EGSP College of Engineering

Department of Computer Applications

Subject : Object Oriented Analysis and Design

Sem
: IV

Sub Code : MC9244

Class
: II MCA

Question Bank

PART – A

UNIT – II

1) What are a method, methodology and process?
Ans: A method is an implementation of an object's behavior. A model is an abstract of a system constructed to understand the system prior to building or modifying it.
Methodology is going to be a set of methods, models and rules for developing systems based on any set of standards. The process is defined as any operation being performed.
2) Write the difference between a method and a process.
Ans: Method is going to be implanted version of an objects behavior whereas the process is any operation being performed. Methods concentrate on the data or the object invoking it and modify their behavior. Process is any operation that needs to be carried out in the system.
3) What are the phases of OMT? Briefly explain each one of them.
Ans: The different phases of OMT are:
lj\
a) Analysis: This results in the object and dynamic and functional models. The object model describes the structure of objects in a system and is represented by means of an object diagram.
The dynamic model is going to be a detailed state transition diagram. The diagram is going to be a set of states receiving events so as to make transitions. The functional model is a representation of flow of data between different processes in a business. The process is any function being performed, data flow shows the direction of data element movement, data store is location of the data storage; an external entity is a source or destination of data element.
b) System Design: The results are a structure of the basic architecture of the system along with high-level strategy decisions.
c) Object Design: The phase produces a detailed design document of all the models.
d) Implementation: This phase produces a comprehensive code for the problem.
4) Name 5 Booch diagrams.
Ans: 5 Booch diagrams are Class diagrams, Object diagrams, State transition diagrams, Module diagrams, and Process diagrams.
5. Briefly describe the Booch system development process.
Ans: It helps us design the system using the object paradigm. It covers the analysis and design phases of a system. It includes a macro and a micro development process. Macro development process is concerned with the technical management of the system. It includes
a) Conceptualization where the core requirements of the system are outlined
b) Analysis and the development model which focuses on the class diagrams,
c) Design or creation of the computer architecture to establish relationships between the' classes
d) Evolution or implementation to produce a code and
e) Maintenance to add new requirements and to eliminate the bugs.
Each macro development process has its own micro development process which aims at
a) Identifying class and objects
b) Identifying class and object semantics.
c) Identifying class and object relationships
d) Identifying class and object interfaces and implementation
6) What is a use case? What are some of the ways that use cases can be described?

Ans. Use Case is a scenario depicting a user system interaction. It begins with the user of the system issuing a sequence of interrelated events. Use cases are described as:
a) Nonformal text with no clear flow of events.
b) Text, easy to read but with a clear flow of events.
c) Formal style using pseudo code.
7) What is the strength of Jacobson et. Al. Methodology?
Ans: The strength of the Jacobson et. Al. methodology is that it entire life cycle and stress trace ability between the different phases, both forward and backward. This enables the reuse of analysis and design work, reducing development time significantly.
8) What do you mean by difference between patterns and frameworks.
Ans: A pattern is instructive information that captures the essential structure and insight of a successfully family of proven solutions to a recurring problem that arises within certain context and system of forces. Pattern solves a problem, is a proven concept, describes relationships, and has significant human component.
A framework is a way of presenting a generic solution to a problem that can be applied to all levels in a development. It represents a set of classes that make up a reusable design for a specific class of software. It partitions the design into abstract classes and also defines relationships between them. They emphasize design reuse over code reuse.

9). What are antipatterns?
A pattern represents a "best practice," whereas an antipattern represents "worst practice" or a "lesson learned."
10) What is pattern mining?
A pattern should help its users comprehend existing systems, customize systems to fit user needs, and construct new system. The process of looking for patterns to document is called pattern mining.

11. What are the processes involved in UA to software development?
• Use-case driven development
• Object-oriented analysis
• Object-oriented design
• Incremental development and prototyping
• Continuous testing

12. How are models represented and organized?
Static model: A static model can be viewed as a snapshot of a system's parameters at rest or at a specific point in time. Static models are needed to represent the structural or static aspect of a system. For example a customer could have more than one account or an order could be aggregated from one or more line items.
Dynamic model: A dynamic model contrast to a static model, can be viewed as a
collection of procedures or behaviours that, taken together, reflect the behaviour of a
system over time. For example an order interacts with inventory to determine product
availability. Dynamic relationships show how the business objects interact to perform tasks.

13. List the graphical diagrams defined by UML.
1 Class diagram (static)
2 Use-case diagram
3 Behavior diagram (dynamic)
 3.1 Interaction diagram

3.1.1 Sequence diagram

3.1.2 Collaboration diagram
 3.2 State chart diagram
4 Implementation diagram
 4.1 Component diagram

 4.2 Deployment diagram
14. What is a Qualifier?
A qualifier is an association attribute. For example, a person object
may be associated to a Bank object. An attribute of this association is the account#. The account# is the qualifier of this association.
	Bank

	
	Account#

	

	 *

 0..1

	

	Person

A qualifier is shown as a small rectangle attached to the end of an association path, between the final path segment and the symbol of the class to which it connects. The qualifier rectangle is part of the association path, not part of the class. The qualifier rectangle usually is smaller than the attached class rectangle.
15) What is meant by Multiplicity?
Multiplicity specifies the range of allowable associated classes. It is given for roles within associations, parts within compositions, repetitions, and other purpose. A multiplicity specification is as a text string comprising a period-separated sequence of integer intervals, where an interval represents a range of integers in this format: " lower bound.. upper bound".

The terms lower bound and upper bound are integer values. The star character (*) may be used for the upper bound, denoting an unlimited upper bound. If a single integer value is specified, then the integer range
contains the single values.
Eg:0..1

0..*
1. . 3,7. . 10,15,19..*
16) What is Association class.?
An association class is an association that also as class properties. The name in the class symbol and the name string attached to the association path are the same. If an association class has attributes but no operations or other associations, then the name may be displayed on the association path and omitted from the association class to emphasize its “association nature". If it has operations and attributes then the name may be omitted from the path and placed in the class rectangle to emphasize its "class nature".
17. What are the contents of UML behaviour diagrams?
• Interaction diagrams: a) Sequence and b) collaboration diagrams
• State chart diagrams
• Activity diagrams
18. What is an Association rule?
An association may have an association name. This name may have an optional black triangle in it, the point of the triangle indication the direction in which to read the name. The end of an association where it connects to a class is called the association role.
19. Discuss some of the forms of associations? Draw their UML representations.

OR Association:
This indicates a situation in which only one of several potential associations may be instantiated at one time for any single object.
[image: image1.png]Person

Car

Company

A car may associate with a person or a company.

 N-ary Association:
[image: image2.png]Class

Year

semester | *

*

student!

Student

GradeBook
grade
exam
lab
This association is an association among more than 2 classes. It is better to convert an n-ary association to binary association. This is shown as a large diamond with a path from the diamond to each participant class.
An n-ary (ternary) association that shows association among class, year and student classes. The association class “GradeBook” which contains the attributes of the associations such as grade, exam and lab.

Aggregation:This is a hollow diamond attached to end the path to indicate aggregation. The UML notation for composition is a solid diamond at the end of a path.

[image: image3.png]4,10

1

Wheel

Light

Engine

[image: image4.png]Car

Whee!
4
Light
e 4,10
Door
2,5

Engine

[image: image5.png]Car

Wheel
.

Light
410 ®

Door
25

Engine

20. What is a meta-model?
It is a model of modeling elements. This assures consistency among diagrams. This has made possible for a team to explore ways to make the modeling language much simpler by in a sense unifying the elements of the unified modeling language.
UNIT- III
1. Explain usecase model?
Use cases are scenarios that describe how actors use the system .a use case is an interaction between users and a system, it captures the goal of the users and the responsibility of the system to its users. For example, a car; typical uses of a car include "take you different places" or "hand your stuff' or a user may want to use it "off the road"
2. What are the keywords of usecase definition?

Use case is a special flow of events through the system. By definition, many
courses of events are possible and many of these are very similar. It is suggested that, to
make a use-case model meaningful, we must group the courses of events and call each
group a use-cse model meaningful, we must group the courses row a book from the

library depends on whether the book is located in the library, whether you are the
member of the library, and so on. All these alternatives often are best grouped into one or two use cases called Borrow books and Get an interlibrary loan. By grouping the use cases, we can manage complexities and reduce the number of use cases in a package.
3. When will be Extends association used?
The extends association is used when you have one case that is similar to another use case but does a bit more specialized; in essence, it is like a subclass. In our example, checking out a book is the basic use case. This is the case that will represent what happens when all goes smoothly.
4. When uses association will occur?
The uses association occurs when you are describing you use cases and notice that some of them have subflows in common. The relationships among the other use cases and this new extracted use case is called a uses association. The uses association helps us avoid redundancy by allowing a use case to be shared. For example, checking a library card is common among the borrow books, return books, and interlibrary loan use cases.
5. Explain the steps for finding usecases.
 1.For each actor, find the tasks and functions that the actor should be able to perform or that the system needs the actor to perform. The use case should represent a course of events that leads to a clear goal.

2. Name the use cases.
3. Describe the use cases briefly by applying terms with which the user is familiar. This makes the description less ambiguous.
6. List the guidelines for selecting classes in an application.
• Look for nouns and noun phrases in the cases.
• Some classes are implicit or taken from general knowledge.
• All classes must make sense in the application domain; avoid computer implementation classes - defer them to the design stage.
• Carefully choose and define class names.
7. What are the guidelines for selecting candidate classes from the relevant & Fuzzy categories of classes?
• Redundant classes; Do not keep two classes that express the same information. If more than one word is being used to describe the same idea, select the one that is the most meaningful in the context of the system.
• Adjective classes; Adjectives can be used in many ways. An adjective can suggest a different kind of object, different use of the same object, or it could be utterly irrelevant.
• Attribute classes: Tentative objects that are used only as values should be defined or restated as attributes and not as a class.
• Irrelevant classes: Each class must have e a purpose and every class should be clearly defined and necessary.
8. What is common class pattern strategy?

· The common class pattern strategy is a method for identifying classes.

· It is based on knowledge base of the common classes that have been proposed by various researches.

9. How would you name classes?

· The class name should be singular.

· Choose the class name from standard vocabulary for the subject matter with which the clients or users are comfortable.

· The class name should reflect its intrinsic nature.

· Use readable names.

· Capitalize class names.

· Code should be consistent and easy to read.

10. What is the place class source?
Places are physical locations that the system must keep information about. They represent physical locations, buildings, stores, sites, or offices about which the system needs to keep track. They are not applicable to the bank system. E.g. Buildings, stores, sites and offices.
11. What are the tangible things and device classes?
This is one of the common class patterns. This class includes physical objects or groups of objects that are tangible and devices with which the application interacts. E.g.: Cars are an example of tangible things and pressure sensors are an example of devices.

12. Why is an identifying class an incremental process?

In the process of identifying classes, some classes will be missing; others will be eliminated or redefined later. Unless we are starting with a lot of domain knowledge, we may miss more classes than we eliminate.
Some classes may ultimately become super classes. Thus our design will go through many stages on its way to completion and we will have an opportunity to revise it.
Thus each iteration often uncovers some classes that have been overlooked. Thus it is an incremental process.
13.. What are the guidelines for identifying the tentative associations?
The following are the guidelines for identifying the tentative association:
· A dependency between two or more classes may be an association. Association corresponds to
a verb or prepositional phrase, such as part of, next to, works for, or contained in.
· A reference from class to another is an association. Some association is implicit or
 taken from general knowledge.
14. List the guidelines for identifying super -sub relationships?
· Top-Down: Look for noun phrases composed of various adjectives in a class name. Avoid Successive refinement. Specialize only when the subclasses have significant behavior.
· Bottom-Up: look for classes with similar attributes and methods, in most cases. You can Group them by moving the common attributes and methods to an abstract class
· Reusability: Move attributes and behavior as high as possible m the hierarchy. Do not create very specialized classes at the top of the hierarchy. Balancing act can be achieved through several narrations
· Multiple Inheritance: Avoid excessive use of multiple inheritances. 8 desertedness whiff behavior is to get from which class when several ancestors defuse than same method. One way of achieving the benefits of multiple inheritance is to inherit from the most appropriate class and add an object of another class as an attribute.
15.What is an association?

Association represents a physical or conceptual condition between two or more objects. For e.g.: if an object has the responsibility for telling another object that a credit card number is valid or invalid. The classes have an association.

16. What is Generalization?
Superclass -subclass relationships, also known as Generalization hierarchy allow objects to be built from other objects. Such relationships allow us to take advantage of the commonality of objects when constructing new classes.
17. Is association different from a part of a relationship?

Association and part of relation are similar except for the fact that it depends on problem domain and a part of relation is a special case of association.

18. Why do we need to identify the system’s responsibility?

Responsibility serves as a handle for solving potential solutions.

Identifying attributes of the system’s class starts with understanding the system’s responsibilities.

Identifying the system’s responsibilities helps to identify both attributes and classes.

19. How would you identify attributes?

The following questions are used to identify system’s responsibilities.

What information about an object should be kept track of?

What services must a class provide?

Answering the first question will help us to identify the attribute of the class.

20. How would you identify methods?

The following questions are used to identify system’s responsibilities.

What information about an object should be kept track of?

What services must a class provide?

Answering the second question will help us to identify the class methods.

6

