateQuestion();
 assertEquals(42, answer);
 }
}

Note that the single-argument constructor is required. The assertEquals() method is one of the
assertion library (junit.framework.Assert) methods which, of course, tests to see if the expected answer
(the first parameter) is equal to the actual answer (the second parameter). There are many other
assert*() methods. The complete list is at http://junit.sourceforge.net/javadoc/.

Because JUnit is packaged in a Java jar file, you either need to add the location of the jar file to your
Java CLASSPATH environment variable, or add it to the line when you compile the test case from the
command line. For example, to compile our simple test case we would use this:

% javac -classpath $JUNIT_HOME/junit.jar SimpleTest.java

where $JUNIT_HOME is the directory where you installed the junit.jar file.
Executing a test from the command line is just as easy as compiling. There are two ways to do it. The

first is to use one of the JUnit pre-packaged runner classes, which takes as its argument the name of the
test class

java -cp .:./junit.jar junit.textui.TestRunner SimpleTest

which results in

.
Time: 0.001

http://www.junit.org
http://junit.sourceforge.net/doc/faq/faq.htm#overview_1
http://junit.sourceforge.net/javadoc/

CHAPTER 14 UNIT TESTING

205

OK (1 test)

where there is a dot for every test that is run, the time the entire test suite required, and the results of the
tests.

You can also execute the JUnitCore class directly, also passing the name of the test class as an
argument to the class

java -cp .:./junit.jar org.junit.runner.JUnitCore SimpleTest

which results in

JUnit version 4.8.2
.
Time: 0.004

OK (1 test)

JUnit is included in many standard integrated development environments (IDEs). BlueJ, NetBeans,
and Eclipse all have JUnit plug-ins, making the creation and running of unit test cases nearly effortless.

For example, with our example above and using BlueJ, we can create a new Unit Test class and use it
to test our PhoneContact and PhoneContactList classes. See Figure 14-1.

Figure 14-1.The PhoneContact Test UML diagrams

Our test class, TestPhoneContact now looks like:

public class TestPhoneContact extends junit.framework.TestCase
{
 /**
 * Default constructor for test class TestPhoneContact
 */
 public TestPhoneContact(String name)

CHAPTER 14 UNIT TESTING

206

 {
 super(name);
 }

 /**
 * Sets up the test fixture.
 * Called before every test case method.
 */
 protected void setUp()
 {
 }

 /**
 * Tears down the test fixture.
 * Called after every test case method.
 */
 protected void tearDown()
 {
 }

 public void testPhoneContactCreation() {
 String fname = "Fred";
 String lname = "Flintstone";
 String phone = "800-555-1212";
 String email = "fred@knox.edu";

 PhoneContact pc = new PhoneContact(fname, lname, phone, email);
 assertEquals(lname, pc.getLastName());
 assertEquals(fname, pc.getFirstName());
 assertEquals(phone, pc.getPhoneNum());
 assertEquals(email, pc.getEmailAddr());
 }

 public void testFileOpen() {
 String fileName = "phoneList.txt";

 PhoneContactList pc = new PhoneContactList();
 boolean fileOK = pc.fileOpen(fileName);
 assertTrue(fileOK);

 if (fileOK == false) {
 System.out.println("Open Failed, File Not Found");
 System.exit(1);
 }
 }
}

To run this set of tests in BlueJ, we select Test All from the drop-down menu shown in Figure 14-2.

mailto:fred@knox.edu

CHAPTER 14 UNIT TESTING

207

Figure 14-2. The JUnit Menu - Select Test All to run the tests

Because we don’t have a phoneList.txt file created yet, we get the output shown in Figure 14-3.

Figure 14-3. JUnit Testing output

Here, we note that the testFileOpen() test has failed.
Every time we make any changes to our program we can add another test to the TestPhoneContact

class and re-run all the tests with a single menu selection. The testing framework makes is much easier
to create individual tests and whole suites of tests that can be run every time you make a change to the
program. This lets us know every time we make a change if we’ve broken something or not. Very cool.

CHAPTER 14 UNIT TESTING

208

Testing Is Good
At the end of the day, unit testing is a critical part of your development process. Done carefully and
correctly, it can help you remove the vast majority of your errors even before you integrate your code
into the larger program. TDD, where you write tests first and then write the code that makes the tests
succeed, is an effective way to catch errors in both low-level design and coding and allows you to easily
and quickly create a regression test suite that you can use for every integration and every baseline of
your program.

Conclusion
From your point of view as the developer, unit testing is the most important class of testing your
program will undergo. It's the most fundamental type of testing, making sure your code meets the
requirements of the design at the lowest level. Despite the fact that developers are more concerned with
making sure their program works than with breaking it, developing a good unit testing mindset is critical
to your development as a mature, effective programmer. Testing frameworks make this job much easier
than in the past and so learning how your local testing framework operates and learning to write good
tests is a skill you should work hard at. Better that you should find your own bugs than the customer.

References
Kernighan, B. W. and R. Pike. The Practice of Programming. (Boston, MA: Addison-Wesley, 1999.)

Martin, R. C. Clean Code: A Handbook of Agile Software Craftsmanship. (Upper Saddle River, NJ:

Prentice-Hall, 2009.)

McConnell, S. Code Complete 2: A Practical Handbook of Software Construction. (Redmond, WA:

Microsoft Press, 2004.)

Newkirk, J. and R. C. Martin. Extreme Programming in Practice. (Boston, MA, Addison-Wesley, 2001.)

C H A P T E R 15

209

Walkthroughs, Code Reviews,
and Inspections

Our objective with Inspections is to reduce the Cost of Quality by finding and
removing defects earlier and at a lower cost. While some testing will always be
necessary, we can reduce the costs of test by reducing the volume of defects propagated
to test.

—Ron Radice (2002)

When you catch bugs early, you also get fewer compound bugs. Compound bugs are
two separate bugs that interact: you trip going downstairs, and when you reach for the
handrail it comes off in your hand.

—Paul Graham (2001)

Here’s a shocker: your main quality objective in software development is to get a working program to
your user that meets all their requirements and has no defects. That’s right: your code should be perfect.
It meets all the user’s requirements and it has no errors in it when you deliver it. Impossible, you cry?
Can’t be done? Well, software quality assurance is all about trying to get as close to perfection as you can
– albeit within time and budget. (You knew there was a catch, didn’t you?)

Software quality is usually discussed from two different perspectives, the user’s and the developer’s.
From the user’s perspective, quality has a number of characteristics – things that your program must do
in order to be accepted by the user – among which are:1

• Correctness: The software has to work, period.

• Usability: It has to be easy to learn and easy to use.

1 McConnell, S. Code Complete 2: A Practical Handbook of Software Construction. (Redmond, WA:

Microsoft Press, 2004.)

CHAPTER 15 WALKTHROUGHS, CODE REVIEWS, AND INSPECTIONS

210

• Reliability: It has to stay up and be available when you need it.

• Security: The software has to prevent unauthorized access and it has to protect
your data.

• Adaptability: It should be easy to add new features.

From the developer’s perspective, things are a bit different. The developer wants to see the following:

• Maintainability: It has to be easy to make changes to the software.

• Portability: It has to be easy to move the software to a different platform.

• Readability: Many developers won’t admit this, but you do need to be able to read
the code.

• Understandability: The code needs to be designed in such a way that a new
developer can understand how it all hangs together.

• Testability: Well, at least the testers think that your code should be easy to test.
Code that is created in a modular fashion, with short functions that do only one
thing, is much easier to understand and test than code that is all just one big
main() function.

Software Quality Assurance (SQA) has three legs to it:

• Testing: Finding the errors that surface while your program is executing, also
known as dynamic analysis.

• Debugging: Getting all the obvious errors out of your code, the ones that are found
by testing it.

• Reviews: Finding the errors that are inherently in your code as it sits there, also
known as static analysis.

Many developers – and managers – think that you can test your way to quality. You can’t. As we saw
in the last chapter, tests are limited. You often can’t explore every code path, you can’t test every
possible data combination, and often your tests themselves are flawed. Tests can only get you so far. As
Edsger Dijkstra famously said, “...program testing can be a very effective way to show the presence of
bugs, but it is hopelessly inadequate for showing their absence.”2

Reviewing your code – reading it and looking for errors on the page – provides another mechanism
for making sure that you’ve implemented the user’s requirements and the resulting design correctly. In
fact, most development organizations that use a plan-driven methodology will not only review code,
they’ll also review the requirements document, the architecture, the design specification, the test plan,
the tests themselves, and the user documentation. In short, all the work products produced by the
software development organization. Organizations that use an agile development methodology don’t
necessarily have all the documents mentioned above, but they do have requirements, user stories, user
documentation, and especially code to review. In this chapter we’ll focus on reviewing your code.

2 Dijkstra, E. “The Humble Programmer.” CACM 15(10): 859-866. 1972.

CHAPTER 15 WALKTHROUGHS, CODE REVIEWS, AND INSPECTIONS

211

Walkthroughs, Reviews, and Inspections – Oh My!
Testing alone is not a particularly effective way of finding errors in your code. In many cases, the
combination of unit testing, integration testing, and system testing will only find about 50% or so of the
errors in your program.3 But, if you add some type of code review (reading the code to find errors) to
your testing regimen you can bring that percentage up to between 93% and 99% of all the errors in your
code. Now that’s an objective to shoot for.

There are three types of reviews that are typically done, and they work their way up from very
informal techniques, to very formal methodologies. These reviews are typically done either right after
you’ve got a clean compile of your code and before you unit test, or right after you finish your unit
testing. It’s better to do the reviews right after unit testing. Then you’ve got your changes made, you’ve
got a clean compile, and you’ve done the first round of testing. That’s a great time to have someone else
take a look at your code.

Walkthroughs
Walkthroughs, also known as desk checks or code reads, are the least formal type of a review.
Walkthroughs are normally used to confirm small changes to code, say a line or two, that you have just
made to fix an error. If you’ve just added a new method to a class, or you’ve changed more than about 10
lines of code, under no circumstances should you do a walkthrough. Do a code review instead.

Walkthroughs involve two or at most three people: the author of the code and the reviewer. The
author’s job in a walkthrough is to explain to the reviewer what the change is supposed to do and to
point out where the change was made. The reviewer’s job is to understand the change and then read the
code. Once the reviewer reads the code she makes one of two judgments; either she agrees that the
change is correct, or she does not. If not, the author has to go back, fix the code again, and then do
another walkthrough. If the reviewer thinks the change is correct, then the author can integrate the
changed code back into the code base for integration testing.

If you’re using an agile methodology and you’re pair programming, a code walkthrough will happen
naturally as you are implementing a task. The driver is writing the code and the navigator is looking over
her shoulder, checking for errors and thinking ahead. In this case it’s acceptable to use a walkthrough for
a larger piece of code, but for a complete task, or better yet, for each user story that is implemented, you
should do a code review or an inspection.

Code Reviews
Code reviews, on the other hand, are somewhat more formal than a walkthrough. Code reviews are what
most software developers do. You should always do a code review if you’ve changed a substantial
amount of code, or if you’ve added new code to an existing program. As mentioned, agile programmers
should do code reviews when they finish a user story. Code reviews are real meetings.

There are usually between three and five attendees at a code review. The people who attend a code
review should each bring a different perspective to the meeting.

3 McConnell, 2004.

CHAPTER 15 WALKTHROUGHS, CODE REVIEWS, AND INSPECTIONS

212

• The moderator of the code review is usually the author. It’s the moderator’s job to
call the meeting, send out the work to be reviewed well before the meeting time,
and to run the code review meeting. The moderator may also take notes at the
meeting.

• There should be one or more developers at the meeting; someone who is working
on the same project as the author. This person will bring detailed knowledge of
the project to the meeting and assume that perspective.

• There should be a tester at the code review. This person brings the testing
perspective and not only reads the code being reviewed, but thinks about ways the
code should be tested.

• Finally, there should be an experienced developer present who is not on the same
project as the author. This person is the “disinterested third-party” who
represents the quality perspective. Their job at the code review is to understand
the code and get the author to explain the changes clearly. This person provides a
more strategic vision about the code and how it fits into the project.

Oh, and no managers are allowed at code reviews. The presence of a manager changes the dynamics
of the meeting and makes the code review less effective. People who might be willing to honestly critique
a piece of code among peers will clam up in the presence of a manager; this doesn’t help find errors. No
managers, please.

The objective of a code review is to find errors in the code. It is not to fix them. Code reviews are
informal enough that some discussion of fixes may occur, but that should be kept to a minimum. Before
the code review meeting, all the participants should go over the materials sent out by the moderator and
prepare a list of errors they find. This step is critical to making the review meeting efficient and
successful. Do your homework!

This list should be given to the moderator at the beginning of the meeting. The author (who may
also be the moderator) goes through the code changes, explaining them and how they either fix the error
they were intended to fix, or add the new feature that was required. If an error or a discussion leads the
review meeting off into code that was not in the scope of the original review – Stop! Be very careful about
moving off into territory that hasn’t been pre-read. You should treat any code not in the scope of the
review as a black box. Schedule another meeting instead. Remember, the focus of the code review is on a
single piece of code and finding errors in that piece of code. Don’t be distracted.

A computer and projector are essential at the code review so that everyone can see what’s going on
all the time. A second computer should be used so that someone (usually the author) can take notes
about errors found in the code. A code review should not last more than about two hours or review more
than about 200–500 lines of code because everyone’s productivity will begin to suffer after about that
amount of time or reading.

After the code review, the notes are distributed to all the participants and the author is charged with
fixing all the errors that were found during the review. If you run out of time, then another review is
scheduled. While metrics aren’t required for code reviews, the moderator should at least keep track of
how many errors were found, how many lines of code were reviewed, and if appropriate, the severity of
each of the errors. These metrics are very useful to gauge productivity and should be used in planning
the next project.

Code Inspections
Code inspections are the most formal type of review meeting. The sole purpose of an inspection is to
find defects in a document. Inspections can be used to review planning documents, requirements,

CHAPTER 15 WALKTHROUGHS, CODE REVIEWS, AND INSPECTIONS

213

designs, or code, in short, any work product that a development team produces. Code inspections have
specific rules regarding how many lines of code to review at once, how long the review meeting must be,
and how much preparation each member of the review team should do, among other things.
Inspections are typically used by larger organizations because they take more time and effort than
walkthroughs or code reviews. They are also used for mission and safety-critical software where defects
can cause harm to users. The most widely known inspection methodology was invented by Michael
Fagan in 1976. Fagan’s process was the first formal software inspection process proposed and as such,
has been very influential. Most organizations that use inspections use a variation of the original Fagan
software code inspection process.4 Code inspections have several very important criteria, including:

• Inspections use checklists of common error types to focus the inspectors.

• The focus of the inspection meeting is solely on finding errors; no solutions are
permitted.

• Reviewers are required to prepare beforehand; the inspection meeting will be
canceled if everyone isn’t ready.

• Each participant in the inspection has a distinct role.

• All participants have had inspection training.

• The moderator is not the author and has had special training in addition to the
regular inspection training.

• The author is always required to follow up on errors reported in the meeting with
the moderator.

• Metrics data is always collected at an inspection meeting.

Inspection Roles
The following are the roles used in code inspections:

• Moderator: The moderator gets all the materials from the author, decides who the
other participants in the inspection should be, and is responsible for sending out
all the inspection materials and scheduling and coordinating the meeting.
Moderators must be technically competent; they need to understand the
inspection materials and keep the meeting on track. The moderator schedules the
inspection meeting and sends out the checklist of common errors for the
reviewers to peruse. They also follow-up with the author on any errors found in
the inspection, so they must understand the errors and the corrections.
Moderators attend an additional inspection-training course to help them prepare
for their role.

4 Fagan, M. “Design and Code Inspections to Reduce Errors in Program Development.” IBM Systems

Journal 15(3): 182-211. 1976.

CHAPTER 15 WALKTHROUGHS, CODE REVIEWS, AND INSPECTIONS

214

• Author: The author distributes the inspection materials to the moderator. If an
Overview meeting is required, the author chairs it and explains the overall design
to the reviewers. Overview meetings are discouraged in code inspections, because
they can “taint the evidence” by injecting the author’s opinions about the code
and the design before the inspection meeting. Sometimes, however, if many of the
reviewers are not familiar with the project an Overview meeting is necessary. The
author is also responsible for all rework that is created as a result of the inspection
meeting. During the inspection the author answers questions about the code from
the reviewers, but does nothing else.

• Reader: The reader’s role is to read the code. Actually, the reader is supposed to
paraphrase the code, not read it. This implies that the reader has a good
understanding of the project, its design and the code in question. The reader does
not explain the code; he just paraphrases it. The author should answer any
questions about the code. That said, if the author has to explain too much of the
code that is usually considered a defect to be fixed; the code should be refactored
to make it simpler.

• Reviewers: The reviewers do the heavy lifting in the inspection. A reviewer can be
anyone with an interest in the code who is not the author. Normally reviewers are
other developers from the same project. As in code reviews it’s usually a good idea
to have a senior person who is not on the project also be a reviewer. There are
usually between two and four reviewers in an inspection meeting. Reviewers must
do their pre-reading of the inspection materials and are expected to come to the
meeting with a list of errors that they have found. This list is given to the Recorder.

• Recorder: Every inspection meeting has a recorder. The recorder is one of the
reviewers and is the person who takes notes at the inspection meeting. The
recorder merges the defect lists of the reviewers and classifies and records errors
found during the meeting. The recorder prepares the inspection report and
distributes it to the meeting participants. If the project is using a defect
management system, then it is up to the Recorder to enter defect reports for all
major defects from the meeting into the system.

• Managers: As with code reviews, managers are not invited to code inspections.

Inspection Phases and Procedures
Fagan inspections have seven phases that must be followed for each inspection:5

1. Planning

2. The Overview meeting

3. Preparation

5 Fagan, M. “Advances in Software Inspections.” IEEE Trans on Software Engineering 12(7): 744-751.

1986.

CHAPTER 15 WALKTHROUGHS, CODE REVIEWS, AND INSPECTIONS

215

4. The Inspection meeting

5. The Inspection report

6. Rework

7. Follow up

Planning
In the Planning phase, the moderator organizes and schedules the meeting and picks the participants.
The moderator and the author get together to discuss the scope of the inspection materials – for code
inspections typically between 200 and 500 uncommented lines of code will be reviewed. The author then
distributes the code to be inspected to the participants.

The Overview Meeting
An Overview meeting is necessary if several of the participants are unfamiliar with the project or its
design and they need to come up to speed before they can effectively read the code. If an Overview
meeting is necessary, the author will call it and run the meeting. The meeting itself is mostly a
presentation by the author of the project architecture and design. As mentioned, Overview meetings are
discouraged, because they have a tendency to taint the evidence. Like the Inspection meeting itself,
Overview meetings should last no longer than two hours.

Preparation
In the Preparation phase, each reviewer reads the work to be inspected. Preparation should take no
more than 2–3 hours. The amount of work to be inspected should be between 200 and 500
uncommented lines of code or between 30 and 80 pages of text. A number of studies have shown that
reviewers can typically review about 125–200 lines of code per hour. In Fagan inspections, the
preparation phase is required. The inspection meeting can be canceled if the reviewers have not done
their preparation. The amount of time each reviewer spent in preparation is one of the metrics that is
gathered at the inspection meeting.

The Inspection Meeting
The moderator is in charge of the Inspection meeting. Her job during the meeting is to keep the meeting
on track and focused. The Inspection meeting should last no more than two hours. If there is any
material that has not been inspected at the end of that time, a new meeting is scheduled. At the
beginning of the meeting, the reviewers turn in their list of previously discovered errors to the recorder.

During the meeting the reader paraphrases the code and the reviewers follow along. The author is
there to clarify any details and answer any questions about the code and otherwise does nothing. The
recorder writes down all the defects reported, their severity and their classification. Solutions to
problems are strongly discouraged. Participants are encouraged to have a different meeting to discuss
solutions.

CHAPTER 15 WALKTHROUGHS, CODE REVIEWS, AND INSPECTIONS

216

We should look for a minute at defect types and severity as reported in a Fagan inspection. Fagan
specifies only two types of defects: minor and major. Minor defects are typically typographic errors,
errors in documentation, small user interface errors, and other miscellany that don’t cause the software
to fail. All other errors are major defects. This is a bit extreme. Two levels are usually not sufficient for
most development organizations. Most organizations will have at least a five level defect structure:

1. Fatal: Yes, your program dies; can you say core dump?

2. Severe: A major piece of functionality fails and there is no workaround for the
user. Say that in a first-person shooter game, the software doesn’t allow you to
re-load your main weapon and doesn’t let you switch weapons in the middle
of a fight. That’s bad.

3. Serious: The error is severe, but with a workaround for the user. The software
doesn’t let you re-load your main weapon, but if you switch weapons and then
switch back you can re-load.

4. Trivial: A small error, either wrong documentation or something like a minor
user interface problem. For example, a text box is 10 pixels too far from its
prompt in a form.

5. Feature request: A brand new feature for the program is desired. This isn’t an
error; it’s a request from the user (or marketing) for new functionality in the
software. In a game this could be new weapons, new character types, new
maps or surroundings, and so on. This is version 2.

In most organizations, software is not allowed to ship to a user with known severity 1 and 2 errors
still in it. But severity 3 errors really make users unhappy, so realistically, no known severity 1 through 3
errors are allowed to ship. Ideally, of course, no errors ship, right?

In a Fagan inspection meeting it is usually up to the recorder to correctly classify the severity of the
major defects found in the code. This classification can be changed later. In the Fagan inspection
process all severity 1 through 3 defects are required to be fixed.

Inspection Report
Within a day of the meeting, the recorder distributes the Inspection report to all participants. The central
part of the report is the defects that were found in the code at the meeting.

The report also includes metrics data, including

• The number of defects found

• The number of each type of defect by severity and type

• The time spent in preparation; total time in person-hours and time per participant

• The time spent in the meeting; clock time and total person-hours

• The number of uncommented lines of code or pages reviewed

CHAPTER 15 WALKTHROUGHS, CODE REVIEWS, AND INSPECTIONS

217

Rework and Follow Up
The author fixes all the severity 1 through 3 defects found during the meeting. If enough defects were
found, or if enough refactoring or code changes had to occur, then another inspection is scheduled. How
much is enough? Amounts vary. McConnell says 5% of the code,6 but this author has typically used 10%
of the code inspected. So if you inspected 200 lines of code and you had to change 20 or more of them in
the rework, then you should have another inspection meeting. If it’s less than 10%, the author and the
moderator can do a walkthrough. Regardless of how much code is changed, the moderator must check
all the changes as part of the follow up. As part of the rework another metric should be reported – the
amount of time required by the author to fix each of the defects reported. This metric, plus the number
of defects found during the project are critical to doing accurate planning and scheduling for the next
project. This metric is easier to keep track of if developers use a defect tracking system.

Summary of Review Methodologies
Table 15-1 summarizes the characteristics of the three review methodologies we’ve examined. Each has
its place and you should know how each of them works. The important thing to remember is that
reviews and testing go hand in hand and both should be used to get your high-quality code out the door.

Table 15-1. Comparison of Review Methodologies

Properties Walkthrough Code Review Code Inspection

Formal moderator training No No Yes

Distinct participant roles No Yes Yes

Who drives the meeting Author Author/moderator Moderator

Common error checklists No Maybe Yes

Focused review effort No Yes Yes

Formal follow up No Maybe Yes

Detailed defect feedback Incidental Yes Yes

Metric data collected and used No Maybe Yes

Process improvements No No Yes

6 McConnell, 2004.

CHAPTER 15 WALKTHROUGHS, CODE REVIEWS, AND INSPECTIONS

218

Defect Tracking Systems
Most software development organizations and many open source development projects will use an
automated defect tracking system to keep track of defects found in their software and to record requests
for new features in the program. One of the most popular open source defect tracking systems is Bugzilla
(www.bugzilla.org).

Defect tracking systems keep track of a large amount of information about each defect found and
entered. A typical defect tracking system will keep track of at least the following:

• The number of the defect (assigned by the tracking system itself)

• The current state of the defect in the system (Open, Assigned, Resolved,
Integrated, Closed)

• The fix that was made to correct the error

• The files that were changed to make the fix

• What baseline the fix was integrated into

• What tests were written and where they are stored (ideally, the tests are stored
along with the fix)

• The result of the code review or inspection

Defect tracking systems assume that at any given time a defect report is in some state that reflects
where it is in the process of being fixed. A typical defect tracking system can have upwards of ten (10)
states for each defect report.

Figure 16-1 shows the states of a typical defect tracking system and the flow of a defect report
through the system. In brief, all defects start out as New. They are then assigned to a developer for
Analysis. The developer decides whether the reported defect is:

• A duplicate of one already in the system

• Not a defect and so should be rejected

• A real defect that should be worked on by someone

• A real defect whose resolution can be postponed to a later date

Defects that are worked on are eventually fixed and move to the Resolved state. The fix must then be
subjected to a code review. If the code review is successful, the defect fix is then Approved. From
Approved, the fix is scheduled for integration into the next baseline of the product, and if the integration
tests of that baseline are successful, the defect is Closed. Whew!

http://www.bugzilla.org

CHAPTER 15 WALKTHROUGHS, CODE REVIEWS, AND INSPECTIONS

219

Figure 15-1. Defect tracking system workflow

Conclusion
A second set of eyes on your code is always a good thing. Code that is reviewed by others is improved
and brings you closer to the Platonic ideal of defect-free software. Walkthroughs, code reviews, and
formal code inspections each have their place in the array of tools used to improve code quality. The
more of these tools you have in your toolbox, the better programmer you are. The combination of
reviews, debugging and unit testing will find the vast majority of defects in your code7 and is the best
thing that a developer can do to help release great code.

References
Ackerman, A., et al. (1989). “Software Inspections: An Effective Verification Process.” IEEE Software 6(3):

31-36. 1989.

Dijkstra, E. “The Humble Programmer.” CACM 15(10): 859-866. 1972.

Doolan, P. “Experience with Fagan’s Inspection Method.” Software - Practice & experience 22(2): 173-

182. 1992.

7 McConnell, 2004.

CHAPTER 15 WALKTHROUGHS, CODE REVIEWS, AND INSPECTIONS

220

Dunsmore, A., M. Roper, et al. “Practical Code Inspection Techniques for Object-Oriented Systems: An

Experimental Comparison.” IEEE Software 20(4): 21-29. 2003.

Fagan, M. “Design and Code Inspections to Reduce Errors in Program Development.” IBM Systems

Journal 15(3): 182-211. 1976.

Fagan, M. “Advances in Software Inspections.” IEEE Trans on Software Engineering 12(7): 744-751. 1986.

Martin, R. C. Agile Software Development: Principles, Patterns, and Practices. (Upper Saddle River, NJ:

Prentice Hall, 2003.)

McConnell, S. Code Complete 2: A Practical Handbook of Software Construction. (Redmond, WA:

Microsoft Press, 2004.)

C H A P T E R 16

221

Wrapping It all Up

All programmers are optimists. Perhaps this modern sorcery especially attracts those
who believe in happy endings and fairy godmothers. Perhaps the hundreds of nitty
frustrations drive away all but those who habitually focus on the end goal. Perhaps it
is merely that computers are young, programmers are younger, and the young are
always optimists.

—Frederick Brooks, Jr.1

It’s the only job I can think of where I get to be both an engineer and an artist. There’s
an incredible, rigorous, technical element to it, which I like because you have to do
very precise thinking. On the other hand, it has a wildly creative side where the
boundaries of imagination are the only real limitation.

—Andy Hertzfeld

Reading Alex E. Bell’s2 and Mark Guzdial’s3 “Viewpoint” columns in the August 2008 issue of
Communications of the ACM, I was struck by the synergy of the two articles. One is a cautionary tale
about the tools to use in professional software development, and the other is, at least in part, a
cautionary tale about language and syntax use in teaching programming. This got me to thinking about
all the silver bullets we’ve tried in both development and education, and why most of them don’t matter
to real software development. This seems like an appropriate way to wrap up this discussion on software
development.

1 Brooks, F. P. The Mythical Man-Month : Essays on Software Engineering, Silver Anniversary Edition.

(Boston, MA: Addison-Wesley, 1995.)

2 Bell, A. E. “Software Development Amidst the Whiz of Silver Bullets,” Communications of the ACM, 51, 8

(August 2008), 22-24.

3 Guzdial, M. “Paving the Way for Computational Thinking,” Communications of the ACM, 51, 8 (August

2008), 25-27.

CHAPTER 16 WRAPPING IT ALL UP

222

What Have You Learned?
As I’ve said more than once in this book, software development is hard. I don’t think that everyone can
do it, and of those that can, I think few do it extremely well all the time. That, of course, is the attraction.
Nobody really wants to work on easy problems. The challenge is to work on something you’ve never
done before, something you might not even know if you can solve. That’s what has you coming back to
creating software again and again.

Software development is one of the most creative things a human can do. Out of nothing, one takes
a problem, wrestles with it, explores it, pokes at it, rips it apart and puts it back in a different form, comes
up with that bit of inspiration that leads to a solution, and then converts it into an artifact that others can
use effortlessly. Having others use your program to solve their problems is just the coolest thing.

Writing software is a humbling experience. It is so hard to get software right and so easy to get
wrong. In writing software, I’ve learned to embrace failure. Failure is an exciting and frustrating part of
the process. From failure, you learn about yourself: you learn how you approach problems, you learn the
types of mistakes you’re prone to make, and you learn how to work around them. Failure teaches you
perseverance because you just have to keep working until the program does.

Small teams build most software, and they build the best software. Small, highly motivated and
empowered teams are the most productive. Small teams also tend to use a slimmed down development
process. Unless you work for a large company that’s desperate to be at SEI Capability Maturity Model
Level 5,4 your processes can be very sparse. Detailed problem descriptions, brainstorming design
sessions, simple configuration management, code reviews, and a separate testing team take care of
everything necessary to create almost defect-free code. Process flexibility, communication, and
ownership are the keys to project success.

A lot of really good software gets written, tested, and shipped every year; much more than the
alleged “failure” numbers would have one believe.5 The key issue that divides plan-driven development
and agile development is the recognition of the constant changes in requirements. The best thing about
agile development is that it recognizes this fact and builds refactoring into its process.

Simple tools are the most effective. Simple tools allow you to cut to the heart of a problem and
examine it closely with nothing in your way. They allow you to take it out, hold it in your hands, turn it
over, and poke at it quickly and easily. Simple tools also allow you to join them together to do more
complicated things. I’ll just point you to Stephen Jenkins’ article on “Old School” programming.6 He’s
said it much better than I could.

Coding, debugging, and unit testing are at least as important as design. Experience gives a good
programmer a deep sense of design and a wealth of patterns to draw on; experience gives a great
programmer a deep, intimate knowledge of the programming language that is their tool. It’s this deep,
intimate knowledge that produces beautiful code.

The process of debugging a long, complex program is an immensely rewarding endeavor. Isolating a
problem, uncovering your mistakes, building debugging scaffolding, hypothesizing a solution,

4 Paulk, M. C. The Capability Maturity Model: Guidelines for Improving the Software Process. (Reading,

MA: Addison-Wesley, 1995.)

5 Glass, R. “The Standish Report: Does It Really Describe a Software Crisis?,” Communications of the

ACM, 49, 8 (August 2006), 15-16.

6 Jenkins, S. B. “Musings of an ‘Old-School’ Programmer,” Communications of the ACM, 49, 5 (May 2006),

124-126.

CHAPTER 16 WRAPPING IT ALL UP

223

reworking a design, finally identifying the error, and then creating a correct fix gives one such a rush of
elation and satisfaction that it’s at times nearly overwhelming.

What to Do Next?
So now that you’ve read all about software development and maybe tried some of the examples, what do
you do next? How do you become a better software developer? Well, here are some suggestions.

Write code, write lots of code: Experience helps a lot. Programming is a craft that requires practice
and constant reinforcement. It’s very likely that you’ll need to learn a whole new set of tools and
programming languages every ten years or so. So having written lots of code will make that task easier.

Learn simple tools: Simple tools give you flexibility. They also help you learn the fundamental skills
that you can then take to more complicated IDEs. And when those IDEs get replaced – as they will – you
can fall back on the simple tools till you learn the new IDE.

Read about problem solving and design: People have been solving problems for several thousand
years now and people have been designing things for nearly that long. Writings in other areas can
communicate common problem solving strategies that also work for software development. Don’t
ignore Polya’s How to Solve It book. It was written to solve math problems, but it translates very, very
well to software.7 Also don’t ignore the classics in the computer science literature, like Dijkstra’s
Structured Programming book,8 Brooks classic The Mythical Man-Month,9 Bentley’s Programming
Pearls,10 McConnell’s Rapid Development,11 and Beck’s Extreme Programming Explained.12

Read about programming and read about programmers: There is a plethora of literature on
programming. A number of books have been mentioned in the previous chapters. Two that bear
repeating are Hunt and Thomas’ The Pragmatic Programmer13 and McConnell’s Code Complete 2.14 It’s
also a great idea to see how other programmers work. There is a developing literature in computing on
how great programmers think, work and generally write great code. Two notable books are Lammer’s
Programmers At Work15 and Oram and Wilson’s Beautiful Code.16

7 Polya, G. How To Solve It: A New Aspect of Mathematical Method, 2nd Edition. (Princeton, NJ: Princeton

University Press, 1957.)

8 Dahl, O. J., E. Dijkstra, et al. Structured Programming. (London, UK: Academic Press, 1972.)
9 Brooks, 1995.
10 Bentley, J. Programming Pearls, 2nd Edition. (Reading, MA: Addison-Wesley, 2000.)

11 McConnell, S. Rapid Development: Taming Wild Software Schedules. (Redmond, WA: Microsoft Press,

1996.)

12 Beck, K. Extreme Programming Explained: Embrace Change. (Boston, MA: Addison-Wesley, 2006.)

13 Hunt, A. and D. Thomas. The Pragmatic Programmer: From Journeyman to Master. (Boston, MA:

Addison-Wesley, 2000.)

14 McConnell, S. Code Complete 2. (Redmond, WA: Microsoft Press, 2004.)

15 Lammers, S. Programmers At Work. (Redmond, WA: Microsoft Press, 1986.)

CHAPTER 16 WRAPPING IT ALL UP

224

Talk to other programmers: Books are an okay way to gather information, but talking to your peers
can’t be beat. A side effect of pair programming is that you get to see how someone else works, how they
approach problems, how they code, debug, and write tests. Code review meetings are a great way to
learn how others work. Code reviews also reinforce Gerald Weinberg’s idea of egoless programming.17
Once you get over the idea that you “own” the code in a software product (your employer owns it; read
some of those documents you had to sign on the first day of work), you gain the ability to look at your
code and the code of your co-workers objectively and you can learn from it.

Join the ACM and the IEEE-CS: The Association for Computing Machinery (ACM) www.acm.org and
the IEEE Computer Society (IEEE-CS) www.computer.org are the two main professional organizations for
computer scientists. Their journals contain a wealth of information about all things related to computers
and computing, their conferences are worth attending, and online they have free books and courses for
members. You will not regret joining one or both of them.

Be humble: The following quote from Dijkstra says it all. Software development is hard. Programs
are very complex, and programs of any size are extremely hard to understand completely. Besides being
one of the most creative things that humans have ever done, computer software is one of the most
complex. Be humble. Work hard. Have fun!

The competent programmer is fully aware of the strictly limited size of his own skull;
therefore he approaches the programming task in full humility...

—Edsger Dijkstra18

And lastly, I couldn’t resist a quote that had both the words magic and computer in it...

The magic of myth and legend has come true in our time. One types the correct
incantation on a keyboard, and a display screen comes to life, showing things that
never were nor could be.... The computer resembles the magic of legend in this respect,
too. If one character, one pause, of the incantation is not strictly in proper form, the
magic doesn’t work. Human beings are not accustomed to being perfect, and few areas
of human activity demand it. Adjusting to the requirement for perfection is, I think,
the most difficult part of learning to program.

—Frederick Brooks

16 Oram, A. and G. Wilson, Eds. Beautiful Code: Leading Programmers Explain How They Think.

(Sebastopol, CA: O’Reilly Media, Inc, 2007.)

17 Weinberg, G. M. The Psychology of Computer Programming, Silver Anniversary Edition. (New York, NY:

Dorset House, 1988.)

18 Dijkstra, E. “The Humble Programmer,” CACM 15(10): 859-866. 1972.

http://www.acm.org
http://www.computer.org

CHAPTER 16 WRAPPING IT ALL UP

225

References
Beck, K. Extreme Programming Explained: Embrace Change. (Boston, MA: Addison-Wesley, 2006.)

Bell, A. E. “Software Development Amidst the Whiz of Silver Bullets,” Communications of the ACM, 51, 8

(August 2008), 22-24.

Bentley, J. Programming Pearls, 2nd Edition. (Reading, MA: Addison-Wesley, 2000.)

Brooks, F. P. The Mythical Man-Month : Essays on Software Engineering, Silver Anniversary Edition.

(Boston, MA: Addison-Wesley, 1995.)

Dahl, O. J., E. Dijkstra, et al. Structured Programming. (London, UK: Academic Press, 1972.)

Dijkstra, E. “The Humble Programmer,” CACM 15(10): 859-866. 1972.

Glass, R. “The Standish Report: Does It Really Describe a Software Crisis?,” Communications of the ACM,

49, 8 (August 2006), 15-16.

Guzdial, M. “Paving the Way for Computational Thinking,” Communications of the ACM, 51, 8 (August

2008), 25-27.

Hunt, A. and D. Thomas. The Pragmatic Programmer: From Journeyman to Master. (Boston, MA:

Addison-Wesley, 2000.)

Jenkins, S. B. “Musings of an ‘Old-School’ Programmer,” Communications of the ACM, 49, 5 (May 2006),

124-126.

Lammers, S. Programmers At Work. (Redmond, WA: Microsoft Press, 1986.)

McConnell, S. Rapid Development: Taming Wild Software Schedules. (Redmond, WA: Microsoft Press,

1996.)

McConnell, S. Code Complete 2. (Redmond, WA: Microsoft Press, 2004.)

Oram, A. and G. Wilson, Eds. Beautiful Code: Leading Programmers Explain How They Think.

(Sebastopol, CA: O’Reilly Media, Inc, 2007.)

Paulk, M. C. The Capability Maturity Model: Guidelines for Improving the Software Process. (Reading,

MA: Addison-Wesley, 1995.)

Polya, G. How To Solve It: A New Aspect of Mathematical Method, 2nd Edition. (Princeton, NJ: Princeton

University Press, 1957.)

Weinberg, G. M. The Psychology of Computer Programming, Silver Anniversary Edition. (New York, NY:

Dorset House, 1988.)

227

Index

 A
abstract classes, definition of, 111
abstraction

abstraction mechanism, 88
managing the complexity of a large problem,

65
acceleration, definition of, 24
actors, definition of, 91
Adams, Douglas, 179
Adapter pattern

class adapters, 146
code example, 147
description of, 146
object adapters, 146

add(), 150
aggregation, definition of, 130
agile development models

Agile Manifesto web page, 8
aims of, 14
description of, 8
eXtreme Programming (XP), 15
lightweight methodologies, 14
refactoring, 14
Scrum, 23
See also coding; eXtreme Programming (XP);

object-oriented analysis and design
(OOA&D); software development

Alexander, Christopher, 137
analysis paralysis, avoiding, 105
architectural patterns, 48
assertEquals(), 204
assertions, using for errors that should never

happen in production, 173

 B
backlogs

product backlog, 23
sprint backlog, 23

backtracking, 75
bank account example

CheckingAcct class, 110
creating the classes for, 110
InvestmentAcct class, 110
SavingsAcct class, 110

BankAccount class, withdraw(), 120
Beck, Kent, 204
begin-end block boundaries, 163
behavioral design patterns

definition of, 139, 148
Iterator pattern, 148
Observer pattern, 150
Strategy pattern, 154
See also design patterns

Bentley, Jon, 184
BirdFeeder class, 103
Birds by Burt example

bird identifier, designing and implementing,
105

BirdFeeder class, 93, 103
class diagrams, creating, 92
close(), 104
complete code listing, 93
decomposing the problem and identifying

the objects, 92
design and program changes, anticipating,

105
FeedingDoor class, 103
open(), 104
operate(), code listing, 104
pressButton(), 104
problem statement, defining, 90
RemoteControl class, diagram of, 102–103
RemoteControl use case, 106
requirements list, establishing, 91
Sensor class, 103
simplifying the SongIdentifier and Song

classes, code listing, 127
song identifier use case and its alternate,

table of, 107

 INDEX

228

Birds by Burt example (cont.)
SongIdentifier class and delegation, 126
use case for a remote control, creating, 102
use case, creating, 91

black-box testing, 182, 194
blocks and statements, style guidelines, 166
bottom-up assessment, definition of, 73
branch coverage, 196
breakpoints, 188
Brooks’ law, 16
buffer overflow problems, 184
Bugzilla, 218
built-in block boundaries, emulating, 164, 166

 C
C, 164
C++, 161, 164
change, managing, 44
change control board (CCB), 29
CheckingAcct class, 110
class adapters, 146
class diagrams, 101

definition of, 92
sections of, 92

classes
abstract classes, definition of, 111
abstraction mechanism, 88
arranging in a class hierarchy, 87
BankAccount class, 120
breaking complex classes into simpler ones,

108
class design guidelines, list of, 134–135
class diagrams, 92, 101
classes as having only one responsibility, 103
classes as templates for objects, 87
closing the base class from modification, 120
encapsulating variable behavior in

subclasses, 120
generalization, 88
getting the behavior of derived classes right,

125
inheritance, 88
making simple classes that work together,

103
method overriding in derived classes, 126
Open-Closed Principle (OCP), 116, 119
polymorphism, 88
protecting classes from unnecessary change,

116

reuse mechanism, 88
sharing the behavior and attributes of other

classes, 126
sub-class, 87
super class, 87
using and re-using single-feature classes, 162
using composition to assemble behaviors

from other classes, 128
See also objects

client-server architectural pattern
explanation of, 53
print spoolers, 54
X Windows graphical system, 54

close(), 104
code and fix model

advantages and disadvantages of, 8
description of, 8

code coverage
branch coverage, 196
checking return values, 197
definition of, 196
loop coverage, 196
off-by-one error, 196
straight line code, 196
testing every program statement, 196
testing for an end-of-file (EOF) marker, 197

code inspections
description of, 212
Fagan, Michael, 213
Inspection meeting, 215
inspection phases and procedures, 214
Inspection report, 216
list of roles used, 213
minor and major defects, levels of, 216
Overview meeting, 215
Planning phase, 215
Preparation phase, 215
purpose of, 212
recorded metrics, 217
required criteria, list of, 213
scheduling another inspection meeting, 217
See also code reviews; review methodologies;

Software Quality Assurance (SQA)
code patterns, 137
code reviews

including an experienced developer as a
disinterested third-party, 212

length of, 212
moderator, 212
no managers allowed, 212
objective of, 212

 INDEX

229

recorded metrics, 212
roles of the attendees at a code review, 211
tester, 212
See also code inspections; review

methodologies; Software Quality
Assurance (SQA)

coding
Adams, Douglas, 179
adhering to a programming language’s

naming conventions, 171
assertions, using, 173
bad code example, critique of, 161
begin-end block boundaries, 163
block layouts, types of, 163
blocks and statements, style guidelines, 166
built-in block boundaries, emulating, 164,

166
C, 164
C++, 161, 164
camel case, using, 171
coding standards, 22
comments, 162, 168
common code ownership, 17–18, 30
comparing the plan-driven and agile

development processes, 159
declaration before use rule, 167
defensive programming, definition of, 172
errno global variable, 175
error recovery, suggestions for, 174–176
exceptions, throwing and catching, 176–178
fat interfaces, 162
getMessage(), 177
good layout and formatting, objectives of,

163
goto statements, 166
handling errors that occur at runtime, 174
having a header block comment with

methods and functions, 169
having your methods do just one thing, 162
header files and source code, 168
Hunt, Andrew, 160
identifier naming conventions, 170
indentation, using, 165
individual statements, wrapping, 166
Java, 161, 164
JavaDoc comments, 169
layout of, 162
magic numbers, 162
McConnell, Steve, 160–161
NullPointerException, 176
parentheses, using, 166

Pascal, 164
Pike, Rob, 170
printf(), 175
protecting a program from bad data,

guidelines for, 172
putting separate conditions on separate

lines, 166
scanf(), 175
software construction metaphor, 160
statement separator symbol, 164
statement terminator symbol, 164
style guidelines, using for a developer team,

171
taking advantage of built-in exception

handling, 174
Thomas, David, 160
two audiences for your code, 160
variable declarations, style guidelines, 167
visibility modifiers, 161
Visual Basic, 163
white space, suggestions for using, 165
writing good, informative comments, 168
See also eXtreme Programming (XP); object-

oriented analysis and design (OOA&D);
software development

cohesion, 64
comments, 162

keeping comments up to date, 168
setting off block comments with blank lines,

168
style guidelines, 168
writing good, informative comments, 168

common code ownership, 17–18, 30
common design characteristics, 115
communication conduits, 48
communications protocols, 55
compilers

debugging syntactic errors, 182
eliminating all compiler errors and warnings

before reviews or testing, 182
composition

definition of, 128
Space Rangers example, 128–129

computational structures, 48
computeTax(), 156
concurrency issues, 185
Context, 154
continuous integration, 21
continuous unit testing, 15
control coupling, definition of, 80
controller, definition of, 50

 INDEX

230

creational design patterns
definition of, 139
Factory pattern, 142
Singleton pattern, 141

Curtis, Bill, 66

 D
dangling pointer problems, 184
data coverage

boundary conditions, testing, 197
definition of, 196
good data and bad data, examining, 197
illegal data values, testing, 198
no data, testing for, 198
pre-conditions and post-conditions, testing,

198
too little or too much data, testing for, 198
typical data values, testing, 197
uninitialized variables, testing for, 198

Davis, Alan, 64
debugging

Bentley, Jon, 184
breakpoints, 188
buffer overflow problems, 184
checking out a working copy from a VCS

repository, 190
compilers and, 182
concurrency issues, 185
dangling pointer problems, 184
DDD debugger, 188
DEBUG blocks, using and removing, 186
debuggers, 188
debugging as rewarding, 222
definition of, 181, 183
Eclipse, 188
eliminating all compiler errors and warnings

before reviews or testing, 182
finding the root cause of an error and fixing

it, 181
finding the source of an error systematically,

techniques for, 185
fixing errors, 188
fixing only one error at a time, 189
fixing the underlying problem, not the

symptom, 183
GDB debugger, 188
how not to approach a debugging problem,

183
initialization problems, 184

logic errors, definition of, 183
multi-threaded and multi-process programs,

debugging, 188
NetBeans IDE, 188
print statements, inserting, 185
refactoring, 189
reproducing an error reliably, 184
reviewing (inspecting), definition of, 181
semantic errors, definition of, 182
source code control, 189
syntactic errors, definition of, 182
testing the fix, 189
testing, definition of, 182
three types of errors, 182
timing errors, 184
using a debugger to get a stack trace, 184
using the debugging features of an integrated

development environment (IDE), 185
version control systems (VCS), 189
walking off the end of an array, 184
watchpoints, 188
working backwards to find and fix errors, 184
See also defects; errors; testing

defects
defect levels, list of, 35
defect tracking systems, information tracked,

218
delivering defect-free code, 209
high defect rates, 29
releasing a program with as few defects as

possible, 35
See also debugging; errors; testing

defensive programming
assertions, using, 173
C program code example, 172
definition of, 172
errno global variable, 175
error recovery, suggestions for, 174–176
exceptions, throwing and catching, 176–178
getMessage(), 177
handling errors that occur at runtime, 174
NullPointerException, 176
protecting a program from bad data,

guidelines for, 172
taking advantage of built-in exception

handling, 174
delegation

definition of, 126
example of, 126–128
simplifying the SongIdentifier and Song

classes, code listing, 127

 INDEX

231

Delphi method, description of, 31
DeMarco, Tom, 12, 30
Dependency Inversion Principle (DIP), 116

definition of, 130
example of, 131

design
good design, characteristics of, 20
simple design, characteristics of, 20

design patterns
Adapter pattern, 146
Alexander, Christopher, 137
behavioral design patterns, 139, 148
code patterns, 137
creational design patterns, 139
criteria for classifying design patterns, 139
definition of, 138
elements of, 138
essential features of, 138
Factory pattern, 142
Gang of Four, 138
Gang of Four’s classic design patterns, list of,

139
Iterator pattern, 148
Model-View-Controller (MVC) architectural

pattern, 138
Observer pattern, 150
purpose, 139
scope, 139
Singleton pattern, 141
Strategy pattern, 154
structural design patterns, 139, 146
using, 65
why design patterns are needed, 138
Wrapper pattern, 146
See also behavioral design patterns

desk checks, 211
Dijkstra, Edsger, 71, 210, 224
domain requirements, 42
Don’t Repeat Yourself Principle (DRY), 116, 121
duty cycle, 32
dynamic analysis, 210

 E
Eclipse, 188
egoless programming, 224
eight queens problem

backtracking, 75
complete Java code listing, 84

decomposing a problem until a procedure
becomes obvious, 78

description of, 73
examining the problem for a top-level

decomposition, 73
proposed solution 1, 73
proposed solution 2, 74
proposed solution 3, 75
refinement 1, 75
refinement 2, 76
stepwise construction of trial solutions, 75
using pseudo-code to find a solution, 76

encapsulation, 65, 87, 122
differentiating from information hiding, 80
encapsulating services and data, 79

errno global variable, 175
errors

buffer overflow problems, 184
compilers and, 182
concurrency issues, 185
dangling pointer problems, 184
DEBUG blocks, using and removing, 186
defect levels, list of, 35
delivering defect-free code, 209
eliminating all compiler errors and warnings

before reviews or testing, 182
error recovery, suggestions for, 174–176
exceptions, throwing and catching, 176–178
finding the source of an error systematically,

techniques for, 185
fixing errors, 188
getMessage(), 177
handling errors that occur at runtime, 174
high defect rates, 29
initialization problems, 184
logic errors, definition of, 183
NullPointerException, 176
refactoring, 189
releasing a program with as few defects as

possible, 35
reproducing an error reliably, 184
semantic errors, definition of, 182
syntactic errors, definition of, 182
taking advantage of built-in exception

handling, 174
three types of errors, 182
timing errors, 184
walking off the end of an array, 184
working backwards to find and fix errors, 184
See also debugging; defects; testing

 INDEX

232

estimating project duration, 20
evolutionary prototyping

advantages and disadvantages of, 14
description of, 13

exploration phase, description of, 22
extensibility, 64
eXtreme Programming (XP)

Beck, Kent, 15
Brooks’ law, 16
code as the sole deliverable, 19
coding standards, 22
common code ownership, 17–18
continuous integration, 21
continuous unit testing, 15
Cunningham, Ward, 15
estimation as the responsibility of the

developers, 20
exploration phase, 22
15 principles of, 17–19
four basic activities of, 19
four core values of, 17
four variables of software development, 16
good design, 20
heavy customer involvement, 15
implementation phase, 22
implementation tasks, 199
keeping the cost of change manageable, 17
life cycle, description of, 22
maintenance mode, 23
mothballing the code and starting over, 23
on-site customer representative, 16
overview of, 15
pair programming, 15, 21
planning game, 22
productizing phase, 23
redesigning code to make it simpler, 17
refactoring, 17, 21
risk, minimizing and handling, 16
scope of a project, controlling, 16
short iteration cycles and frequent releases,

16
spike, definition of, 18
starting with fewer resources and a tight

budget, 18
stories explaining how the whole system

works, 20
stories in XP projects, 199
striving for defect-free code, 18
test-driven development (TDD), 15, 19
12 practices of, 20

using unit tests as a regression test suite, 16
See also agile development models; coding;

object-oriented analysis and design
(OOA&D); software development

 F
Factory pattern

description of, 142
features of, 145
IceCream interface, code example, 143
IceCreamFactory class, code example, 144
See also design patterns

Fagan, Michael, 213
Fairley, Richard, 64
FeedingDoor class, 103
Fowler, Martin, 100
functional specification

author’s name, 39
chief architect model, 40
definition of, 38
disclaimer, 39
distinguishing between requirements,

policies, and implementations, 43
domain requirements, 42
functional requirements, definition of, 37
functional requirements, four types of, 42
getting customers to respond to a

requirements list, 40
including an Open Issues section, 41
including detailed screen-by-screen

specifications, 40
keeping a Backlog section, 41
keeping technical and marketing notes in a

notebook, 41
managing expectations, 40
never hard-code business policies, 43
non-functional requirements, 43
outline of, 39
overview, 39
project manager model, 40
requirements digging, 43–46
taking a course in writing, 38
telling the project stakeholders what a

program will not do, 40
Unified Modeling Language (UML), 40
use cases, 40
user requirements, example of, 42
value of a good set of functional

requirements, 37

 INDEX

233

writing functional specifications in a natural
language, 38

writing user stories, 38, 40
See also project management; requirements

digging; Unified Modeling Language
(UML); use cases

 G
Gamma, Eric, 204
Gang of Four

classic design patterns, list of, 139
design patterns, essential features of, 138

GDB debugger, 188
generalization, 88, 112
getInstance(), 142
getMessage(), 177
getNextElement(), 148
getting the behavior of derived classes right,

125
Git, 191
global-data coupling, definition of, 80
goals, definition of, 91
goto statements, 166
gray-box testing, 193

 H
hasNext(), 148
hasPrevious(), 150
header files

nesting, 168
source code and, 168

Hertzfeld, Andy, 5
heuristics

abstraction, using, 65
adhering to the Principle of One Right Place,

66
changes, anticipating, 65
common design patterns, using, 65
Davis, Alan, 64
drawing diagrams to visualize a program

design, 66
encapsulation, 65
Fairley, Richard, 64
finding real-world objects to model, 64
information hiding, 65
loose coupling, using, 65
modularity, 65
software design and, 63

time-tested heuristics, list of, 64
using well-defined interfaces between

modules, 65
Hunt, Andrew, 160

 I
identifiers

camel case, using, 171
naming conventions, 170
using descriptive identifiers, 170

implementation phase, 22
implementation tasks, 199
indentation, using, 165
information hiding, 65, 79, 87

differentiating from encapsulation,
80

inheritance, 123
abstraction mechanism, 88
inheritance graph, 88
overloading of operators, 88
polymorphism, 88
reuse mechanism, 88
when inheritance isn’t the right thing to do,

126
initialization problems, 184
Inspection meeting, 215
Inspection report, 216
integrated development environment (IDE),

using its debugging features, 185
integration testing

definition of, 182, 193
gray-box testing, 193
See also testing; unit testing

interfaces
dividing a bloated interface into two or

more smaller, more cohesive interfaces,
132

Interface Segregation Principle (ISP), 116
making all interactions between modules

through an interface, 79
sharing, 64
using well-defined interfaces between

modules, 65
InvestmentAcct class, 110
ISO-OSI layered architectural model, 55
iterative process models

DeMarco, Tom, 12
description of, 12
failing to meet an iteration deadline, 13

 INDEX

234

Iterator pattern
add(), 150
code example, 149
description of, 148
getNextElement(), 148
hasNext(), 148
hasPrevious(), 150
Iterator interface, 149
Java Collections Framework (JCF), 149
ListIterator, 149
next(), 150
previous(), 150
remove(), 150
traversing a collection one element at a time,

148
See also design patterns

 J
Java, 161, 164
Java Collections Framework (JCF), 149
JavaDoc comments, 169
Jenkins, Stephen, 222
JUnit

assertEquals(), 204
assertion library methods, list of, 204
Beck, Kent, 204
definition of, 204
executing a test from the command line, 204
Gamma, Eric, 204
JUnitCore class, executing directly, 205
TestCase base class, extending, 204
TestPhoneContact class, code listing, 205
writing a test in, 204

 K
Keyword in Context (KWIC) index

creating the index using top-down
decompositon, 81

example of, 81
modular decomposition of, 82

 L
Law of Demeter, 116

definition of, 133
keeping dependencies to a minimum, 133

layered architectural approach
communications protocols, 55

explanation of, 54
ISO-OSI layered architectural model, 55
operating systems (OSs), 54

life cycle models
agile development models, 8, 14
Agile Manifesto web page, 8
Brooks’ law, 16
code and fix model, 8
DeMarco, Tom, 12
evolutionary prototyping, 13
eXtreme Programming (XP), 15
15 principles of eXtreme Programming, 17–19
four basic activities of eXtreme

Programming, 19
four core values of eXtreme Programming, 17
four variables of software development, 16
iterative process models, 12
keeping the cost of change manageable, 17
lightweight methodologies, 14
nailing down requirements at the beginning

of a project, 10
plan-driven models, 8
refactoring, 14
risk, minimizing and handling, 16
Royce, Winston, 9
scope of a project, controlling, 16
sequence of steps, 7
Software Engineering Institute (SEI), 14
12 practices of eXtreme Programming, 20
types of, 7
using unit tests as a regression test suite, 16
viewing from the perspective of object-

oriented analysis and design, 89
waterfall model, 9
waterfall with feedback model, 11
See also coding; eXtreme Programming (XP);

object-oriented analysis and design
(OOA&D); software development

lightweight methodologies
characteristics of, 14
debunking its myths, 14

linear problem-solving approach, 60
Liskov Substitution Principle (LSP)

getting the behavior of derived classes right,
125

indications that you’re violating the Liskov
Substitution Principle, 126

Martin, Robert, 124
method overriding in derived classes, 126
Rectangle/Square example, 123

 INDEX

235

sharing the behavior and attributes of other
classes, 126

Square class, 124
when inheritance isn’t the right thing to do,

126
ListIterator, 149
logic errors, definition of, 183
loop coverage, 196
loose coupling

control coupling, 80
definition of, 79
four broad categories of, 80
global-data coupling, 80
keeping dependencies to a minimum, 133
loosely coupled modules, 64–65
Principle of Least Knowledge (PLK), 133
Principle of Loose Coupling, 116
simple data coupling, 80
structured data coupling, 80

 M
magic numbers, 162
main program – subroutine architectural

pattern, 56
maintenance mode, 23
Martin, Robert, 124, 198
McConnell, Steve, 160–161, 194
methods

doing too many things, 162
fat interfaces, 162
having a header block comment with

methods and functions, 169
having your methods do just one thing, 162
magic numbers, 162
naming, 162
protecting from bad data, 162
smaller functions as easier to test, 163
using and re-using small, single-feature

methods, 162
using too many input parameters, 162

Meyer, Bertrand, 100
misunderstood requirements, 29
MobilePhone class, 122
Model-View-Controller (MVC) architectural

pattern, 138
controller, definition of, 50
describing the flow of an MVC program, 50
explanation of, 49
model, definition of, 50

Nifty Assignment example, 51
view (viewport), definition of, 50
See also design patterns

modular decomposition
aiming for high cohesion in a module, 79
encapsulation, 79
information hiding, 79
interfaces, 79
Keyword in Context (KWIC) index, 81
loose coupling, 79
modularity, three characteristics of, 79
Parnas, David, 79–80
separation of concerns, 79

modularity, 63, 65

 N
Nestor, John, 67
NetBeans IDE, 188
new keyword, 141
next(), 150
Nifty Assignment example

creating the model, view, and controller
objects, 53

description of, 51
organization of the program, UML object

diagram, 52
non-functional requirements, 43

 O
object adapters, 146
object-oriented analysis and design (OOA&D)

abstract classes, definition of, 111
aggregation, definition of, 130
analysis paralysis, avoiding, 105
bank account example, 110
BankAccount class, 120
BirdFeeder class, 93
Birds by Burt example, complete code listing,

93
Birds by Burt example, defining the program

elements, 90
breaking complex classes into simpler ones,

108
candidate objects, identifying and describing,

108
candidate objects, organizing into groups,

109

 INDEX

236

object-oriented analysis and design (OOA&D)
(cont.)
class design guidelines, list of, 134–135
class diagrams, 92, 101
classes as having only one responsibility, 103
closing the base class from modification, 120
coding to an interface rather than an

implementation, 117
common design characteristics, 115
composition, definition of, 128
composition, Space Rangers example, 128–

129
conceptual model, creating, 100
decomposing the problem and identifying

the objects, 92
delegation, example of, 126–128
Dependency Inversion Principle (DIP), 116,

130
describing in terms of the software

development life cycle, 89
differentiating analysis from design, 100
Don’t Repeat Yourself Principle (DRY), 116,

121
duplicating code as duplicating behavior, 121
duplication of design and code, avoiding, 110
encapsulating variable behavior in

subclasses, 120
encapsulation, 122
essential features, definition of, 100
examining your features list and

requirements for duplications, 121
Fowler, Martin, 100
getting the behavior of derived classes right,

125
having one requirement in one place, 121
indications that you’re violating the Liskov

Substitution Principle, 126
inheritance, 123
Interface Segregation Principle (ISP), 116, 132
iterative nature of, 105
Law of Demeter, 116, 133
Liskov Substitution Principle (LSP), 116, 123
making simple classes that work together,

103
Martin, Robert, 124
method overriding in derived classes, 126
Meyer, Bertrand, 100
object-oriented analysis as anticipating

change, 105

object-oriented analysis as creating a
conceptual model of a problem domain
and its solution, 100

object-oriented analysis, definition of, 88, 100
object-oriented analysis, separating from

design, 107
object-oriented design as creating an object

model of a solution, 100
object-oriented design as managing change,

105
object-oriented design principles, list of, 116
object-oriented design, definition of, 88
object-oriented design, objectives of, 103
Open-Closed Principle (OCP), 116, 119
Point class, 117
Principle of Least Knowledge (PLK), 116, 133
Principle of Loose Coupling, 116
private methods, extending, 120
problem statement, defining, 90
process steps in analysis and design, 88
producing a work product, 100
protecting classes from unnecessary change,

116
Rectangle/Square example, 123
refactoring, 119
requirements list, establishing, 91
Shape interface, 117
sharing the behavior and attributes of other

classes, 126
simplifying the SongIdentifier and Song

classes, code listing, 127
Single Responsibility Principle (SRP), 108,

116, 122
song identifier use case and its alternate,

table of, 121
SongIdentifier class, 126
Square class, 124
textual analysis, definition of, 101
use case for Birds by Burt, revising, 102
use case, definition of, 91
use cases, creating, 91, 101
Violinist class, 116
ViolinStyle class, 117
virtual methods, 126
when inheritance isn’t the right thing to do,

126
See also coding; eXtreme Programming (XP);

software development
objects

objects as members of classes, 87
passing messages to, 87

 INDEX

237

possessing identity, state, and operations, 87
using encapsulation and information hiding,

87
See also classes

Observer pattern
description of, 150
Observer interface, code example, 152
pull Observer, 151
push Observer, 151
Subject interface, code example, 151
See also design patterns

off-by-one error, 196
open(), 104
Open-Closed Principle (OCP), 116, 119
operate(), code listing, 104
operating systems (OSs), 54
opportunity-driven problem-solving approach,

61
overloading of operators, 88
Overview meeting, 215

 P, Q
pair programming, 30, 191, 224

advantages of, 15, 21
parentheses, using, 166
Parnas, David, 79–80
Pascal, 164
person-hours, estimating project tasks in, 31
phone contacts example

creating the tests, 200
establishing the tasks, 199
file opening test, code example, 203
PhoneContact class, code listing, 200
PhoneContactList class, code listing, 203
TestDriver class, code example, 202
TestPhoneContact class, default constructor,

200
writing the story, 199

Pike, Rob, 170
pipe-and-filter architectural pattern

anagram example, 48
disadvantages of, 49
explanation of, 48

plan-driven models
description of, 8
Royce, Winston, 9
waterfall model, 9

planning game, description of, 22
Planning phase, 215

play(), 117
Point class, 117
polymorphism, 88
portability, 64
post-mortem, performing after every project, 35
PowerPoint, using effectively, 34
Preparation phase, 215
pressButton(), 104
previous(), 150
Principle of Least Knowledge (PLK), 116

definition of, 133
keeping dependencies to a minimum, 133

Principle of Loose Coupling, 116
Principle of One Right Place, 66
print spoolers, 54
printf(), 175
product backlog, 23, 29
productizing phase, description of, 23
project management

addressing identifiable risks through
avoidance and mitigation, 30

change control board (CCB), 29
common code ownership, 30
communicating bad news about a project, 34
defect levels, list of, 35
Delphi method, description of, 31
DeMarco, Tom, 30
estimating project size and required effort, 31
estimating project tasks in person-hours, 31
figuring out a realistic duty cycle, 32
high defect rates, 29
ignoring a wild-assed guess (WAG), 31
introducing defects (errors) into a program,

35
knowing the dependencies between tasks, 32
making a detailed breakdown of features into

tasks, 31
measuring the velocity of each task, 33
misunderstood requirements, 29
pair programming, 30
performing a post-mortem after every

project, 35
PowerPoint, using effectively, 34
product backlog, 29
project plan, contents of, 27
project plan, project organization section, 28
project plan, project oversight section, 34
project plan, project schedule section, 31
project plan, resource requirements section,

30
project plan, risk analysis section, 28

 INDEX

238

project plan, work breakdown and task
estimates section, 31

project status report, presenting, 34
project-scheduling software, using, 32
releasing a program with as few defects as

possible, 35
requirements churn, 29
schedule slips, 28
Spolsky, Joel, 32
Spolsky’s painless schedule, 33
turnovers, reducing, 30
See also functional specification;

requirements digging
pull Observer, 151
purpose, 139
push Observer, 151

 R
Rectangle/Square example, 123
refactoring, 63, 119, 189

characteristics of, 21
definition of, 14, 17

release backlog, 45
RemoteControl class

diagram of, 102
integrating into the program, 103

remove(), 150
requirements digging

categorizing requirements, 45
definition of, 43
managing change, 44
non-technical problems with requirements,

45
overcoming problems with project scope and

requirements creep, 44
prioritizing requirements based on customer

input, 45
problems of domain understanding, 44
questions to ask when examining

requirements, 45
requirements churn, 29
See also functional specification; project

management
return values, checking, 197
reuse mechanism, 88
review methodologies

Bugzilla, 218
code inspections, 212
code reviews, three types of, 211

defect tracking systems, information tracked,
218

defect tracking systems, typical workflow, 218
desk checks, 211
performing code reviews right after unit

testing, 211
reviewing (inspecting), definition of, 181
summarizing the characteristics of the three

review methodologies, 217
walkthroughs, 211
See also code inspections; code reviews

risk
addressing identifiable risks through

avoidance and mitigation, 30
minimizing and handling, 16

Royce, Winston, 9

 S
SavingsAcct class, 110
scanf(), 175
schedule slips, 28
scope, 139

controlling the scope of a project, 16
overcoming problems with project scope and

requirements creep, 44
Scrum

acceleration, definition of, 24
characteristics of, 23
daily Scrum meetings, 24
development of, 23
product backlog, 23
release backlog, 45
Scrum master, 24
Scrum retrospective, 24
sprint backlog, 23
sprints, definition of, 23

semantic errors, definition of, 182
Sensor class, 103
separation of concerns, 79
setUpMusic(), 117
Shape interface, 117
simple data coupling, 80
Single Responsibility Principle (SRP), 108, 116,

122
Singleton pattern

code example, 141
creating a class that can be instantiated only

once, 141
description of, 141

 INDEX

239

getInstance(), 142
new keyword, 141
synchronized keyword, 142
See also design patterns

software architecture
architectural patterns, 48
client-server architectural pattern, 53
communication conduits, 48
computational structures, 48
detailed design versus style, 47
layered architectural approach, 54
main program – subroutine architectural

pattern, 56
Model-View-Controller (MVC) architectural

pattern, 49
object-oriented architectural patterns, 49
pipe-and-filter architectural pattern, 48
representing software architectures visually

as black box graphs, 48
two levels of software design, 47
Wirth, Niklaus, 56
See also design patterns

software design
Conklin, Jeff, 60
Curtis, Bill, 66
design as iterative, 67
design as messy, 62
designers and creativity, 66
desirable design characteristics, 63
dividing software problems into two layers,

59
ease of maintenance, 63
extensibility, 64
fitness of purpose, 63
great software designers, characteristics of,

67
having knowledge of the problem domain, 67
heuristics, 63
high cohesion within a module, 64
interfaces, 64
linear problem-solving approach, 60
loosely and tightly coupled modules, 64
modularity, 63
Nestor, John, 67
opportunity-driven problem-solving

approach, 61
portability, 64
refactoring, 63
simplicity, 63
steps in solving a software-design problem,

66

tame problems, 59, 62
understanding the design process, 62
wicked problems, 59–60

software development
admitting when a project is behind, 4
communicating with team members, 2
communicating with the customer, 3
debugging as rewarding, 222
definition of, 1
developing software well, requirements for, 2
Dijkstra, Edsger, 224
distinguishing software development from

software engineering, 1
egoless programming, 224
embracing failure when writing software, 222
employing small, well-integrated teams, 2
following a project plan that everyone buys

into, 3
Hertzfeld, Andy, 5
holding regular status meetings, 3
Jenkins, Stephen, 222
joining the ACM and the IEEE-CS, 224
key issue that divides plan-driven

development and agile development,
222

pair programming, 224
picking the right set of development tools, 4
reading a lot of code, 2
reading about how great programmers think,

work and code, 223
reading about problem solving and design,

223
requirements churn, managing, 4
risk, handling flexibly, 3
simple tools, using, 222
small teams build the best software, 222
software development, learning, 2
suggestions on becoming a better software

developer, 223
writing a lot of code, 2, 223
writing software as a creative activity, 222
See also coding; eXtreme Programming (XP);

life cycle models; object-oriented
analysis and design (OOA&D)

Software Engineering Institute (SEI), 14
Software Quality Assurance (SQA)

Bugzilla, 218
characteristics of software quality from the

user’s perspective, 209
debugging as rewarding, 222
debugging your code, 210

 INDEX

240

Software Quality Assurance (SQA) (cont.)
defect tracking systems, information tracked,

218
defect-free code, delivering, 209
Dijkstra, Edsger, 210
dynamic analysis, 210
limitations of testing, 210
reviewing your code, 210
static analysis, 210
testing your code, 210
See also code reviews

source code control, 189
Space Rangers example, using composition to

assemble behaviors from other classes, 128–
129

spike, definition of, 18
Spolsky, Joel

project-scheduling software, using, 32
Spolsky’s painless schedule, 33

sprints
definition of, 23
sprint backlog, 23

Square class, 124
statement separator symbol, 164
statement terminator symbol, 164
static analysis, 210
status reviews and presentations, 34
stepwise refinement

backtracking, 75
bottom-up assessment, definition of, 73
decomposing a problem until a procedure

becomes obvious, 78
definition of, 72
eight queens problem, 73
stepwise construction of trial solutions, 75
top-down refinement, definition of, 72

straight line code, 196
Strategy pattern

computeTax(), 156
Context, 154
creating the Context class, code example, 156
creating the TaxStrategy classes, code

example, 155
description of, 154
Strategy interface, 154
usage examples, 154
See also design patterns

structural design patterns
Adapter pattern, 146
definition of, 139, 146
Wrapper pattern, 146

structured data coupling, 80
structured programming

bottom-up assessment, definition of, 73
definition of, 71
Dijkstra, Edsger, 71
stepwise refinement, 72
top-down refinement, definition of, 72

sub-class, 87
Subject interface, code example, 151
Subversion, 191
super class, 87
synchronized keyword, 142
syntactic errors, definition of, 182
system testing

black-box testing, 194
definition of, 182, 194

 T
tame problems

characteristics of, 62
definition of, 59
example of, 62

technical specification, definition of, 38
test-driven development (TDD), 19

definition of, 15, 195
writing unit tests before coding, 195

testing
adversarial roles of developers and testers,

195
Beck, Kent, 204
black-box testing, 182, 194
characteristics of, 198
code coverage, 196
combinatorial explosion problem, 194, 196
combining static (code reading) and dynamic

(testing) techniques, 194
data coverage, 196
definition of, 182
developers as lousy testers, 195
exploration, 199
Gamma, Eric, 204
gray-box testing, 193
how to write a test, 199
implementation tasks, 199
increasing code complexity and increasing

the number of possible errors, 194
integration testing, 182, 193
JUnit, 204
Martin, Robert, 198

 INDEX

241

McConnell, Steve, 194
off-by-one error, 196
phone contacts example, 199
stories in XP projects, 199
system testing, 182, 194
testing only a single concept in your code,

199
three levels of, 193
unit testing, 182, 193, 195
what to test, 196
when to test, 195
white-box testing, 193
writing unit tests before and after coding, 195
See also debugging; defects; errors;

integration testing; testing; unit testing
textual analysis

definition of, 101
picking out the nouns and verbs in a use

case, 101
Thomas, David, 160
tightly coupled modules, 64
timing errors, 184
top-down decompositon, 81
top-down refinement, definition of, 72
tuneInstrument(), 117
turnover

best ways to reduce turnover, 30
mitigating the effects of, 30

two levels of software design, 47

 U
Unified Modeling Language (UML), 40

generalization, definition of, 112
using open arrows to indicate inheritance,

112
See also functional specification; use cases

unit testing
characteristics of, 198
definition of, 182, 193
developer's responsibility for, 195
how to write a test, 199
importance of, 208
phone contacts example, 199
white-box testing, 193
writing unit tests before and after coding, 195
See also integration testing; testing

use cases, 40
actor, definition of, 91
actors, identifying, 109

creating, 101
definition of, 91
describing several scenarios, 109
examining the external behavior of a

program, 91
goal, definition of, 91
identifying new objects, 102
illustrating different scenarios in the use of a

program, 107
MobilePhone class, 122
RemoteControl use case, 106
revising the use case for Birds by Burt, 102
song identifier use case and its alternate,

table of, 107, 121
using textual analysis to pick out the nouns

and verbs in a use case, 101
See also functional specification; Unified

Modeling Language (UML)
user requirements, example of, 42

 V
variables

declaration before use rule, 167
variable declarations, style guidelines, 167

version control systems (VCS)
copy-modify-merge strategy, 190
Git, 191
incomplete merge strategy, 191
lock-modify-unlock strategy, 190
pair programming, 191
serializing changes in the repository, 190
Subversion, 191

view (viewport), definition of, 50
Violinist class

diagram of, 116
play(), 117
setUpMusic(), 117
tuneInstrument(), 117

ViolinStyle class, diagram of, 117
virtual methods, 126
visibility modifiers, 161
Visual Basic, 163

 W
walkthroughs

confirming small changes to code after fixing
an error, 211

roles of the code author and reviewer, 211

 INDEX

242

watchpoints, 188
waterfall model

description of, 9
disadvantages of, 10

waterfall with feedback model
advantages and disadvantages of, 11
description of, 11

white space, suggestions for using, 165
white-box testing, 193
wicked problems

characteristics of, 60
definition of, 59

examples of, 60
wild-assed guess (WAG), ignoring,

31
Wirth, Niklaus, 56
withdraw(), 120
working copy, 190
Wrapper pattern, description of, 146

 X, Y, Z
X Windows graphical system, 54

	Cover
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Preface

	Introduction to Software Development
	What We’re Doing
	So, How to Develop Software?
	Conclusion
	References

	Process Life Cycle Models
	A Model That’s not a Model At All: Code and Fix
	Cruising over the Waterfall
	Backing Up the Waterfall
	Loops Are Your Friend
	Evolving the Incremental Model
	Agile Is as Agile Does
	eXtreme Programming (XP)
	XP Overview
	XP Motivation
	The Four Variables
	The Four Values
	The 15 Principles
	The Four Basic Activities
	Implementing XP: The 12 Practices
	The XP Life Cycle
	Scrum, mate
	Conclusion
	References

	Project Management Essentials
	Project Planning
	Project Organization
	Risk Analysis
	Resource Requirements
	Work Breakdown and Task Estimates
	Project Schedule
	Project Oversight
	Status Reviews and Presentations
	Defects
	The Post-Mortem
	Conclusion
	References

	Requirements
	What Types of Requirements Are We Talking About Here?
	Functional Specification?
	But I Don’t Like Writing!
	That Natural Language Thing
	Outline of a Functional Specification
	Overview
	Disclaimer
	Author’s Name
	Scenarios of Typical Usage
	Detailed Screen-By-Screen Specifications
	Non-requirements
	Open Issues
	Design and Feature Ideas
	Backlog
	One More Thing
	Types of Requirements
	User Requirements
	Domain Requirements
	Non-functional Requirements
	Non-requirements
	Requirements Digging
	Why Requirements Digging Is Hard
	Analyzing the Requirements
	Conclusion
	References

	Software Architecture
	General Architectural Patterns
	Pipe-and-filter Architecture
	An Object-Oriented Architectural Pattern
	An MVC Example: Let’s Hunt!
	The Problem
	Model
	View
	Controller
	Model
	The Client-Server Architectural Pattern
	The Layered Approach
	The Main Program: Subroutine Architectural Pattern
	Conclusion
	References

	Design Principles
	The Design Process
	Desirable Design Characteristics (Things Your Design Should Favor)
	Design Heuristics
	Designers and Creativity
	Conclusion
	References

	Structured Design
	Structured Programming
	Stepwise Refinement
	Modular Decomposition
	Top-Down Decomposition
	Conclusion
	References
	Appendix: The Complete Non-Recursive Eight-Queens Program

	Object-Oriented Analysis and Design - An Overview
	An Object-Oriented Analysis and Design Process
	Doing the Process
	Conclusion
	References

	Object-Oriented Analysis and Design
	PRELUDE: In Which We Set the Scene
	ACT ONE, Scene 1: In Which We Enquire into Analysis
	ACT ONE, Scene 2: In Which We Deign to Design
	ACT TWO, Scene 1: Change in the Right Direction
	ACT TWO, Scene 2: In Which the Design Will also Change, for the Better
	ACT THREE, Scene 1: In Which We Do Design
	ACT FOUR, Scene 1: In Which We Philosophize on Abstraction
	Conclusion
	References

	Object-Oriented Design Principles
	Our List of Fundamental Object-Oriented Design Principles
	Encapsulate Things in Your Design That Are Likely to Change
	Code to an Interface Rather Than to an Implementation
	The Open-Closed Principle (OCP)
	Don’t Repeat Yourself Principle (DRY)
	The Single Responsibility Principle (SRP)
	Liskov Substitution Principle (LSP)
	The Dependency Inversion Principle (DIP)
	The Interface Segregation Principle (ISP)
	The Principle of Least Knowledge (PLK)
	Class Design Guidelines for Fun and Enjoyment
	Conclusion
	References

	Design Patterns
	Design Patterns and the Gang of Four
	Patterns We Can Use
	Conclusion
	References

	Code Construction
	A coding example
	Functions and Methods and Size, Oh My!
	Formatting, Layout, and Style
	General Layout Issues and Techniques
	White Space
	Block and Statement Style Guidelines
	Declaration Style Guidelines
	Commenting Style Guidelines
	Identifier Naming Conventions
	Defensive Programming
	Assertions Can Be Your Friend
	Exceptions and Error Handling
	The Last Word on Coding
	References

	Debugging
	What’s an Error, Anyway?
	What Not To Do
	An Approach to Debugging
	Source Code Control
	One Last Thought on Coding and Debugging – Pair Programming
	Conclusion
	References

	Unit Testing
	The Problem with Testing
	That Testing Mindset
	When to Test?
	What to Test?
	Characteristics of Tests
	How to Write a Test
	JUnit: A Testing Framework
	Testing Is Good
	Conclusion
	References

	Walkthroughs, Code Reviews, and Inspections
	Walkthroughs, Reviews, and Inspections – Oh My!
	Walkthroughs
	Code Reviews
	Code Inspections
	Summary of Review Methodologies
	Defect Tracking Systems
	Conclusion
	References

	Wrapping It all Up
	What Have You Learned?
	What to Do Next?
	References

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P, Q
	R
	S
	T
	U
	V
	W
	X, Y, Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

