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Object and Object-Relational 

Databases

In this chapter, we discuss the features of object- 
oriented data models and show how some of these 

features have been incorporated in relational database systems and the SQL standard. 
Some features of object data models have also been incorporated into the data mod-
els of newer types of database systems, known as NOSQL systems (see Chapter 24). 
In addition, the XML model (see Chapter 13) has similarities to the object model. 
So an introduction to the object model will give a good perspective on many of the 
recent advances in database technology. Database systems that were based on the 
object data model were known originally as object-oriented databases (OODBs) but 
are now referred to as object databases (ODBs).Traditional data models and sys-
tems, such as network, hierarchical, and relational have been quite successful in 
developing the database technologies required for many traditional business data-
base applications. However, they have certain shortcomings when more complex 
database applications must be designed and implemented—for example, databases 
for engineering design and manufacturing (CAD/CAM and CIM1), biological and 
other sciences, telecommunications, geographic information systems, and multi-
media.2 These ODBs were developed for applications that have requirements 
requiring more complex structures for stored objects. A key feature of object data-
bases is the power they give the designer to specify both the structure of complex 
objects and the operations that can be applied to these objects.

chapter 12

1Computer-aided design/computer-aided manufacturing and computer-integrated manufacturing.
2Multimedia databases must store various types of multimedia objects, such as video, audio, images, 
graphics, and documents (see Chapter 26).
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Another reason for the creation of object-oriented databases is the vast increase in 
the use of object-oriented programming languages for developing software applica-
tions. Databases are fundamental components in many software systems, and tradi-
tional databases are sometimes difficult to use with software applications that are 
developed in an object-oriented programming language such as C++ or Java. Object 
databases are designed so they can be directly—or seamlessly—integrated with soft-
ware that is developed using object-oriented programming languages.

Relational DBMS (RDBMS) vendors have also recognized the need for incorporat-
ing features that were proposed for object databases, and newer versions of rela-
tional systems have incorporated many of these features. This has led to database 
systems that are characterized as object-relational or ORDBMSs. A recent version 
of the SQL standard (2008) for RDBMSs, known as SQL/Foundation, includes 
many of these features, which were originally known as SQL/Object and have now 
been merged into the main SQL specification.

Although many experimental prototypes and commercial object-oriented database 
systems have been created, they have not found widespread use because of the pop-
ularity of relational and object-relational systems. The experimental prototypes 
included the Orion system developed at MCC, OpenOODB at Texas Instruments, 
the Iris system at Hewlett-Packard laboratories, the Ode system at AT&T Bell Labs, 
and the ENCORE/ObServer project at Brown University. Commercially available 
systems included GemStone Object Server of GemStone Systems, ONTOS DB  
of Ontos, Objectivity/DB of Objectivity Inc., Versant Object Database and  
FastObjects by Versant Corporation (and Poet), ObjectStore of Object Design, and 
Ardent Database of Ardent.

As commercial object DBMSs became available, the need for a standard model and 
language was recognized. Because the formal procedure for approval of standards 
normally takes a number of years, a consortium of object DBMS vendors and users, 
called ODMG, proposed a standard whose current specification is known as the 
ODMG 3.0 standard.

Object-oriented databases have adopted many of the concepts that were developed 
originally for object-oriented programming languages.3 In Section 12.1, we describe 
the key concepts utilized in many object database systems and that were later incor-
porated into object-relational systems and the SQL standard. These include object 
identity, object structure and type constructors, encapsulation of operations, and the 
definition of methods as part of class declarations, mechanisms for storing objects 
in a database by making them persistent, and type and class hierarchies and inheri-
tance. Then, in Section 12.2 we see how these concepts have been incorporated into 
the latest SQL standards, leading to object-relational databases. Object features 
were originally introduced in SQL:1999, and then updated in SQL:2008. In Sec- 
tion 12.3, we turn our attention to “pure” object database standards by presenting 
features of the object database standard ODMG 3.0 and the object definition  

3Similar concepts were also developed in the fields of semantic data modeling and knowledge  
representation.
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language ODL. Section 12.4 presents an overview of the database design process for 
object databases. Section 12.5 discusses the object query language (OQL), which is 
part of the ODMG 3.0 standard. In Section 12.6, we discuss programming language 
bindings, which specify how to extend object-oriented programming languages to 
include the features of the object database standard. Section 12.7 summarizes the 
chapter. Sections 12.3 through 12.6 may be left out if a less thorough introduction 
to object databases is desired.

12.1 Overview of Object Database Concepts

12.1.1 Introduction to Object-Oriented Concepts and Features
The term object-oriented—abbreviated OO or O-O—has its origins in OO pro-
gramming languages, or OOPLs. Today OO concepts are applied in the areas of 
databases, software engineering, knowledge bases, artificial intelligence, and 
computer systems in general. OOPLs have their roots in the SIMULA language, 
which was proposed in the late 1960s. The programming language Smalltalk, 
developed at Xerox PARC4 in the 1970s, was one of the first languages to explic-
itly incorporate additional OO concepts, such as message passing and inheri-
tance. It is known as a pure OO programming language, meaning that it was 
explicitly designed to be object-oriented. This contrasts with hybrid OO pro-
gramming languages, which incorporate OO concepts into an already existing 
language. An example of the latter is C++, which incorporates OO concepts into 
the popular C programming language.

An object typically has two components: state (value) and behavior (operations). It 
can have a complex data structure as well as specific operations defined by the pro-
grammer.5 Objects in an OOPL exist only during program execution; therefore, 
they are called transient objects. An OO database can extend the existence of objects 
so that they are stored permanently in a database, and hence the objects become 
persistent objects that exist beyond program termination and can be retrieved later 
and shared by other programs. In other words, OO databases store persistent 
objects permanently in secondary storage and allow the sharing of these objects 
among multiple programs and applications. This requires the incorporation of 
other well-known features of database management systems, such as indexing 
mechanisms to efficiently locate the objects, concurrency control to allow object 
sharing among concurrent programs, and recovery from failures. An OO database 
system will typically interface with one or more OO programming languages to 
provide persistent and shared object capabilities.

The internal structure of an object in OOPLs includes the specification of instance 
variables, which hold the values that define the internal state of the object. An 
instance variable is similar to the concept of an attribute in the relational model, 

4Palo Alto Research Center, Palo Alto, California.
5Objects have many other characteristics, as we discuss in the rest of this chapter.
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except that instance variables may be encapsulated within the object and thus are 
not necessarily visible to external users. Instance variables may also be of arbitrarily 
complex data types. Object-oriented systems allow definition of the operations or 
functions (behavior) that can be applied to objects of a particular type. In fact, some 
OO models insist that all operations a user can apply to an object must be pre-
defined. This forces a complete encapsulation of objects. This rigid approach has 
been relaxed in most OO data models for two reasons. First, database users often 
need to know the attribute names so they can specify selection conditions on the 
attributes to retrieve specific objects. Second, complete encapsulation implies that 
any simple retrieval requires a predefined operation, thus making ad hoc queries 
difficult to specify on the fly.

To encourage encapsulation, an operation is defined in two parts. The first part, 
called the signature or interface of the operation, specifies the operation name and 
arguments (or parameters). The second part, called the method or body, specifies 
the implementation of the operation, usually written in some general-purpose pro-
gramming language. Operations can be invoked by passing a message to an object, 
which includes the operation name and the parameters. The object then executes 
the method for that operation. This encapsulation permits modification of the 
internal structure of an object, as well as the implementation of its operations, with-
out the need to disturb the external programs that invoke these operations. Hence, 
encapsulation provides a form of data and operation independence (see Chapter 2).

Another key concept in OO systems is that of type and class hierarchies and inheri-
tance. This permits specification of new types or classes that inherit much of their 
structure and/or operations from previously defined types or classes. This makes it 
easier to develop the data types of a system incrementally and to reuse existing type 
definitions when creating new types of objects.

One problem in early OO database systems involved representing relationships 
among objects. The insistence on complete encapsulation in early OO data models 
led to the argument that relationships should not be explicitly represented, but 
should instead be described by defining appropriate methods that locate related 
objects. However, this approach does not work very well for complex databases 
with many relationships because it is useful to identify these relationships and make 
them visible to users. The ODMG object database standard has recognized this 
need and it explicitly represents binary relationships via a pair of inverse references, 
as we will describe in Section 12.3.

Another OO concept is operator overloading, which refers to an operation’s ability 
to be applied to different types of objects; in such a situation, an operation name 
may refer to several distinct implementations, depending on the type of object it is 
applied to. This feature is also called operator polymorphism. For example, an oper-
ation to calculate the area of a geometric object may differ in its method (imple-
mentation), depending on whether the object is of type triangle, circle, or rectangle. 
This may require the use of late binding of the operation name to the appropriate 
method at runtime, when the type of object to which the operation is applied 
becomes known.
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In the next several sections, we discuss in some detail the main characteristics of 
object databases. Section 12.1.2 discusses object identity; Section 12.1.3 shows 
how the types for complex-structured objects are specified via type constructors; 
Section 12.1.4 discusses encapsulation and persistence; and Section 12.1.5 pres-
ents inheritance concepts. Section 12.1.6 discusses some additional OO con-
cepts, and Section 12.1.7 gives a summary of all the OO concepts that we 
introduced. In Section 12.2, we show how some of these concepts have been 
incorporated into the SQL:2008 standard for relational databases. Then in Sec-
tion 12.3, we show how these concepts are realized in the ODMG 3.0 object data-
base standard.

12.1.2 Object Identity, and Objects versus Literals
One goal of an ODB is to maintain a direct correspondence between real-world 
and database objects so that objects do not lose their integrity and identity and 
can easily be identified and operated upon. Hence, a unique identity is assigned 
to each independent object stored in the database. This unique identity is typi-
cally implemented via a unique, system-generated object identifier (OID). The 
value of an OID may not be visible to the external user but is used internally by 
the system to identify each object uniquely and to create and manage interobject 
references. The OID can be assigned to program variables of the appropriate type 
when needed.

The main property required of an OID is that it be immutable; that is, the OID 
value of a particular object should not change. This preserves the identity of the 
real-world object being represented. Hence, an ODMS must have some mechanism 
for generating OIDs and preserving the immutability property. It is also desirable 
that each OID be used only once; that is, even if an object is removed from the data-
base, its OID should not be assigned to another object. These two properties imply 
that the OID should not depend on any attribute values of the object, since the 
value of an attribute may be changed or corrected. We can compare this with the 
relational model, where each relation must have a primary key attribute whose 
value identifies each tuple uniquely. If the value of the primary key is changed, the 
tuple will have a new identity, even though it may still represent the same real-
world object. Alternatively, a real-world object may have different names for key 
attributes in different relations, making it difficult to ascertain that the keys repre-
sent the same real-world object (for example, using the Emp_id of an EMPLOYEE in 
one relation and the Ssn in another).

It is also inappropriate to base the OID on the physical address of the object in stor-
age, since the physical address can change after a physical reorganization of the 
database. However, some early ODMSs have used the physical address as the OID 
to increase the efficiency of object retrieval. If the physical address of the object 
changes, an indirect pointer can be placed at the former address, which gives the 
new physical location of the object. It is more common to use long integers as OIDs 
and then to use some form of hash table to map the OID value to the current physi-
cal address of the object in storage.
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Some early OO data models required that everything—from a simple value to a 
complex object—was represented as an object; hence, every basic value, such as an 
integer, string, or Boolean value, has an OID. This allows two identical basic values 
to have different OIDs, which can be useful in some cases. For example, the integer 
value 50 can sometimes be used to mean a weight in kilograms and at other times to 
mean the age of a person. Then, two basic objects with distinct OIDs could be cre-
ated, but both objects would have the integer 50 as their value. Although useful as a 
theoretical model, this is not very practical, since it leads to the generation of too 
many OIDs. Hence, most ODBs allow for the representation of both objects and 
literals (or values). Every object must have an immutable OID, whereas a literal 
value has no OID and its value just stands for itself. Thus, a literal value is typically 
stored within an object and cannot be referenced from other objects. In many sys-
tems, complex structured literal values can also be created without having a corre-
sponding OID if needed.

12.1.3 Complex Type Structures for Objects and Literals
Another feature of ODBs is that objects and literals may have a type structure of 
arbitrary complexity in order to contain all of the necessary information that 
describes the object or literal. In contrast, in traditional database systems, informa-
tion about a complex object is often scattered over many relations or records, lead-
ing to loss of direct correspondence between a real-world object and its database 
representation. In ODBs, a complex type may be constructed from other types by 
nesting of type constructors. The three most basic constructors are atom, struct (or 
tuple), and collection.

  1. One type constructor has been called the atom constructor, although this 
term is not used in the latest object standard. This includes the basic built-in 
data types of the object model, which are similar to the basic types in many 
programming languages: integers, strings, floating-point numbers, enumer-
ated types, Booleans, and so on. These basic data types are called single-
valued or atomic types, since each value of the type is considered an atomic 
(indivisible) single value.

  2. A second type constructor is referred to as the struct (or tuple) constructor. 
This can create standard structured types, such as the tuples (record types) 
in the basic relational model. A structured type is made up of several com-
ponents and is also sometimes referred to as a compound or composite type. 
More accurately, the struct constructor is not considered to be a type, but 
rather a type generator, because many different structured types can be cre-
ated. For example, two different structured types that can be created are: 
struct Name<FirstName: string, MiddleInitial: char, LastName: string>, and 
struct CollegeDegree<Major: string, Degree: string, Year: date>. To create 
complex nested type structures in the object model, the collection type con-
structors are needed, which we discuss next. Notice that the type construc-
tors atom and struct are the only ones available in the original (basic) 
relational model.
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  3. Collection (or multivalued) type constructors include the set(T), list(T), 
bag(T), array(T), and dictionary(K,T) type constructors. These allow part 
of an object or literal value to include a collection of other objects or values 
when needed. These constructors are also considered to be type generators 
because many different types can be created. For example, set(string), 
set(integer), and set(Employee) are three different types that can be created 
from the set type constructor. All the elements in a particular collection 
value must be of the same type. For example, all values in a collection of type 
set(string) must be string values.

The atom constructor is used to represent all basic atomic values, such as integers, 
real numbers, character strings, Booleans, and any other basic data types that the 
system supports directly. The tuple constructor can create structured values and 
objects of the form <a1:i1, a2:i2, … , an:in>, where each aj is an attribute name6 and 
each ij is a value or an OID.

The other commonly used constructors are collectively referred to as collection 
types but have individual differences among them. The set constructor will create 
objects or literals that are a set of distinct elements {i1, i2, … , in}, all of the same 
type. The bag constructor (also called a multiset) is similar to a set except that the 
elements in a bag need not be distinct. The list constructor will create an ordered list 
[i1, i2, … , in] of OIDs or values of the same type. A list is similar to a bag except that 
the elements in a list are ordered, and hence we can refer to the first, second, or jth 
element. The array constructor creates a single-dimensional array of elements of 
the same type. The main difference between array and list is that a list can have an 
arbitrary number of elements whereas an array typically has a maximum size. 
Finally, the dictionary constructor creates a collection of key-value pairs (K, V), 
where the value of a key K can be used to retrieve the corresponding value V.

The main characteristic of a collection type is that its objects or values will be a col-
lection of objects or values of the same type that may be unordered (such as a set or a 
bag) or ordered (such as a list or an array). The tuple type constructor is often 
called a structured type, since it corresponds to the struct construct in the C and 
C++ programming languages.

An object definition language (ODL)7 that incorporates the preceding type con-
structors can be used to define the object types for a particular database application. 
In Section 12.3 we will describe the standard ODL of ODMG, but first we introduce 
the concepts gradually in this section using a simpler notation. The type construc-
tors can be used to define the data structures for an OO database schema. Fig- 
ure 12.1 shows how we may declare EMPLOYEE and DEPARTMENT types.

In Figure 12.1, the attributes that refer to other objects—such as Dept of EMPLOYEE 
or Projects of DEPARTMENT—are basically OIDs that serve as references to other 
objects to represent relationships among the objects. For example, the attribute Dept 

6Also called an instance variable name in OO terminology.
7This corresponds to the DDL (data definition language) of the database system (see Chapter 2).
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of EMPLOYEE is of type DEPARTMENT and hence is used to refer to a specific 
DEPARTMENT object (the DEPARTMENT object where the employee works). The 
value of such an attribute would be an OID for a specific DEPARTMENT object. A 
binary relationship can be represented in one direction, or it can have an inverse 
reference. The latter representation makes it easy to traverse the relationship in both 
directions. For example, in Figure 12.1 the attribute Employees of DEPARTMENT has 
as its value a set of references (that is, a set of OIDs) to objects of type EMPLOYEE; 
these are the employees who work for the DEPARTMENT. The inverse is the refer-
ence attribute Dept of EMPLOYEE. We will see in Section 12.3 how the ODMG stan-
dard allows inverses to be explicitly declared as relationship attributes to ensure 
that inverse references are consistent.

12.1.4  Encapsulation of Operations  
and Persistence of Objects

Encapsulation of Operations. The concept of encapsulation is one of the main 
characteristics of OO languages and systems. It is also related to the concepts of 
abstract data types and information hiding in programming languages. In tradi-
tional database models and systems this concept was not applied, since it is cus-
tomary to make the structure of database objects visible to users and external 
programs. In these traditional models, a number of generic database operations 

define type EMPLOYEE
 tuple  ( Fname: string;
  Minit : char;
  Lname: string;
  Ssn: string;
  Birth_date: DATE;
  Address: string;
  Sex: char;
  Salary: float;
  Supervisor: EMPLOYEE;
  Dept: DEPARTMENT;
define type DATE
 tuple ( Year: integer;
  Month: integer;
  Day: integer; );
define type DEPARTMENT
 tuple ( Dname: string;
  Dnumber: integer;
  Mgr: tuple ( Manager: EMPLOYEE;
    Start_date: DATE; );
  Locations: set(string);
  Employees: set(EMPLOYEE);
  Projects: set(PROJECT); );

Figure 12.1 
Specifying the object 
types EMPLOYEE, 
DATE, and  
DEPARTMENT using 
type constructors.
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are applicable to objects of all types. For example, in the relational model, the oper-
ations for selecting, inserting, deleting, and modifying tuples are generic and may 
be applied to any relation in the database. The relation and its attributes are visible 
to users and to external programs that access the relation by using these opera-
tions. The concept of encapsulation is applied to database objects in ODBs by 
defining the behavior of a type of object based on the operations that can be exter-
nally applied to objects of that type. Some operations may be used to create (insert) 
or destroy (delete) objects; other operations may update the object state; and oth-
ers may be used to retrieve parts of the object state or to apply some calculations. 
Still other operations may perform a combination of retrieval, calculation, and 
update. In general, the implementation of an operation can be specified in a 
 general-purpose programming language that provides flexibility and power in 
defining the operations.

The external users of the object are only made aware of the interface of the oper-
ations, which defines the name and arguments (parameters) of each operation. 
The implementation is hidden from the external users; it includes the definition 
of any hidden internal data structures of the object and the implementation of the 
operations that access these structures. The interface part of an operation is 
sometimes called the signature, and the operation implementation is sometimes 
called the method.

For database applications, the requirement that all objects be completely encapsu-
lated is too stringent. One way to relax this requirement is to divide the structure of 
an object into visible and hidden attributes (instance variables). Visible attributes 
can be seen by and are directly accessible to the database users and programmers 
via the query language. The hidden attributes of an object are completely encapsu-
lated and can be accessed only through predefined operations. Most ODMSs 
employ high-level query languages for accessing visible attributes. In Section 12.5 
we will describe the OQL query language that is proposed as a standard query lan-
guage for ODBs.

The term class is often used to refer to a type definition, along with the definitions 
of the operations for that type.8 Figure 12.2 shows how the type definitions in Fig-
ure 12.1 can be extended with operations to define classes. A number of operations 
are declared for each class, and the signature (interface) of each operation is 
included in the class definition. A method (implementation) for each operation 
must be defined elsewhere using a programming language. Typical operations 
include the object constructor operation (often called new), which is used to create 
a new object, and the destructor operation, which is used to destroy (delete) an 
object. A number of object modifier operations can also be declared to modify the 
states (values) of various attributes of an object. Additional operations can retrieve 
information about the object.

8This definition of class is similar to how it is used in the popular C++ programming language. The 
ODMG standard uses the word interface in addition to class (see Section 12.3). In the EER model, the 
term class was used to refer to an object type, along with the set of all objects of that type (see  
Chapter 8).
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An operation is typically applied to an object by using the dot notation. For exam-
ple, if d is a reference to a DEPARTMENT object, we can invoke an operation such as 
no_of_emps by writing d.no_of_emps. Similarly, by writing d.destroy_dept, the object 
referenced by d is destroyed (deleted). The only exception is the constructor opera-
tion, which returns a reference to a new DEPARTMENT object. Hence, it is custom-
ary in some OO models to have a default name for the constructor operation that is 
the name of the class itself, although this was not used in Figure 12.2.9 The dot notation 
is also used to refer to attributes of an object—for example, by writing d.Dnumber or 
d.Mgr_Start_date.

define class EMPLOYEE
 type tuple ( Fname: string;
   Minit: char;
   Lname: string;
   Ssn: string;
   Birth_date: DATE;
   Address: string;
   Sex: char;
   Salary: float;
   Supervisor: EMPLOYEE;
   Dept: DEPARTMENT; );
 operations age: integer;
   create_emp: EMPLOYEE;
   destroy_emp: boolean;
end EMPLOYEE;
define class DEPARTMENT 
 type tuple ( Dname: string;
   Dnumber: integer;
   Mgr: tuple ( Manager: EMPLOYEE;
               Start_date: DATE; );
   Locations: set (string);
   Employees: set (EMPLOYEE);
   Projects set(PROJECT); );
 operations no_of_emps: integer;
   create_dept: DEPARTMENT;
   destroy_dept: boolean;
   assign_emp(e: EMPLOYEE): boolean;
   (* adds an employee to the department *)
   remove_emp(e: EMPLOYEE): boolean;
   (* removes an employee from the department *)
end DEPARTMENT;

Figure 12.2 
Adding operations to 
the definitions of 
EMPLOYEE and 
DEPARTMENT.

9Default names for the constructor and destructor operations exist in the C++ programming language. 
For example, for class EMPLOYEE, the default constructor name is EMPLOYEE and the default  

destructor name is ~EMPLOYEE. It is also common to use the new operation to create new objects.
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Specifying Object Persistence via Naming and Reachability. An ODBS is 
often closely coupled with an object-oriented programming language (OOPL). The 
OOPL is used to specify the method (operation) implementations as well as other 
application code. Not all objects are meant to be stored permanently in the data-
base. Transient objects exist in the executing program and disappear once the pro-
gram terminates. Persistent objects are stored in the database and persist after 
program termination. The typical mechanisms for making an object persistent are 
naming and reachability.

The naming mechanism involves giving an object a unique persistent name within 
a particular database. This persistent object name can be given via a specific state-
ment or operation in the program, as shown in Figure 12.3. The named persistent 
objects are used as entry points to the database through which users and applica-
tions can start their database access. Obviously, it is not practical to give names to 
all objects in a large database that includes thousands of objects, so most objects are 
made persistent by using the second mechanism, called reachability. The reach-
ability mechanism works by making the object reachable from some other persis-
tent object. An object B is said to be reachable from an object A if a sequence of 
references in the database lead from object A to object B.

If we first create a named persistent object N, whose state is a set of objects of some 
class C, we can make objects of C persistent by adding them to the set, thus making 
them reachable from N. Hence, N is a named object that defines a persistent  
collection of objects of class C. In the object model standard, N is called the extent 
of C (see Section 12.3).

For example, we can define a class DEPARTMENT_SET (see Figure 12.3) whose 
objects are of type set(DEPARTMENT).10 We can create an object of type  
DEPARTMENT_SET, and give it a persistent name ALL_DEPARTMENTS, as shown in 
Figure 12.3. Any DEPARTMENT object that is added to the set of ALL_DEPARTMENTS 
by using the add_dept operation becomes persistent by virtue of its being reach-
able from ALL_DEPARTMENTS. As we will see in Section 12.3, the ODMG ODL 
standard gives the schema designer the option of naming an extent as part of 
class definition.

Notice the difference between traditional database models and ODBs in this respect. 
In traditional database models, such as the relational model, all objects are assumed 
to be persistent. Hence, when a table such as EMPLOYEE is created in a relational 
database, it represents both the type declaration for EMPLOYEE and a persistent set 
of all EMPLOYEE records (tuples). In the OO approach, a class declaration of 
EMPLOYEE specifies only the type and operations for a class of objects. The user 
must separately define a persistent object of type set(EMPLOYEE) whose value is the 
collection of references (OIDs) to all persistent EMPLOYEE objects, if this is desired, 
as shown in Figure 12.3.11 This allows transient and persistent objects to follow the 

10As we will see in Section 12.3, the ODMG ODL syntax uses set<DEPARTMENT> instead of 
set(DEPARTMENT).
11Some systems, such as POET, automatically create the extent for a class.
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same type and class declarations of the ODL and the OOPL. In general, it is possible 
to define several persistent collections for the same class definition, if desired.

12.1.5 Type Hierarchies and Inheritance

Simplified Model for Inheritance. Another main characteristic of ODBs is that 
they allow type hierarchies and inheritance. We use a simple OO model in this 
section—a model in which attributes and operations are treated uniformly—since 
both attributes and operations can be inherited. In Section 12.3, we will discuss the 
inheritance model of the ODMG standard, which differs from the model discussed 
here because it distinguishes between two types of inheritance. Inheritance allows 
the definition of new types based on other predefined types, leading to a type (or 
class) hierarchy.

A type is defined by assigning it a type name and then defining a number of attri-
butes (instance variables) and operations (methods) for the type.12 In the simplified 
model we use in this section, the attributes and operations are together called func-
tions, since attributes resemble functions with zero arguments. A function name 
can be used to refer to the value of an attribute or to refer to the resulting value of an 
operation (method). We use the term function to refer to both attributes and oper-
ations, since they are treated similarly in a basic introduction to inheritance.13

define class DEPARTMENT_SET
 type set (DEPARTMENT);
 operations add_dept(d: DEPARTMENT): boolean;
  (* adds a department to the DEPARTMENT_SET object *)
   remove_dept(d: DEPARTMENT): boolean;
  (* removes a department from the DEPARTMENT_SET object *)
   create_dept_set: DEPARTMENT_SET;
   destroy_dept_set: boolean;
end Department_Set;
…
persistent name ALL_DEPARTMENTS: DEPARTMENT_SET;
(* ALL_DEPARTMENTS is a persistent named object of type DEPARTMENT_SET *)
…
d:= create_dept;
(* create a new DEPARTMENT object in the variable d *)
…
b:= ALL_DEPARTMENTS.add_dept(d);
(* make d persistent by adding it to the persistent set ALL_DEPARTMENTS *)

Figure 12.3 
Creating persistent 
objects by naming 
and reachability.

12In this section we will use the terms type and class as meaning the same thing—namely, the attributes 
and operations of some type of object.
13We will see in Section 12.3 that types with functions are similar to the concept of interfaces as used in 
ODMG ODL.
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A type in its simplest form has a type name and a list of visible (public) functions. 
When specifying a type in this section, we use the following format, which does not 
specify arguments of functions, to simplify the discussion:

TYPE_NAME: function, function, … , function

For example, a type that describes characteristics of a PERSON may be defined as 
follows:

PERSON: Name, Address, Birth_date, Age, Ssn

In the PERSON type, the Name, Address, Ssn, and Birth_date functions can be imple-
mented as stored attributes, whereas the Age function can be implemented as an 
operation that calculates the Age from the value of the Birth_date attribute and the 
current date.

The concept of subtype is useful when the designer or user must create a new type that 
is similar but not identical to an already defined type. The subtype then inherits all the 
functions of the predefined type, which is referred to as the supertype. For example, 
suppose that we want to define two new types EMPLOYEE and STUDENT as follows:

EMPLOYEE: Name, Address, Birth_date, Age, Ssn, Salary, Hire_date, Seniority
STUDENT: Name, Address, Birth_date, Age, Ssn, Major, Gpa

Since both STUDENT and EMPLOYEE include all the functions defined for PERSON 
plus some additional functions of their own, we can declare them to be subtypes of 
PERSON. Each will inherit the previously defined functions of PERSON—namely, 
Name, Address, Birth_date, Age, and Ssn. For STUDENT, it is only necessary to define 
the new (local) functions Major and Gpa, which are not inherited. Presumably, Major 
can be defined as a stored attribute, whereas Gpa may be implemented as an opera-
tion that calculates the student’s grade point average by accessing the Grade values 
that are internally stored (hidden) within each STUDENT object as hidden attributes. 
For EMPLOYEE, the Salary and Hire_date functions may be stored attributes, whereas 
Seniority may be an operation that calculates Seniority from the value of Hire_date.

Therefore, we can declare EMPLOYEE and STUDENT as follows:

EMPLOYEE subtype-of PERSON: Salary, Hire_date, Seniority
STUDENT subtype-of PERSON: Major, Gpa

In general, a subtype includes all of the functions that are defined for its supertype 
plus some additional functions that are specific only to the subtype. Hence, it is pos-
sible to generate a type hierarchy to show the supertype/subtype relationships 
among all the types declared in the system.

As another example, consider a type that describes objects in plane geometry, which 
may be defined as follows:

GEOMETRY_OBJECT: Shape, Area, Reference_point

For the GEOMETRY_OBJECT type, Shape is implemented as an attribute (its domain 
can be an enumerated type with values ‘triangle’, ‘rectangle’, ‘circle’, and so on), and 
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Area is a method that is applied to calculate the area. Reference_point specifies the 
coordinates of a point that determines the object location. Now suppose that we 
want to define a number of subtypes for the GEOMETRY_OBJECT type, as follows:

RECTANGLE subtype-of GEOMETRY_OBJECT: Width, Height
TRIANGLE S subtype-of GEOMETRY_OBJECT: Side1, Side2, Angle
CIRCLE subtype-of GEOMETRY_OBJECT: Radius

Notice that the Area operation may be implemented by a different method for each 
subtype, since the procedure for area calculation is different for rectangles, trian-
gles, and circles. Similarly, the attribute Reference_point may have a different mean-
ing for each subtype; it might be the center point for RECTANGLE and CIRCLE 
objects, and the vertex point between the two given sides for a TRIANGLE object.

Notice that type definitions describe objects but do not generate objects on their 
own. When an object is created, typically it belongs to one or more of these types 
that have been declared. For example, a circle object is of type CIRCLE and  
GEOMETRY_OBJECT (by inheritance). Each object also becomes a member of one 
or more persistent collections of objects (or extents), which are used to group 
together collections of objects that are persistently stored in the database.

Constraints on Extents Corresponding to a Type Hierarchy. In most ODBs, 
an extent is defined to store the collection of persistent objects for each type or sub-
type. In this case, the constraint is that every object in an extent that corresponds to 
a subtype must also be a member of the extent that corresponds to its supertype. 
Some OO database systems have a predefined system type (called the ROOT class or 
the OBJECT class) whose extent contains all the objects in the system.14

Classification then proceeds by assigning objects into additional subtypes that are 
meaningful to the application, creating a type hierarchy (or class hierarchy) for the 
system. All extents for system- and user-defined classes are subsets of the extent 
corresponding to the class OBJECT, directly or indirectly. In the ODMG model (see 
Section 12.3), the user may or may not specify an extent for each class (type), 
depending on the application.

An extent is a named persistent object whose value is a persistent collection that 
holds a collection of objects of the same type that are stored permanently in the 
database. The objects can be accessed and shared by multiple programs. It is also 
possible to create a transient collection, which exists temporarily during the execu-
tion of a program but is not kept when the program terminates. For example, a 
transient collection may be created in a program to hold the result of a query that 
selects some objects from a persistent collection and copies those objects into the 
transient collection. The program can then manipulate the objects in the transient 
collection, and once the program terminates, the transient collection ceases to exist. 
In general, numerous collections—transient or persistent—may contain objects of 
the same type.

14This is called OBJECT in the ODMG model (see Section 12.3).
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The inheritance model discussed in this section is very simple. As we will see in Sec-
tion 12.3, the ODMG model distinguishes between type inheritance—called inter-
face inheritance and denoted by a colon (:)—and the extent inheritance 
constraint—denoted by the keyword EXTEND.

12.1.6 Other Object-Oriented Concepts

Polymorphism of Operations (Operator Overloading). Another characteris-
tic of OO systems in general is that they provide for polymorphism of operations, 
which is also known as operator overloading. This concept allows the same opera-
tor name or symbol to be bound to two or more different implementations of the 
operator, depending on the type of objects to which the operator is applied. A sim-
ple example from programming languages can illustrate this concept. In some lan-
guages, the operator symbol “+” can mean different things when applied to 
operands (objects) of different types. If the operands of “+” are of type integer, the 
operation invoked is integer addition. If the operands of “+” are of type floating 
point, the operation invoked is floating-point addition. If the operands of “+” are of 
type set, the operation invoked is set union. The compiler can determine which 
operation to execute based on the types of operands supplied.

In OO databases, a similar situation may occur. We can use the GEOMETRY_OBJECT 
example presented in Section 12.1.5 to illustrate operation polymorphism15  
in ODB. In this example, the function Area is declared for all objects of type  
GEOMETRY_OBJECT. However, the implementation of the method for Area may 
differ for each subtype of GEOMETRY_OBJECT. One possibility is to have a general 
implementation for calculating the area of a generalized GEOMETRY_OBJECT (for 
example, by writing a general algorithm to calculate the area of a polygon) and then 
to rewrite more efficient algorithms to calculate the areas of specific types of geo-
metric objects, such as a circle, a rectangle, a triangle, and so on. In this case, the 
Area function is overloaded by different implementations.

The ODMS must now select the appropriate method for the Area function based on 
the type of geometric object to which it is applied. In strongly typed systems, this 
can be done at compile time, since the object types must be known. This is termed 
early (or static) binding. However, in systems with weak typing or no typing (such 
as Smalltalk, LISP, PHP, and most scripting languages), the type of the object to 
which a function is applied may not be known until runtime. In this case, the func-
tion must check the type of object at runtime and then invoke the appropriate 
method. This is often referred to as late (or dynamic) binding.

Multiple Inheritance and Selective Inheritance.  Multiple inheritance occurs 
when a certain subtype T is a subtype of two (or more) types and hence inherits the 
functions (attributes and methods) of both supertypes. For example, we may create 

15In programming languages, there are several kinds of polymorphism. The interested reader is referred to 
the Selected Bibliography at the end of this chapter for works that include a more thorough discussion.
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a subtype ENGINEERING_MANAGER that is a subtype of both MANAGER and  
ENGINEER. This leads to the creation of a type lattice rather than a type hierarchy. 
One problem that can occur with multiple inheritance is that the supertypes from 
which the subtype inherits may have distinct functions of the same name, creating an 
ambiguity. For example, both MANAGER and ENGINEER may have a function called 
Salary. If the Salary function is implemented by different methods in the MANAGER 
and ENGINEER supertypes, an ambiguity exists as to which of the two is inherited by 
the subtype ENGINEERING_MANAGER. It is possible, however, that both ENGINEER 
and MANAGER inherit Salary from the same supertype (such as EMPLOYEE) higher 
up in the lattice. The general rule is that if a function is inherited from some com-
mon supertype, then it is inherited only once. In such a case, there is no ambiguity; 
the problem only arises if the functions are distinct in the two supertypes.

There are several techniques for dealing with ambiguity in multiple inheritance. 
One solution is to have the system check for ambiguity when the subtype is created, 
and to let the user explicitly choose which function is to be inherited at this time. A 
second solution is to use some system default. A third solution is to disallow mul-
tiple inheritance altogether if name ambiguity occurs, instead forcing the user to 
change the name of one of the functions in one of the supertypes. Indeed, some OO 
systems do not permit multiple inheritance at all. In the object database standard 
(see Section 12.3), multiple inheritance is allowed for operation inheritance of 
interfaces, but is not allowed for EXTENDS inheritance of classes.

Selective inheritance occurs when a subtype inherits only some of the functions of 
a supertype. Other functions are not inherited. In this case, an EXCEPT clause may 
be used to list the functions in a supertype that are not to be inherited by the sub-
type. The mechanism of selective inheritance is not typically provided in ODBs, but 
it is used more frequently in artificial intelligence applications.16

12.1.7 Summary of Object Database Concepts
To conclude this section, we give a summary of the main concepts used in ODBs 
and object-relational systems:

 ■ Object identity. Objects have unique identities that are independent of their 
attribute values and are generated by the ODB system.

 ■ Type constructors. Complex object structures can be constructed by apply-
ing in a nested manner a set of basic type generators/constructors, such as 
tuple, set, list, array, and bag.

 ■ Encapsulation of operations. Both the object structure and the operations that 
can be applied to individual objects are included in the class/type definitions.

 ■ Programming language compatibility. Both persistent and transient objects 
are handled seamlessly. Objects are made persistent by being reachable from 

16In the ODMG model, type inheritance refers to inheritance of operations only, not attributes (see 
Section 12.3).
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a persistent collection (extent) or by explicit naming (assigning a unique 
name by which the object can be referenced/retrieved).

 ■ Type hierarchies and inheritance. Object types can be specified by using a 
type hierarchy, which allows the inheritance of both attributes and methods 
(operations) of previously defined types. Multiple inheritance is allowed in 
some models.

 ■ Extents. All persistent objects of a particular class/type C can be stored in an 
extent, which is a named persistent object of type set(C). Extents corre-
sponding to a type hierarchy have set/subset constraints enforced on their 
collections of persistent objects.

 ■ Polymorphism and operator overloading. Operations and method names 
can be overloaded to apply to different object types with different imple-
mentations.

In the following sections we show how these concepts are realized, first in the SQL 
standard (Section 12.2) and then in the ODMG standard (Section 12.3).

12.2 Object Database Extensions to SQL
We introduced SQL as the standard language for RDBMSs in Chapters 6 and 7. As 
we discussed, SQL was first specified by Chamberlin and Boyce (1974) and under-
went enhancements and standardization in 1989 and 1992. The language continued 
its evolution with a new standard, initially called SQL3 while being developed and 
later known as SQL:99 for the parts of SQL3 that were approved into the standard. 
Starting with the version of SQL known as SQL3, features from object databases 
were incorporated into the SQL standard. At first, these extensions were known as 
SQL/Object, but later they were incorporated in the main part of SQL, known as 
SQL/Foundation in SQL:2008.

The relational model with object database enhancements is sometimes referred to 
as the object-relational model. Additional revisions were made to SQL in 2003 and 
2006 to add features related to XML (see Chapter 13).

The following are some of the object database features that have been included in SQL:

 ■ Some type constructors have been added to specify complex objects. These 
include the row type, which corresponds to the tuple (or struct) constructor. 
An array type for specifying collections is also provided. Other collection 
type constructors, such as set, list, and bag constructors, were not part of the 
original SQL/Object specifications in SQL:99 but were later included in the 
standard in SQL:2008.

 ■ A mechanism for specifying object identity through the use of reference 
type is included.

 ■ Encapsulation of operations is provided through the mechanism of 
user-defined types (UDTs) that may include operations as part of their 
declaration. These are somewhat similar to the concept of abstract data 
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types that were developed in programming languages. In addition, the 
concept of user-defined routines (UDRs) allows the definition of general 
methods (operations).

 ■ Inheritance mechanisms are provided using the keyword UNDER.

We now discuss each of these concepts in more detail. In our discussion, we will 
refer to the example in Figure 12.4.

12.2.1  User-Defined Types Using CREATE TYPE  
and Complex Objects

To allow the creation of complex-structured objects and to separate the declaration 
of a class/type from the creation of a table (which is the collection of objects/rows 
and hence corresponds to the extent discussed in Section 12.1), SQL now provides 
user-defined types (UDTs). In addition, four collection types have been included 
to allow for collections (multivalued types and attributes) in order to specify com-
plex-structured objects rather than just simple (flat) records. The user will create 
the UDTs for a particular application as part of the database schema. A UDT may 
be specified in its simplest form using the following syntax:

CREATE TYPE TYPE_NAME AS (<component declarations>);

Figure 12.4 illustrates some of the object concepts in SQL. We will explain the 
examples in this figure gradually as we explain the concepts. First, a UDT can be 
used as either the type for an attribute or as the type for a table. By using a UDT as 
the type for an attribute within another UDT, a complex structure for objects 
(tuples) in a table can be created, much like that achieved by nesting type construc-
tors/generators as discussed in Section 12.1. This is similar to using the struct  
type constructor of Section 12.1.3. For example, in Figure 12.4(a), the UDT 
STREET_ADDR_TYPE is used as the type for the STREET_ADDR attribute in the UDT 
USA_ADDR_TYPE. Similarly, the UDT USA_ADDR_TYPE is in turn used as the type 
for the ADDR attribute in the UDT PERSON_TYPE in Figure 12.4(b). If a UDT does 
not have any operations, as in the examples in Figure 12.4(a), it is possible to use  
the concept of ROW TYPE to directly create a structured attribute by using the  
keyword ROW. For example, we could use the following instead of declaring 
STREET_ADDR_TYPE as a separate type as in Figure 12.4(a):

CREATE TYPE USA_ADDR_TYPE AS (
 STREET_ADDR ROW ( NUMBER VARCHAR (5),
   STREET_NAME VARCHAR (25),
   APT_NO VARCHAR (5),
   SUITE_NO VARCHAR (5) ),
 CITY VARCHAR (25),
 ZIP VARCHAR (10)
 );

To allow for collection types in order to create complex-structured objects, four 
constructors are now included in SQL: ARRAY, MULTISET, LIST, and SET. These are 
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(a) CREATE TYPE STREET_ADDR_TYPE AS (
  NUMBER VARCHAR (5),
  STREET NAME VARCHAR (25),
  APT_NO VARCHAR (5),
  SUITE_NO VARCHAR (5)
 );
 CREATE TYPE USA_ADDR_TYPE AS (
  STREET_ADDR STREET_ADDR_TYPE,
  CITY VARCHAR (25),
  ZIP VARCHAR (10)
 );
 CREATE TYPE USA_PHONE_TYPE AS (
  PHONE_TYPE VARCHAR (5),
  AREA_CODE CHAR (3),
  PHONE_NUM CHAR (7)
 );

(b) CREATE TYPE PERSON_TYPE AS (
  NAME VARCHAR (35),
  SEX CHAR,
  BIRTH_DATE DATE,
  PHONES USA_PHONE_TYPE ARRAY [4],
  ADDR USA_ADDR_TYPE
 INSTANTIABLE
 NOT FINAL
 REF IS SYSTEM GENERATED
 INSTANCE METHOD AGE() RETURNS INTEGER;
 CREATE INSTANCE METHOD AGE() RETURNS INTEGER
  FOR PERSON_TYPE
  BEGIN
    RETURN /*  CODE TO CALCULATE A PERSON’S AGE FROM 

TODAY’S DATE AND SELF.BIRTH_DATE */
  END;
 );

(c) CREATE TYPE GRADE_TYPE AS (
  COURSENO CHAR (8),
  SEMESTER VARCHAR (8),
  YEAR CHAR (4),
  GRADE CHAR
 );
 CREATE TYPE STUDENT_TYPE UNDER PERSON_TYPE AS (
  MAJOR_CODE CHAR (4),
  STUDENT_ID CHAR (12),
  DEGREE VARCHAR (5),
  TRANSCRIPT GRADE_TYPE ARRAY [100]

Figure 12.4 
Illustrating some of the object  
features of SQL. (a) Using UDTs  
as types for attributes such as  
Address and Phone, (b) specifying  
UDT for PERSON_TYPE,  
(c) specifying UDTs for  
STUDENT_TYPE and EMPLOYEE_TYPE 
as two subtypes of PERSON_TYPE.

(continues)
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 INSTANTIABLE
 NOT FINAL
 INSTANCE METHOD GPA( ) RETURNS FLOAT;
 CREATE INSTANCE METHOD GPA( ) RETURNS FLOAT
  FOR STUDENT_TYPE
  BEGIN
    RETURN /*  CODE TO CALCULATE A STUDENT’S GPA FROM  

SELF.TRANSCRIPT */
  END;
 );
 CREATE TYPE EMPLOYEE_TYPE UNDER PERSON_TYPE AS (
  JOB_CODE CHAR (4),
  SALARY FLOAT,
  SSN CHAR (11)
 INSTANTIABLE
 NOT FINAL
 );
 CREATE TYPE MANAGER_TYPE UNDER EMPLOYEE_TYPE AS (
   DEPT_MANAGED CHAR (20)
 INSTANTIABLE
 );

(d) CREATE TABLE PERSON OF PERSON_TYPE
  REF IS PERSON_ID SYSTEM GENERATED;
 CREATE TABLE EMPLOYEE OF EMPLOYEE_TYPE
  UNDER PERSON;
 CREATE TABLE MANAGER OF MANAGER_TYPE
  UNDER EMPLOYEE;
 CREATE TABLE STUDENT OF STUDENT_TYPE
  UNDER PERSON;

(e) CREATE TYPE COMPANY_TYPE AS (
  COMP_NAME VARCHAR (20),
  LOCATION VARCHAR (20));
 CREATE TYPE EMPLOYMENT_TYPE AS (
  Employee REF (EMPLOYEE_TYPE) SCOPE (EMPLOYEE),
  Company REF (COMPANY_TYPE) SCOPE (COMPANY) );
 CREATE TABLE COMPANY OF COMPANY_TYPE (
  REF IS COMP_ID SYSTEM GENERATED,
  PRIMARY KEY (COMP_NAME) );
 CREATE TABLE EMPLOYMENT OF EMPLOYMENT_TYPE;

Figure 12.4 
(continued)
llustrating some of  
the object features of  
SQL. (c) (continued)  
Specifying UDTs for  
STUDENT_TYPE and  
EMPLOYEE_TYPE as  
two subtypes of  
PERSON_TYPE,  
(d) Creating tables based  
on some of the UDTs,  
and illustrating table  
inheritance,  
(e) Specifying  
relationships using REF 
and SCOPE.
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similar to the type constructors discussed in Section 12.1.3. In the initial specifica-
tion of SQL/Object, only the ARRAY type was specified, since it can be used to simu-
late the other types, but the three additional collection types were included in a  
later version of the SQL standard. In Figure 12.4(b), the PHONES attribute of  
PERSON_TYPE has as its type an array whose elements are of the previously defined 
UDT USA_PHONE_TYPE. This array has a maximum of four elements, meaning 
that we can store up to four phone numbers per person. An array can also have no 
maximum number of elements if desired.

An array type can have its elements referenced using the common notation of 
square brackets. For example, PHONES[1] refers to the first location value in a 
PHONES attribute (see Figure 12.4(b)). A built-in function CARDINALITY can return 
the current number of elements in an array (or any other collection type). For 
example, PHONES[CARDINALITY (PHONES)] refers to the last element in the array.

The commonly used dot notation is used to refer to components of a ROW TYPE or 
a UDT. For example, ADDR.CITY refers to the CITY component of an ADDR attribute 
(see Figure 12.4(b)).

12.2.2 Object Identifiers Using Reference Types
Unique system-generated object identifiers can be created via the reference type 
using the keyword REF. For example, in Figure 12.4(b), the phrase:

REF IS SYSTEM GENERATED

indicates that whenever a new PERSON_TYPE object is created, the system will 
assign it a unique system-generated identifier. It is also possible not to have a system-
generated object identifier and use the traditional keys of the basic relational model 
if desired.

In general, the user can specify that system-generated object identifiers for the indi-
vidual rows in a table should be created. By using the syntax:

REF IS <OID_ATTRIBUTE> <VALUE_GENERATION_METHOD> ;

the user declares that the attribute named <OID_ATTRIBUTE> will be used to identify 
individual tuples in the table. The options for <VALUE_GENERATION_METHOD> 
are SYSTEM GENERATED or DERIVED. In the former case, the system will  
automatically generate a unique identifier for each tuple. In the latter case, the 
traditional method of using the user-provided primary key value to identify 
tuples is applied.

12.2.3 Creating Tables Based on the UDTs
For each UDT that is specified to be instantiable via the phrase INSTANTIABLE (see 
Figure 12.4(b)), one or more tables may be created. This is illustrated in Fig- 
ure 12.4(d), where we create a table PERSON based on the PERSON_TYPE UDT. Notice 
that the UDTs in Figure 12.4(a) are noninstantiable and hence can only be used as 
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types for attributes, but not as a basis for table creation. In Figure 12.4(b), the attri-
bute PERSON_ID will hold the system-generated object identifier whenever a new 
PERSON record (object) is created and inserted in the table.

12.2.4 Encapsulation of Operations
In SQL, a user-defined type can have its own behavioral specification by specifying 
methods (or operations) in addition to the attributes. The general form of a UDT 
specification with methods is as follows:

CREATE TYPE <TYPE-NAME> (
  <LIST OF COMPONENT ATTRIBUTES AND THEIR TYPES>
  <DECLARATION OF FUNCTIONS (METHODS)>
);

For example, in Figure 12.4(b), we declared a method Age() that calculates the age of 
an individual object of type PERSON_TYPE.

The code for implementing the method still has to be written. We can refer to the 
method implementation by specifying the file that contains the code for the method, 
or we can write the actual code within the type declaration itself (see Figure 12.4(b)).

SQL provides certain built-in functions for user-defined types. For a UDT called 
TYPE_T, the constructor function TYPE_T( ) returns a new object of that type. In 
the new UDT object, every attribute is initialized to its default value. An observer 
function A is implicitly created for each attribute A to read its value. Hence, A(X) 
or X.A returns the value of attribute A of TYPE_T if X is a variable that refers to an 
object/row of type TYPE_T. A mutator function for updating an attribute sets the 
value of the attribute to a new value. SQL allows these functions to be blocked from 
public use; an EXECUTE privilege is needed to have access to these functions.

In general, a UDT can have a number of user-defined functions associated with it. 
The syntax is

INSTANCE METHOD <NAME> (<ARGUMENT_LIST>) RETURNS  
<RETURN_TYPE>;

Two types of functions can be defined: internal SQL and external. Internal functions 
are written in the extended PSM language of SQL (see Chapter 10). External func-
tions are written in a host language, with only their signature (interface) appearing 
in the UDT definition. An external function definition can be declared as follows:

DECLARE EXTERNAL <FUNCTION_NAME> <SIGNATURE>
LANGUAGE <LANGUAGE_NAME>;

Attributes and functions in UDTs are divided into three categories:

 ■ PUBLIC (visible at the UDT interface)

 ■ PRIVATE (not visible at the UDT interface)

 ■ PROTECTED (visible only to subtypes)
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It is also possible to define virtual attributes as part of UDTs, which are computed 
and updated using functions.

12.2.5 Specifying Inheritance and Overloading of Functions
In SQL, inheritance can be applied to types or to tables; we will discuss the meaning 
of each in this section. Recall that we already discussed many of the principles of 
inheritance in Section 12.1.5. SQL has rules for dealing with type inheritance 
(specified via the UNDER keyword). In general, both attributes and instance meth-
ods (operations) are inherited. The phrase NOT FINAL must be included in a UDT if 
subtypes are allowed to be created under that UDT (see Figures 12.4(a) and (b), 
where PERSON_TYPE, STUDENT_TYPE, and EMPLOYEE_TYPE are declared to be 
NOT FINAL). Associated with type inheritance are the rules for overloading of func-
tion implementations and for resolution of function names. These inheritance rules 
can be summarized as follows:

 ■ All attributes are inherited.

 ■ The order of supertypes in the UNDER clause determines the inheritance 
hierarchy.

 ■ An instance of a subtype can be used in every context in which a supertype 
instance is used.

 ■ A subtype can redefine any function that is defined in its supertype, with the 
restriction that the signature be the same.

 ■ When a function is called, the best match is selected based on the types of all 
arguments.

 ■ For dynamic linking, the types of the parameters are considered at runtime.

Consider the following examples to illustrate type inheritance, which are illustrated 
in Figure 12.4(c). Suppose that we want to create two subtypes of PERSON_TYPE: 
EMPLOYEE_TYPE and STUDENT_TYPE. In addition, we also create a subtype 
MANAGER_TYPE that inherits all the attributes (and methods) of EMPLOYEE_TYPE 
but has an additional attribute DEPT_MANAGED. These subtypes are shown in 
Figure 12.4(c).

In general, we specify the local (specific) attributes and any additional specific 
methods for the subtype, which inherits the attributes and operations (methods) of 
its supertype.

Another facility in SQL is table inheritance via the supertable/subtable facility. 
This is also specified using the keyword UNDER (see Figure 12.4(d)). Here, a new 
record that is inserted into a subtable, say the MANAGER table, is also inserted into 
its supertables EMPLOYEE and PERSON. Notice that when a record is inserted in 
MANAGER, we must provide values for all its inherited attributes. INSERT, DELETE, 
and UPDATE operations are appropriately propagated. Basically, table inheritance 
corresponds to the extent inheritance discussed in Section 12.1.5. The rule is that a 
tuple in a sub-table must also exist in its super-table to enforce the set/subset con-
straint on the objects.
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12.2.6 Specifying Relationships via Reference
A component attribute of one tuple may be a reference (specified using the key-
word REF) to a tuple of another (or possibly the same) table. An example is shown 
in Figure 12.4(e).

The keyword SCOPE specifies the name of the table whose tuples can be referenced 
by the reference attribute. Notice that this is similar to a foreign key, except that the 
system-generated OID value is used rather than the primary key value.

SQL uses a dot notation to build path expressions that refer to the component 
attributes of tuples and row types. However, for an attribute whose type is REF, the 
dereferencing symbol –> is used. For example, the query below retrieves employees 
working in the company named ‘ABCXYZ’ by querying the EMPLOYMENT table:

SELECT E.Employee–>NAME
FROM EMPLOYMENT AS E
WHERE E.Company–>COMP_NAME = ‘ABCXYZ’;

In SQL, –> is used for dereferencing and has the same meaning assigned to it in the 
C programming language. Thus, if r is a reference to a tuple (object) and a is a com-
ponent attribute in that tuple, then r –> a is the value of attribute a in that tuple.

If several relations of the same type exist, SQL provides the SCOPE keyword by 
which a reference attribute may be made to point to a tuple within a specific table of 
that type.

12.3  The ODMG Object Model and the Object 
Definition Language ODL

As we discussed in the introduction to Chapter 6, one of the reasons for the success 
of commercial relational DBMSs is the SQL standard. The lack of a standard for 
ODBs for several years may have caused some potential users to shy away from con-
verting to this new technology. Subsequently, a consortium of ODB vendors and 
users, called ODMG (Object Data Management Group), proposed a standard that is 
known as the ODMG-93 or ODMG 1.0 standard. This was revised into ODMG 2.0, 
and later to ODMG 3.0. The standard is made up of several parts, including the 
object model, the object definition language (ODL), the object query language 
(OQL), and the bindings to object-oriented programming languages.

In this section, we describe the ODMG object model and the ODL. In Section 12.4, 
we discuss how to design an ODB from an EER conceptual schema. We will give an 
overview of OQL in Section 12.5, and the C++ language binding in Section 12.6. 
Examples of how to use ODL, OQL, and the C++ language binding will use the 
UNIVERSITY database example introduced in Chapter 4. In our description, we will 
follow the ODMG 3.0 object model as described in Cattell et al. (2000).17 It is 

17The earlier versions of the object model were published in 1993 and 1997.
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important to note that many of the ideas embodied in the ODMG object model are 
based on two decades of research into conceptual modeling and object databases by 
many researchers.

The incorporation of object concepts into the SQL relational database standard, 
leading to object-relational technology, was presented in Section 12.2.

12.3.1 Overview of the Object Model of ODMG
The ODMG object model is the data model upon which the object definition lan-
guage (ODL) and object query language (OQL) are based. It is meant to provide a 
standard data model for object databases, just as SQL describes a standard data 
model for relational databases. It also provides a standard terminology in a field 
where the same terms were sometimes used to describe different concepts. We will 
try to adhere to the ODMG terminology in this chapter. Many of the concepts in 
the ODMG model have already been discussed in Section 12.1, and we assume the 
reader has read this section. We will point out whenever the ODMG terminology 
differs from that used in Section 12.1.

Objects and Literals. Objects and literals are the basic building blocks of the 
object model. The main difference between the two is that an object has both an 
object identifier and a state (or current value), whereas a literal has a value 
(state) but no object identifier.18 In either case, the value can have a complex 
structure. The object state can change over time by modifying the object value. A 
literal is basically a constant value, possibly having a complex structure, but it 
does not change.

An object has five aspects: identifier, name, lifetime, structure, and creation.

  1. The object identifier is a unique system-wide identifier (or Object_id).19 

Every object must have an object identifier.

  2. Some objects may optionally be given a unique name within a particular 
ODMS—this name can be used to locate the object, and the system should 
return the object given that name.20 Obviously, not all individual objects 
will have unique names. Typically, a few objects, mainly those that hold 
collections of objects of a particular object class/type—such as extents—will 
have a name. These names are used as entry points to the database; that is, 
by locating these objects by their unique name, the user can then locate 
other objects that are referenced from these objects. Other important 
objects in the application may also have unique names, and it is possible to 
give more than one name to an object. All names within a particular ODB 
must be unique.

18We will use the terms value and state interchangeably here.
19This corresponds to the OID of Section 12.1.2.
20This corresponds to the naming mechanism for persistence, described in Section 12.1.4.
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  3. The lifetime of an object specifies whether it is a persistent object (that is, a 
database object) or transient object (that is, an object in an executing pro-
gram that disappears after the program terminates). Lifetimes are indepen-
dent of classes/types—that is, some objects of a particular class may be 
transient whereas others may be persistent.

  4. The structure of an object specifies how the object is constructed by using 
the type constructors. The structure specifies whether an object is atomic or 
not. An atomic object refers to a single object that follows a user-defined 
type, such as Employee or Department. If an object is not atomic, then it will be 
composed of other objects. For example, a collection object is not an atomic 
object, since its state will be a collection of other objects.21 The term atomic 
object is different from how we defined the atom constructor in Sec- 
tion 12.1.3, which referred to all values of built-in data types. In the ODMG 
model, an atomic object is any individual user-defined object. All values of 
the basic built-in data types are considered to be literals.

  5. Object creation refers to the manner in which an object can be created. This 
is typically accomplished via an operation new for a special Object_Factory 
interface. We shall describe this in more detail later in this section.

In the object model, a literal is a value that does not have an object identifier. How-
ever, the value may have a simple or complex structure. There are three types of 
literals: atomic, structured, and collection.

  1. Atomic literals22 correspond to the values of basic data types and are pre-
defined. The basic data types of the object model include long, short, and 
unsigned integer numbers (these are specified by the keywords long, short, 
unsigned long, and unsigned short in ODL), regular and double precision 
floating-point numbers (float, double), Boolean values (boolean), single 
characters (char), character strings (string), and enumeration types (enum), 
among others.

  2. Structured literals correspond roughly to values that are constructed using 
the tuple constructor described in Section 12.1.3. The built-in structured lit-
erals include Date, Interval, Time, and Timestamp (see Figure 12.5(b)). Addi-
tional user-defined structured literals can be defined as needed by each 
application.23 User-defined structures are created using the STRUCT key-
word in ODL, as in the C and C++ programming languages.

21In the ODMG model, atomic objects do not correspond to objects whose values are basic data types. 
All basic values (integers, reals, and so on) are considered literals.
22The use of the word atomic in atomic literal corresponds to the way we used atom constructor in 
Section 12.1.3.
23The structures for Date, Interval, Time, and Timestamp can be used to create either literal values or 
objects with identifiers.
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(continues)

(a)  nterface Object {
  …
  boolean same_as(in object other_object);
  object copy();
  void delete();
 };

(b) Class Date : Object {
  enum Weekday
    { Sunday, Monday, Tuesday, Wednesday,  
      Thursday, Friday, Saturday };
  enum Month
    { January, February, March, April, May, June,  
      July, August, September, October, November,  
      December };
  unsigned short year();
  unsigned short month();
  unsigned short day();
  …
  boolean is_equal(in Date other_date);
  boolean is_greater(in Date other_date);
  … };
 Class Time : Object {
  …
  unsigned short hour();
  unsigned short minute();
  unsigned short second();
  unsigned short millisecond();
  …
  boolean is_equal(in Time a_time);
  boolean is_greater(in Time a_time);
  …
  Time add_interval(in Interval an_interval);
  Time subtract_interval(in Interval an_interval);
  Interval subtract_time(in Time other_time); };
 class Timestamp : Object {
  …
  unsigned short year();
  unsigned short month();
  unsigned short day();
  unsigned short hour();
  unsigned short minute();
  unsigned short second();
  unsigned short millisecond();
  …
  Timestamp plus(in Interval an_interval);

Figure 12.5 
Overview of the interface definitions  
for part of the ODMG object model.  
(a) The basic Object interface, inherited 
by all objects, (b) Some standard  
interfaces for structured literals.



390 Chapter 12 Object and Object-Relational Databases

  Timestamp minus(in Interval an_interval);
  boolean is_equal(in Timestamp a_timestamp);
  boolean is_greater(in Timestamp a_timestamp);
  …  };
  class Interval : Object {
  unsigned short day();
  unsigned short hour();
  unsigned short minute();
  unsigned short second();
  unsigned short millisecond();
  …
  Interval plus(in Interval an_interval);
  Interval minus(in Interval an_interval);
  Interval product(in long a_value);
  Interval quotient(in long a_value);
  boolean is_equal(in interval an_interval);
  boolean is_greater(in interval an_interval);
  …  };

(c) interface Collection : Object {
  …
  exception ElementNotFound{ Object element; };
  unsigned long cardinality();
  boolean is_empty();
  …
  boolean contains_element(in Object element);
  void insert_element(in Object element);
  void remove_element(in Object element)
    raises(ElementNotFound);
  iterator create_iterator(in boolean stable);
  …  };
 interface Iterator {
  exception NoMoreElements();
  …
  boolean at_end();
  void reset();
  Object get_element() raises(NoMoreElements);
  void next_position() raises(NoMoreElements);
  …  };
 interface set : Collection {
  set create_union(in set other_set);
  …
  boolean is_subset_of(in set other_set);
  …  };
 interface bag : Collection {
  unsigned long occurrences_of(in Object element);

Figure 12.5  
(continued)
Overview of the 
interface  
definitions for  
part of the ODMG  
object model.
(b) (continued) Some  
standard interfaces  
for structured literals,  
(c) Interfaces for  
collections and  
iterators.
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  bag create_union(in Bag other_bag);
  …  };
 interface list : Collection {
  exception lnvalid_lndex{unsigned_long index; );
  void remove_element_at(in unsigned long index)
    raises(lnvalidlndex);
  Object retrieve_element_at(in unsigned long index)
    raises(lnvalidlndex);
  void replace_element_at(in Object element, in unsigned long index)
    raises(lnvalidlndex);
  void insert_element_after(in Object element, in unsigned long index)
    raises(lnvalidlndex);
  …
  void insert_element_first(in Object element);
  …
  void remove_first_element() raises(ElementNotFound);
  …
  Object retrieve_first_element() raises(ElementNotFound);
  …
  list concat(in list other_list);
  void append(in list other_list);
 };
 interface array : Collection {
  exception lnvalid_lndex{unsigned_long index; };
  exception lnvalid_Size{unsigned_long size; };
  void remove_element_at(in unsigned long index)
    raises(InvalidIndex);
  Object retrieve_element_at(in unsigned long index)
    raises(InvalidIndex);
  void replace_element_at(in unsigned long index, in Object element)
    raises(InvalidIndex);
  void resize(in unsigned long new_size)
    raises(InvalidSize);
 };
 struct association { Object key; Object value; };
 interface dictionary : Collection {
  exception DuplicateName{string key; };
  exception KeyNotFound{Object key; };
  void bind(in Object key, in Object value)
    raises(DuplicateName);
  void unbind(in Object key) raises(KeyNotFound);
  Object lookup(in Object key) raises(KeyNotFound);
  boolean contains_key(in Object key);
 };

Figure 12.5  
(continued)
Overview of the
interface  
definitions for  
part of the  
ODMG object  
model.  
(c) (continued)  
Interfaces for  
collections and  
iterators.



392 Chapter 12 Object and Object-Relational Databases

  3. Collection literals specify a literal value that is a collection of objects or 
values but the collection itself does not have an Object_id. The collections 
in the object model can be defined by the type generators set<T>, bag<T>, 
list<T>, and array<T>, where T is the type of objects or values in the collec-
tion.24 Another collection type is dictionary<K, V>, which is a collection of 
associations <K, V>, where each K is a key (a unique search value) associ-
ated with a value V; this can be used to create an index on a collection of 
values V.

Figure 12.5 gives a simplified view of the basic types and type generators of the 
object model. The notation of ODMG uses three concepts: interface, literal, and 
class. Following the ODMG terminology, we use the word behavior to refer to 
operations and state to refer to properties (attributes and relationships). An  
interface specifies only behavior of an object type and is typically noninstantiable 
(that is, no objects are created corresponding to an interface). Although an inter-
face may have state properties (attributes and relationships) as part of its specifi-
cations, these cannot be inherited from the interface. Hence, an interface serves 
to define operations that can be inherited by other interfaces, as well as by classes 
that define the user-defined objects for a particular application. A class specifies 
both state (attributes) and behavior (operations) of an object type and is 
instantiable. Hence, database and application objects are typically created based 
on the user-specified class declarations that form a database schema. Finally, a 
literal declaration specifies state but no behavior. Thus, a literal instance holds a 
simple or complex structured value but has neither an object identifier nor 
encapsulated operations.

Figure 12.5 is a simplified version of the object model. For the full specifications, 
see Cattell et al. (2000). We will describe some of the constructs shown in Fig- 
ure 12.5 as we describe the object model. In the object model, all objects inherit the 
basic interface operations of Object, shown in Figure 12.5(a); these include opera-
tions such as copy (creates a new copy of the object), delete (deletes the object), and 
same_as (compares the object’s identity to another object).25 In general, operations 
are applied to objects using the dot notation. For example, given an object O, to 
compare it with another object P, we write

O.same_as(P)

The result returned by this operation is Boolean and would be true if the identity of 
P is the same as that of O, and false otherwise. Similarly, to create a copy P of object 
O, we write

P = O.copy()

An alternative to the dot notation is the arrow notation: O–>same_as(P) or 
O–>copy().

24These are similar to the corresponding type constructors described in Section 12.1.3.
25Additional operations are defined on objects for locking purposes, which are not shown in Figure 12.5. 
We discuss locking concepts for databases in Chapter 22.
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12.3.2 Inheritance in the Object Model of ODMG
In the ODMG object model, two types of inheritance relationships exist: behavior-
only inheritance and state plus behavior inheritance. Behavior inheritance  
is also known as ISA or interface inheritance and is specified by the colon (:) 
notation.26 Hence, in the ODMG object model, behavior inheritance requires 
the supertype to be an interface, whereas the subtype could be either a class or 
another interface.

The other inheritance relationship, called EXTENDS inheritance, is specified by the 
keyword extends. It is used to inherit both state and behavior strictly among classes, 
so both the supertype and the subtype must be classes. Multiple inheritance via 
extends is not permitted. However, multiple inheritance is allowed for behavior 
inheritance via the colon (:) notation. Hence, an interface may inherit behavior 
from several other interfaces. A class may also inherit behavior from several inter-
faces via colon (:) notation, in addition to inheriting behavior and state from at 
most one other class via extends. In Section 12.3.4 we will give examples of how these 
two inheritance relationships—“:” and extends—may be used.

12.3.3 Built-in Interfaces and Classes in the Object Model
Figure 12.5 shows the built-in interfaces of the object model. All interfaces, such as 
Collection, Date, and Time, inherit the basic Object interface. In the object model, 
there is a distinction between collections, whose state contains multiple objects or 
literals, versus atomic (and structured) objects, whose state is an individual object 
or literal. Collection objects inherit the basic Collection interface shown in Fig- 
ure 12.5(c), which shows the operations for all collection objects. Given a collection 
object O, the O.cardinality() operation returns the number of elements in the collec-
tion. The operation O.is_empty() returns true if the collection O is empty, and 
returns false otherwise. The operations O.insert_element(E) and O.remove_element(E) 
insert or remove an element E from the collection O. Finally, the operation  
O.contains_element(E) returns true if the collection O includes element E, and 
returns false otherwise. The operation I = O.create_iterator() creates an iterator 
object I for the collection object O, which can iterate over each element in the  
collection. The interface for iterator objects is also shown in Figure 12.5(c). The  
I.reset() operation sets the iterator at the first element in a collection (for an unor-
dered collection, this would be some arbitrary element), and I.next_position() sets the 
iterator to the next element. The I.get_element() retrieves the current element, 
which is the element at which the iterator is currently positioned.

The ODMG object model uses exceptions for reporting errors or particular condi-
tions. For example, the ElementNotFound exception in the Collection interface would be 
raised by the O.remove_element(E) operation if E is not an element in the collection O. 

26The ODMG report also calls interface inheritance as type/subtype, is-a, and generalization/specializa-
tion relationships, although in the literature these terms have been used to describe inheritance of both 
state and operations (see Chapter 8 and Section 12.1).
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The NoMoreElements exception in the iterator interface would be raised by the  
I.next_position() operation if the iterator is currently positioned at the last element in 
the collection, and hence no more elements exist for the iterator to point to.

Collection objects are further specialized into set, list, bag, array, and dictionary, which 
inherit the operations of the Collection interface. A set<T> type generator can be 
used to create objects such that the value of object O is a set whose elements are of 
type T. The Set interface includes the additional operation P = O.create_union(S) 
(see Figure 12.5(c)), which returns a new object P of type set<T> that is the union of 
the two sets O and S. Other operations similar to create_union (not shown in Fig- 
ure 12.5(c)) are create_intersection(S) and create_difference(S). Operations for set com-
parison include the O.is_subset_of(S) operation, which returns true if the set object 
O is a subset of some other set object S, and returns false otherwise. Similar opera-
tions (not shown in Figure 12.5(c)) are is_proper_subset_of(S), is_superset_of(S), and 
is_proper_superset_of(S). The bag<T> type generator allows duplicate elements in 
the collection and also inherits the Collection interface. It has three operations—
create_union(b), create_intersection(b), and create_difference(b)—that all return a new 
object of type bag<T>.

A list<T> type generator inherits the Collection operations and can be used to create 
collections of objects of type T where the order of the elements is important. The 
value of each such object O is an ordered list whose elements are of type T. Hence, we 
can refer to the first, last, and ith element in the list. Also, when we add an element to 
the list, we must specify the position in the list where the element is inserted. Some of 
the list operations are shown in Figure 12.5(c). If O is an object of type list<T>, the 
operation O.insert_element_first(E) inserts the element E before the first element in the 
list O, so that E becomes the first element in the list. A similar operation (not shown) 
is O.insert_element_last(E). The operation O.insert_element_after(E, I) in Figure 12.5(c) 
inserts the element E after the ith element in the list O and will raise the exception 
InvalidIndex if no ith element exists in O. A similar operation (not shown) is 
O.insert_element_before(E, I). To remove elements from the list, the operations are  
E = O.remove_first_element(), E = O.remove_last_element(), and E = O.remove_element _at(I); 
these operations remove the indicated element from the list and return the element as 
the operation’s result. Other operations retrieve an element without removing it from 
the list. These are E = O.retrieve_first_element(), E = O.retrieve _last_element(), and  
E = O.retrieve_element_at(I). Also, two operations to manipulate lists are defined. They 
are P = O.concat(I), which creates a new list P that is the concatenation of lists O and I 
(the elements in list O followed by those in list I), and O.append(I), which appends 
the elements of list I to the end of list O (without creating a new list object).

The array<T> type generator also inherits the Collection operations and is similar to 
list. Specific operations for an array object O are O.replace_element_at(I, E), which 
replaces the array element at position I with element E; E = O.remove_element_at(I), 
which retrieves the ith element and replaces it with a NULL value; and  
E = O.retrieve_element_at(I), which simply retrieves the ith element of the array. Any 
of these operations can raise the exception InvalidIndex if I is greater than the array’s 
size. The operation O.resize(N) changes the number of array elements to N.
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The last type of collection objects are of type dictionary<K,V>. This allows the cre-
ation of a collection of association pairs <K,V>, where all K (key) values are unique. 
Making the key values unique allows for associative retrieval of a particular pair 
given its key value (similar to an index). If O is a collection object of type 
dictionary<K,V>, then O.bind(K,V) binds value V to the key K as an association 
<K,V> in the collection, whereas O.unbind(K) removes the association with key K 
from O, and V = O.lookup(K) returns the value V associated with key K in O. The 
latter two operations can raise the exception KeyNotFound. Finally, O.contains_key(K) 
returns true if key K exists in O, and returns false otherwise.

Figure 12.6 is a diagram that illustrates the inheritance hierarchy of the built-in 
constructs of the object model. Operations are inherited from the supertype to the 
subtype. The collection interfaces described above are not directly instantiable; that 
is, one cannot directly create objects based on these interfaces. Rather, the inter-
faces can be used to generate user-defined collection types—of type set, bag, list, 
array, or dictionary—for a particular database application. If an attribute or class has 
a collection type, say a set, then it will inherit the operations of the set interface. For 
example, in a UNIVERSITY database application, the user can specify a type for 
set<STUDENT>, whose state would be sets of STUDENT objects. The programmer 
can then use the operations for set<T> to manipulate an object of type 
set<STUDENT>. Creating application classes is typically done by utilizing the object 
definition language ODL (see Section 12.3.6).

It is important to note that all objects in a particular collection must be of the same 
type. Hence, although the keyword any appears in the specifications of collection 
interfaces in Figure 12.5(c), this does not mean that objects of any type can be inter-
mixed within the same collection. Rather, it means that any type can be used when 
specifying the type of elements for a particular collection (including other collec-
tion types!).

12.3.4 Atomic (User-Defined) Objects
The previous section described the built-in collection types of the object model. 
Now we discuss how object types for atomic objects can be constructed. These are 

Collection

Object

Iterator Date IntervalTime

set list bag dictionary

Timestamp

array

Figure 12.6 
Inheritance hierarchy for the built-in 
interfaces of the object model.
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specified using the keyword class in ODL. In the object model, any user-defined 
object that is not a collection object is called an atomic object.27

For example, in a UNIVERSITY database application, the user can specify an object 
type (class) for STUDENT objects. Most such objects will be structured objects; for 
example, a STUDENT object will have a complex structure, with many attributes, 
relationships, and operations, but it is still considered atomic because it is not a 
collection. Such a user-defined atomic object type is defined as a class by specify-
ing its properties and operations. The properties define the state of the object and 
are further distinguished into attributes and relationships. In this subsection, we 
elaborate on the three types of components—attributes, relationships, and 
 operations—that a user-defined object type for atomic (structured) objects can 
include. We illustrate our discussion with the two classes EMPLOYEE and DEPARTMENT 
shown in Figure 12.7.

An attribute is a property that describes some aspect of an object. Attributes have 
values (which are typically literals having a simple or complex structure) that are 
stored within the object. However, attribute values can also be Object_ids of other 
objects. Attribute values can even be specified via methods that are used to calculate 
the attribute value. In Figure 12.728 the attributes for EMPLOYEE are Name, Ssn, 
Birth_date, Sex, and Age, and those for DEPARTMENT are Dname, Dnumber, Mgr,  
Locations, and Projs. The Mgr and Projs attributes of DEPARTMENT have complex 
structure and are defined via struct, which corresponds to the tuple constructor of 
Section 12.1.3. Hence, the value of Mgr in each DEPARTMENT object will have two 
components: Manager, whose value is an Object_id that references the EMPLOYEE 
object that manages the DEPARTMENT, and Start_date, whose value is a date. The 
locations attribute of DEPARTMENT is defined via the set constructor, since each 
DEPARTMENT object can have a set of locations.

A relationship is a property that specifies that two objects in the database are related. 
In the object model of ODMG, only binary relationships (see Section 3.4) are 
explicitly represented, and each binary relationship is represented by a pair of 
inverse references specified via the keyword relationship. In Figure 12.7, one rela-
tionship exists that relates each EMPLOYEE to the DEPARTMENT in which he or she 
works—the Works_for relationship of EMPLOYEE. In the inverse direction, each 
DEPARTMENT is related to the set of EMPLOYEES that work in the DEPARTMENT—
the Has_emps relationship of DEPARTMENT. The keyword inverse specifies that 
these two properties define a single conceptual relationship in inverse directions.29

By specifying inverses, the database system can maintain the referential integrity of 
the relationship automatically. That is, if the value of Works_for for a particular 

27As mentioned earlier, this definition of atomic object in the ODMG object model is different from the 
definition of atom constructor given in Section 12.1.3, which is the definition used in much of the object-
oriented database literature.
28We are using the Object Definition Language (ODL) notation in Figure 12.7, which will be discussed in 
more detail in Section 12.3.6.
29Section 7.4 discusses how a relationship can be represented by two attributes in inverse directions.
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EMPLOYEE E refers to DEPARTMENT D, then the value of Has_emps for DEPARTMENT 
D must include a reference to E in its set of EMPLOYEE references. If the database 
designer desires to have a relationship to be represented in only one direction, then 
it has to be modeled as an attribute (or operation). An example is the Manager com-
ponent of the Mgr attribute in DEPARTMENT.

In addition to attributes and relationships, the designer can include operations in 
object type (class) specifications. Each object type can have a number of operation 
signatures, which specify the operation name, its argument types, and its returned 
value, if applicable. Operation names are unique within each object type, but they 
can be overloaded by having the same operation name appear in distinct object 
types. The operation signature can also specify the names of exceptions that  
can occur during operation execution. The implementation of the operation  
will include the code to raise these exceptions. In Figure 12.7 the EMPLOYEE class 

class EMPLOYEE
( extent ALL_EMPLOYEES
 key Ssn )
{
 attribute string Name;
 attribute string Ssn;
 attribute date Birth_date;
 attribute enum Gender{M, F} Sex;
 attribute short Age;
 relationship DEPARTMENT Works_for
   inverse DEPARTMENT::Has_emps;
 void reassign_emp(in string New_dname)
   raises(dname_not_valid);
};
class DEPARTMENT
( extent ALL_DEPARTMENTS
 key Dname, Dnumber )
{
 attribute string Dname;
 attribute short Dnumber;
 attribute struct Dept_mgr {EMPLOYEE Manager, date Start_date}
   Mgr;
 attribute set<string> Locations;
 attribute struct Projs {string Proj_name, time Weekly_hours)
   Projs;
 relationship set<EMPLOYEE> Has_emps inverse EMPLOYEE::Works_for;
 void add_emp(in string New_ename) raises(ename_not_valid);
 void change_manager(in string New_mgr_name; in date
   Start_date);
};

Figure 12.7 
The attributes, relationships, 
and operations in a class 
definition.
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has one operation: reassign_emp, and the DEPARTMENT class has two operations: 
add_emp and change_manager.

12.3.5 Extents, Keys, and Factory Objects
In the ODMG object model, the database designer can declare an extent (using the 
keyword extent) for any object type that is defined via a class declaration. The extent 
is given a name, and it will contain all persistent objects of that class. Hence, the 
extent behaves as a set object that holds all persistent objects of the class. In Fig- 
ure 12.7 the EMPLOYEE and DEPARTMENT classes have extents called ALL_EMPLOYEES 
and ALL_DEPARTMENTS, respectively. This is similar to creating two objects—one 
of type set<EMPLOYEE> and the second of type set<DEPARTMENT>—and making 
them persistent by naming them ALL_EMPLOYEES and ALL_DEPARTMENTS. Extents 
are also used to automatically enforce the set/subset relationship between the 
extents of a supertype and its subtype. If two classes A and B have extents ALL_A and 
ALL_B, and class B is a subtype of class A (that is, class B extends class A), then the 
collection of objects in ALL_B must be a subset of those in ALL_A at any point. This 
constraint is automatically enforced by the database system.

A class with an extent can have one or more keys. A key consists of one or more 
properties (attributes or relationships) whose values are constrained to be unique 
for each object in the extent. For example, in Figure 12.7 the EMPLOYEE class has 
the Ssn attribute as key (each EMPLOYEE object in the extent must have a unique 
Ssn value), and the DEPARTMENT class has two distinct keys: Dname and Dnumber 
(each DEPARTMENT must have a unique Dname and a unique Dnumber). For a 
composite key30 that is made of several properties, the properties that form the 
key are contained in parentheses. For example, if a class VEHICLE with an extent 
ALL_VEHICLES has a key made up of a combination of two attributes State and 
License_number, they would be placed in parentheses as (State, License_number) in 
the key declaration.

Next, we present the concept of factory object—an object that can be used to gen-
erate or create individual objects via its operations. Some of the interfaces of factory 
objects that are part of the ODMG object model are shown in Figure 12.8. The 
interface ObjectFactory has a single operation, new(), which returns a new object 
with an Object_id. By inheriting this interface, users can create their own factory 
interfaces for each user-defined (atomic) object type, and the programmer can 
implement the operation new differently for each type of object. Figure 12.8 also 
shows a DateFactory interface, which has additional operations for creating a new 
calendar_date and for creating an object whose value is the current_date, among other 
operations (not shown in Figure 12.8). As we can see, a factory object basically pro-
vides the constructor operations for new objects.

Finally, we discuss the concept of a database. Because an ODB system can create 
many different databases, each with its own schema, the ODMG object model has 

30A composite key is called a compound key in the ODMG report.
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interface ObjectFactory {
 Object new();
};

interface SetFactory : ObjectFactory {
 Set new_of_size(in long size);
};

interface ListFactory : ObjectFactory {
 List new_of_size(in long size);
};

interface ArrayFactory : ObjectFactory {
 Array new_of_size(in long size);
};

interface DictionaryFactory : ObjectFactory {
 Dictionary new_of_size(in long size);
};

interface DateFactory : ObjectFactory {
 exception InvalidDate{};
 …
 Date calendar_date( in unsigned short year,
    in unsigned short month,
    in unsigned short day )
  raises(InvalidDate);
 …
 Date current();
};

interface DatabaseFactory {
 Database new();
};

interface Database {
 …
 void open(in string database_name)
   raises(DatabaseNotFound, DatabaseOpen);
 void close() raises(DatabaseClosed, …);
 void bind(in Object an_object, in string name)
   raises(DatabaseClosed, ObjectNameNotUnique, …);
 Object unbind(in string name)
   raises(DatabaseClosed, ObjectNameNotFound, …);
 Object Iookup(in string object_name)
   raises(DatabaseClosed, ObjectNameNotFound, …);
 … };

Figure 12.8 
Interfaces to illustrate factory 
objects and database objects.
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interfaces for DatabaseFactory and Database objects, as shown in Figure 12.8. Each 
database has its own database name, and the bind operation can be used to assign 
individual unique names to persistent objects in a particular database. The lookup 
operation returns an object from the database that has the specified persistent 
object_name, and the unbind operation removes the name of a persistent named 
object from the database.

12.3.6 The Object Definition Language ODL
After our overview of the ODMG object model in the previous section, we now 
show how these concepts can be utilized to create an object database schema using 
the object definition language ODL.31

The ODL is designed to support the semantic constructs of the ODMG object 
model and is independent of any particular programming language. Its main use is 
to create object specifications—that is, classes and interfaces. Hence, ODL is not a 
programming language. A user can specify a database schema in ODL indepen-
dently of any programming language, and then use the specific language bindings 
to specify how ODL constructs can be mapped to constructs in specific program-
ming languages, such as C++, Smalltalk, and Java. We will give an overview of the 
C++ binding in Section 12.6.

Figure 12.9(b) shows a possible object schema for part of the UNIVERSITY data-
base, which was presented in Chapter 4. We will describe the concepts of ODL 
using this example, and the one in Figure 12.11. The graphical notation for Fig-
ure 12.9(b) is shown in Figure 12.9(a) and can be considered as a variation of EER 
diagrams (see Chapter 4) with the added concept of interface inheritance but 
without several EER concepts, such as categories (union types) and attributes of 
relationships.

Figure 12.10 shows one possible set of ODL class definitions for the UNIVERSITY 
database. In general, there may be several possible mappings from an object schema 
diagram (or EER schema diagram) into ODL classes. We will discuss these options 
further in Section 12.4.

Figure 12.10 shows the straightforward way of mapping part of the UNIVERSITY 
database from Chapter 4. Entity types are mapped into ODL classes, and inher-
itance is done using extends. However, there is no direct way to map categories 
(union types) or to do multiple inheritance. In Figure 12.10 the classes  
PERSON, FACULTY, STUDENT, and GRAD_STUDENT have the extents PERSONS, 
FACULTY, STUDENTS, and GRAD_STUDENTS, respectively. Both FACULTY and 
STUDENT extends PERSON and GRAD_STUDENT extends STUDENT. Hence, the 
collection of STUDENTS (and the collection of FACULTY) will be constrained to 
be a subset of the collection of PERSONs at any time. Similarly, the collection of 

31The ODL syntax and data types are meant to be compatible with the Interface Definition language 
(IDL) of CORBA (Common Object Request Broker Architecture), with extensions for relationships and 
other database concepts.
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(a)

(b)

Person-IFInterface

STUDENTClass

PERSON

Works_in

Has_faculty

Has_majors
DEPARTMENT

GRAD_STUDENT

Registered_in
FACULTY STUDENT

Advisor

Committee

Advises

COURSE

Offered_by
Majors_in

Completed_sections

Has_sections

Students

Of_course

Offers

SECTION

Registered_students

On_committee_of

CURR_SECTION

Relationships

1:1

1:N

M:N

Inheritance

Interface(is-a)
inheritance
using “:”

Class inheritance
using extends

Figure 12.9 
An example of a database schema.  
(a) Graphical notation for representing ODL 
schemas. (b) A graphical object database 
schema for part of the UNIVERSITY  
database (GRADE and DEGREE classes 
are not shown).

GRAD_STUDENTs will be a subset of STUDENTs. At the same time, individual 
STUDENT and FACULTY objects will inherit the properties (attributes and rela-
tionships) and operations of PERSON, and individual GRAD_STUDENT objects 
will inherit those of STUDENT.

The classes DEPARTMENT, COURSE, SECTION, and CURR_SECTION in Figure 12.10 
are straightforward mappings of the corresponding entity types in Figure 12.9(b). 
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class PERSON
( extent PERSONS
 key Ssn )
{ attribute struct Pname { string Fname,
    string Mname,
    string Lname } Name;
 attribute string   Ssn;
 attribute date    Birth_date;
 attribute enum Gender{M, F}   Sex;
 attribute struct Address { short No,
    string Street,
    short Apt_no,
    string City,
    string State,
    short Zip } Address;
 short Age(); };
class FACULTY extends PERSON
( extent FACULTY )
{ attribute string Rank;
 attribute float  Salary;
 attribute string Office;
 attribute string Phone;
 relationship DEPARTMENT Works_in inverse DEPARTMENT::Has faculty;
 relationship set<GRAD_STUDENT> Advises inverse GRAD_STUDENT::Advisor;
 relationship set<GRAD_STUDENT> On_committee_of inverse GRAD_STUDENT::Committee;
 void give_raise(in float raise);
 void promote(in string new rank); };
class GRADE
( extent GRADES )
{
 attribute enum GradeValues{A,B,C,D,F,l, P} Grade;
 relationship SECTION Section inverse SECTION::Students;
 relationship STUDENT Student inverse STUDENT::Completed_sections; };
class STUDENT extends PERSON
( extent STUDENTS )
{ attribute string Class;
 attribute Department Minors_in;
 relationship Department Majors_in inverse DEPARTMENT::Has_majors;
 relationship set<GRADE> Completed_sections inverse GRADE::Student;
 relationship set<CURR_SECTION> Registered_in INVERSE CURR_SECTION::Registered_students;
 void change_major(in string dname) raises(dname_not_valid);
 float gpa();
 void register(in short secno) raises(section_not_valid);
 void assign_grade(in short secno; IN GradeValue grade)
   raises(section_not_valid,grade_not_valid); };

Figure 12.10 
Possible ODL schema for the UNIVERSITY database in Figure 12.8(b).
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class DEGREE
{ attribute string College;
 attribute string Degree; 
 attribute string Year; };
class GRAD_STUDENT extends STUDENT
( extent GRAD_STUDENTS )
{ attribute set<Degree> Degrees;
 relationship Faculty advisor inverse FACULTY::Advises;
 relationship set<FACULTY> Committee inverse FACULTY::On_committee_of;
 void assign_advisor(in string Lname; in string Fname)
   raises(facuIty_not_valid);
 void assign_committee_member(in string Lname; in string Fname)
   raises(facuIty_not_valid); };
class DEPARTMENT
( extent DEPARTMENTS
 key Dname )
{ attribute string Dname;
 attribute string Dphone;
 attribute string Doffice;
 attribute string College;
 attribute FACULTY Chair;
 relationship set<FACULTY> Has_faculty inverse FACULTY::Works_in;
 relationship set<STUDENT> Has_majors inverse STUDENT::Majors_in;
 relationship set<COURSE> Offers inverse COURSE::Offered_by; };
class COURSE
( extent COURSES
 key Cno )
{ attribute string Cname;
 attribute string Cno;
 attribute string Description;
 relationship set<SECTION> Has_sections inverse SECTION::Of_course;
 relationship <DEPARTMENT> Offered_by inverse DEPARTMENT::Offers; };
class SECTION
( extent SECTIONS )
{ attribute short Sec_no; 
 attribute string  Year;
 attribute enum Quarter{Fall, Winter, Spring, Summer}
   Qtr;
 relationship set<Grade> Students inverse Grade::Section;
 relationship COURSE Of_course inverse COURSE::Has_sections; };
class CURR_SECTION extends SECTION
( extent CURRENT_SECTIONS )
{ relationship set<STUDENT> Registered_students
   inverse STUDENT::Registered_in
 void register_student(in string Ssn)
   raises(student_not_valid, section_full); };

Figure 12.10 (continued)
Possible ODL schema for the UNIVERSITY database in Figure 12.8(b).
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However, the class GRADE requires some explanation. The GRADE class corre-
sponds to the M:N relationship between STUDENT and SECTION in Figure 12.9(b). 
The reason it was made into a separate class (rather than as a pair of inverse rela-
tionships) is because it includes the relationship attribute Grade.32

Hence, the M:N relationship is mapped to the class GRADE, and a pair of 1:N rela-
tionships, one between STUDENT and GRADE and the other between SECTION and 

32We will discuss alternative mappings for attributes of relationships in Section 12.4.

TRIANGLE

GeometryObject

CIRCLERECTANGLE . . . 

Figure 12.11 
An illustration of  
interface inheritance 
via “:”. (a) Graphical 
schema representation,  
(b) Corresponding 
interface and class 
definitions in ODL.

(b) interface GeometryObject
 { attribute enum Shape{RECTANGLE, TRIANGLE, CIRCLE, … } 
     Shape;
  attribute struct Point {short x, short y} Reference_point;
  float perimeter();
  float area();
  void translate(in short x_translation; in short y_translation);
  void rotate(in float angle_of_rotation); };
 class RECTANGLE : GeometryObject
 ( extent RECTANGLES )
 { attribute struct Point {short x, short y} Reference_point;
  attribute short Length;
  attribute short Height;
  attribute float Orientation_angle; };
 class TRIANGLE : GeometryObject
 ( extent TRIANGLES )
 { attribute struct Point {short x, short y} Reference_point;
  attribute short Side_1;
  attribute short Side_2;
  attribute float Side1_side2_angle;
  attribute float Side1_orientation_angle; };
 class CIRCLE : GeometryObject
 ( extent CIRCLES )
 { attribute struct Point {short x, short y} Reference_point;
  attribute short Radius; };
 …

(a)
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GRADE.33 These relationships are represented by the following relationship proper-
ties: Completed_sections of STUDENT; Section and Student of GRADE; and Students of 
SECTION (see Figure 12.10). Finally, the class DEGREE is used to represent the com-
posite, multivalued attribute degrees of GRAD_STUDENT (see Figure 8.10).

Because the previous example does not include any interfaces, only classes, we now 
utilize a different example to illustrate interfaces and interface (behavior) inheri-
tance. Figure 12.11(a) is part of a database schema for storing geometric objects. An 
interface GeometryObject is specified, with operations to calculate the perimeter and 
area of a geometric object, plus operations to translate (move) and rotate an object. 
Several classes (RECTANGLE, TRIANGLE, CIRCLE, …) inherit the GeometryObject 
interface. Since GeometryObject is an interface, it is noninstantiable—that is, no 
objects can be created based on this interface directly. However, objects of type 
RECTANGLE, TRIANGLE, CIRCLE, … can be created, and these objects inherit all the 
operations of the GeometryObject interface. Note that with interface inheritance, 
only operations are inherited, not properties (attributes, relationships). Hence, if a 
property is needed in the inheriting class, it must be repeated in the class defini-
tion, as with the Reference_point attribute in Figure 12.11(b). Notice that the inher-
ited operations can have different implementations in each class. For example, the 
implementations of the area and perimeter operations may be different for 
RECTANGLE, TRIANGLE, and CIRCLE.

Multiple inheritance of interfaces by a class is allowed, as is multiple inheritance of 
interfaces by another interface. However, with extends (class) inheritance, multiple 
inheritance is not permitted. Hence, a class can inherit via extends from at most one 
class (in addition to inheriting from zero or more interfaces).

12.4 Object Database Conceptual Design
Section 12.4.1 discusses how object database (ODB) design differs from relational 
database (RDB) design. Section 12.4.2 outlines a mapping algorithm that can be 
used to create an ODB schema, made of ODMG ODL class definitions, from a con-
ceptual EER schema.

12.4.1 Differences between Conceptual Design  
of ODB and RDB
One of the main differences between ODB and RDB design is how relationships are 
handled. In ODB, relationships are typically handled by having relationship prop-
erties or reference attributes that include OID(s) of the related objects. These can be 
considered as OID references to the related objects. Both single references and col-
lections of references are allowed. References for a binary relationship can be 

33This is similar to how an M:N relationship is mapped in the relational model (see Section 9.1) and in 
the legacy network model (see Appendix E).
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declared in a single direction, or in both directions, depending on the types of 
access expected. If declared in both directions, they may be specified as inverses of 
one another, thus enforcing the ODB equivalent of the relational referential integ-
rity constraint.

In RDB, relationships among tuples (records) are specified by attributes with 
matching values. These can be considered as value references and are specified via 
foreign keys, which are values of primary key attributes repeated in tuples of the 
referencing relation. These are limited to being single-valued in each record because 
multivalued attributes are not permitted in the basic relational model. Thus, M:N 
relationships must be represented not directly, but as a separate relation (table), as 
discussed in Section 9.1.

Mapping binary relationships that contain attributes is not straightforward in 
ODBs, since the designer must choose in which direction the attributes should be 
included. If the attributes are included in both directions, then redundancy in stor-
age will exist and may lead to inconsistent data. Hence, it is sometimes preferable to 
use the relational approach of creating a separate table by creating a separate class 
to represent the relationship. This approach can also be used for n-ary relation-
ships, with degree n > 2.

Another major area of difference between ODB and RDB design is how inheritance 
is handled. In ODB, these structures are built into the model, so the mapping is 
achieved by using the inheritance constructs, such as derived (:) and extends. In 
relational design, as we discussed in Section 9.2, there are several options to choose 
from since no built-in construct exists for inheritance in the basic relational model. 
It is important to note, though, that object-relational and extended-relational sys-
tems are adding features to model these constructs directly as well as to include 
operation specifications in abstract data types (see Section 12.2).

The third major difference is that in ODB design, it is necessary to specify the oper-
ations early on in the design since they are part of the class specifications. Although 
it is important to specify operations during the design phase for all types of data-
bases, the design of operations may be delayed in RDB design as it is not strictly 
required until the implementation phase.

There is a philosophical difference between the relational model and the object 
model of data in terms of behavioral specification. The relational model does not 
mandate the database designers to predefine a set of valid behaviors or operations, 
whereas this is a tacit requirement in the object model. One of the claimed advan-
tages of the relational model is the support of ad hoc queries and transactions, 
whereas these are against the principle of encapsulation.

In practice, it is becoming commonplace to have database design teams apply 
object-based methodologies at early stages of conceptual design so that both the 
structure and the use or operations of the data are considered, and a complete spec-
ification is developed during conceptual design. These specifications are then 
mapped into relational schemas, constraints, and behavioral artifacts such as trig-
gers or stored procedures (see Sections 5.2 and 13.4).
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12.4.2 Mapping an EER Schema to an ODB Schema
It is relatively straightforward to design the type declarations of object classes 
for an ODBMS from an EER schema that contains neither categories nor n-ary 
relationships with n > 2. However, the operations of classes are not specified in 
the EER diagram and must be added to the class declarations after the struc-
tural mapping is completed. The outline of the mapping from EER to ODL is 
as follows:

Step 1. Create an ODL class for each EER entity type or subclass. The type of the 
ODL class should include all the attributes of the EER class.34 Multivalued attributes 
are typically declared by using the set, bag, or list constructors.35 If the values of the 
multivalued attribute for an object should be ordered, the list constructor is chosen; 
if duplicates are allowed, the bag constructor should be chosen; otherwise, the set 
constructor is chosen. Composite attributes are mapped into a tuple constructor (by 
using a struct declaration in ODL).

Declare an extent for each class, and specify any key attributes as keys of the extent.

Step 2. Add relationship properties or reference attributes for each binary relation-
ship into the ODL classes that participate in the relationship. These may be created 
in one or both directions. If a binary relationship is represented by references in both 
directions, declare the references to be relationship properties that are inverses of 
one another, if such a facility exists.36 If a binary relationship is represented by a 
reference in only one direction, declare the reference to be an attribute in the refer-
encing class whose type is the referenced class name.

Depending on the cardinality ratio of the binary relationship, the relationship 
properties or reference attributes may be single-valued or collection types. They 
will be single-valued for binary relationships in the 1:1 or N:1 directions; they will 
be collection types (set-valued or list-valued37) for relationships in the 1:N or 
M:N direction. An alternative way to map binary M:N relationships is discussed in 
step 7.

If relationship attributes exist, a tuple constructor (struct) can be used to create a 
structure of the form <reference, relationship attributes>, which may be included 
instead of the reference attribute. However, this does not allow the use of the inverse 
constraint. Additionally, if this choice is represented in both directions, the attribute 
values will be represented twice, creating redundancy.

34This implicitly uses a tuple constructor at the top level of the type declaration, but in general, the tuple 
constructor is not explicitly shown in the ODL class declarations.
35Further analysis of the application domain is needed to decide which constructor to use because this 
information is not available from the EER schema.
36The ODL standard provides for the explicit definition of inverse relationships. Some ODBMS products 
may not provide this support; in such cases, programmers must maintain every relationship explicitly by 
coding the methods that update the objects appropriately.
37The decision whether to use set or list is not available from the EER schema and must be determined 
from the requirements.
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Step 3. Include appropriate operations for each class. These are not available from 
the EER schema and must be added to the database design by referring to the origi-
nal requirements. A constructor method should include program code that checks 
any constraints that must hold when a new object is created. A destructor method 
should check any constraints that may be violated when an object is deleted. Other 
methods should include any further constraint checks that are relevant.

Step 4. An ODL class that corresponds to a subclass in the EER schema inherits (via 
extends) the attributes, relationships, and methods of its superclass in the ODL 
schema. Its specific (local) attributes, relationship references, and operations are 
specified, as discussed in steps 1, 2, and 3.

Step 5. Weak entity types can be mapped in the same way as regular entity types. 
An alternative mapping is possible for weak entity types that do not participate in 
any relationships except their identifying relationship; these can be mapped as 
though they were composite multivalued attributes of the owner entity type, by using 
the set<struct<…>> or list<struct<…>> constructors. The attributes of the weak entity 
are included in the struct<…> construct, which corresponds to a tuple constructor. 
Attributes are mapped as discussed in steps 1 and 2.

Step 6. Categories (union types) in an EER schema are difficult to map to ODL. It is 
possible to create a mapping similar to the EER-to-relational mapping (see Sec- 
tion 9.2) by declaring a class to represent the category and defining 1:1 relationships 
between the category and each of its superclasses.

Step 7. An n-ary relationship with degree n > 2 can be mapped into a separate class, 
with appropriate references to each participating class. These references are based on 
mapping a 1:N relationship from each class that represents a participating entity 
type to the class that represents the n-ary relationship. An M:N binary relationship, 
especially if it contains relationship attributes, may also use this mapping option, 
if desired.

The mapping has been applied to a subset of the UNIVERSITY database schema in 
Figure 4.10 in the context of the ODMG object database standard. The mapped 
object schema using the ODL notation is shown in Figure 12.10.

12.5 The Object Query Language OQL
The object query language OQL is the query language proposed for the ODMG 
object model. It is designed to work closely with the programming languages for 
which an ODMG binding is defined, such as C++, Smalltalk, and Java. Hence, an 
OQL query embedded into one of these programming languages can return objects 
that match the type system of that language. Additionally, the implementations of 
class operations in an ODMG schema can have their code written in these pro-
gramming languages. The OQL syntax for queries is similar to the syntax of the 
relational standard query language SQL, with additional features for ODMG con-
cepts, such as object identity, complex objects, operations, inheritance, polymor-
phism, and relationships.
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In Section 12.5.1 we will discuss the syntax of simple OQL queries and the concept 
of using named objects or extents as database entry points. Then, in Section 12.5.2 
we will discuss the structure of query results and the use of path expressions to tra-
verse relationships among objects. Other OQL features for handling object identity, 
inheritance, polymorphism, and other object-oriented concepts are discussed in 
Section 12.5.3. The examples to illustrate OQL queries are based on the UNIVERSITY 
database schema given in Figure 12.10.

12.5.1  Simple OQL Queries, Database Entry Points,  
and Iterator Variables

The basic OQL syntax is a select … from … where … structure, as it is for SQL. For 
example, the query to retrieve the names of all departments in the college of  
‘Engineering’ can be written as follows:

Q0: select D.Dname
 from D in DEPARTMENTS
 where D.College = ‘Engineering’;

In general, an entry point to the database is needed for each query, which can be 
any named persistent object. For many queries, the entry point is the name of the 
extent of a class. Recall that the extent name is considered to be the name of a persis-
tent object whose type is a collection (in most cases, a set) of objects from the class. 
Looking at the extent names in Figure 12.10, the named object DEPARTMENTS is of 
type set<DEPARTMENT>; PERSONS is of type set<PERSON>; FACULTY is of type 
set<FACULTY>; and so on.

The use of an extent name—DEPARTMENTS in Q0—as an entry point refers to a 
persistent collection of objects. Whenever a collection is referenced in an OQL 
query, we should define an iterator variable38—D in Q0—that ranges over each 
object in the collection. In many cases, as in Q0, the query will select certain objects 
from the collection, based on the conditions specified in the where clause. In Q0, 
only persistent objects D in the collection of DEPARTMENTS that satisfy the condi-
tion D.College = ‘Engineering’ are selected for the query result. For each selected 
object D, the value of D.Dname is retrieved in the query result. Hence, the type of the 
result for Q0 is bag<string> because the type of each Dname value is string (even 
though the actual result is a set because Dname is a key attribute). In general, the 
result of a query would be of type bag for select … from … and of type set for select 
distinct … from … , as in SQL (adding the keyword distinct eliminates duplicates).

Using the example in Q0, there are three syntactic options for specifying iterator 
variables:

D in DEPARTMENTS
DEPARTMENTS D
DEPARTMENTS AS D

38This is similar to the tuple variables that range over tuples in SQL queries.
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We will use the first construct in our examples.39

The named objects used as database entry points for OQL queries are not limited to 
the names of extents. Any named persistent object, whether it refers to an atomic 
(single) object or to a collection object, can be used as a database entry point.

12.5.2 Query Results and Path Expressions
In general, the result of a query can be of any type that can be expressed in the 
ODMG object model. A query does not have to follow the select … from … where … 
structure; in the simplest case, any persistent name on its own is a query, whose 
result is a reference to that persistent object. For example, the query

Q1: DEPARTMENTS;

returns a reference to the collection of all persistent DEPARTMENT objects, whose 
type is set<DEPARTMENT>. Similarly, suppose we had given (via the database bind 
operation, see Figure 12.8) a persistent name CS_DEPARTMENT to a single 
DEPARTMENT object (the Computer Science department); then, the query

Q1A: CS_DEPARTMENT;

returns a reference to that individual object of type DEPARTMENT. Once an entry point 
is specified, the concept of a path expression can be used to specify a path to related 
attributes and objects. A path expression typically starts at a persistent object name, or at 
the iterator variable that ranges over individual objects in a collection. This name will 
be followed by zero or more relationship names or attribute names connected using 
the dot notation. For example, referring to the UNIVERSITY database in Figure 12.10, 
the following are examples of path expressions, which are also valid queries in OQL:

Q2: CS_DEPARTMENT.Chair;
Q2A: CS_DEPARTMENT.Chair.Rank;
Q2B: CS_DEPARTMENT.Has_faculty;

The first expression Q2 returns an object of type FACULTY, because that is the type 
of the attribute Chair of the DEPARTMENT class. This will be a reference to the  
FACULTY object that is related to the DEPARTMENT object whose persistent name is 
CS_DEPARTMENT via the attribute Chair; that is, a reference to the FACULTY object 
who is chairperson of the Computer Science department. The second expression 
Q2A is similar, except that it returns the Rank of this FACULTY object (the Computer 
Science chair) rather than the object reference; hence, the type returned by Q2A is 
string, which is the data type for the Rank attribute of the FACULTY class.

Path expressions Q2 and Q2A return single values, because the attributes Chair (of 
DEPARTMENT) and Rank (of FACULTY) are both single-valued and they are applied to 
a single object. The third expression, Q2B, is different; it returns an object of type 
set<FACULTY> even when applied to a single object, because that is the type of the 
relationship Has_faculty of the DEPARTMENT class. The collection returned will include 

39Note that the latter two options are similar to the syntax for specifying tuple variables in SQL queries.
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a set of references to all FACULTY objects that are related to the DEPARTMENT object 
whose persistent name is CS_DEPARTMENT via the relationship Has_faculty; that is, a 
set of references to all FACULTY objects who are working in the Computer Science 
department. Now, to return the ranks of Computer Science faculty, we cannot write

Q3′: CS_DEPARTMENT.Has_faculty.Rank;

because it is not clear whether the object returned would be of type set<string> or 
bag<string> (the latter being more likely, since multiple faculty may share the same 
rank). Because of this type of ambiguity problem, OQL does not allow expressions 
such as Q3′. Rather, one must use an iterator variable over any collections, as in 
Q3A or Q3B below:

Q3A: select F.Rank
 from F in CS_DEPARTMENT.Has_faculty;

Q3B: select distinct F.Rank
 from F in CS_DEPARTMENT.Has_faculty;

Here, Q3A returns bag<string> (duplicate rank values appear in the result), whereas 
Q3B returns set<string> (duplicates are eliminated via the distinct keyword). Both 
Q3A and Q3B illustrate how an iterator variable can be defined in the from clause to 
range over a restricted collection specified in the query. The variable F in Q3A and 
Q3B ranges over the elements of the collection CS_DEPARTMENT.Has_faculty, which 
is of type set<FACULTY>, and includes only those faculty who are members of the 
Computer Science department.

In general, an OQL query can return a result with a complex structure specified in 
the query itself by utilizing the struct keyword. Consider the following examples:

Q4: CS_DEPARTMENT.Chair.Advises;

Q4A: select struct ( name: struct ( last_name: S.name.Lname, first_name: 
S.name.Fname),

     degrees:( select struct ( deg: D.Degree, 
yr: D.Year, 
college: D.College)

        from D in S.Degrees ))
 from S in CS_DEPARTMENT.Chair.Advises;

Here, Q4 is straightforward, returning an object of type set<GRAD_STUDENT> as its 
result; this is the collection of graduate students who are advised by the chair of the 
Computer Science department. Now, suppose that a query is needed to retrieve the 
last and first names of these graduate students, plus the list of previous degrees of 
each. This can be written as in Q4A, where the variable S ranges over the collection 
of graduate students advised by the chairperson, and the variable D ranges over the 
degrees of each such student S. The type of the result of Q4A is a collection of (first-
level) structs where each struct has two components: name and degrees.40

40As mentioned earlier, struct corresponds to the tuple constructor discussed in Section 12.1.3.
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The name component is a further struct made up of last_name and first_name, each 
being a single string. The degrees component is defined by an embedded query and 
is itself a collection of further (second level) structs, each with three string compo-
nents: deg, yr, and college.

Note that OQL is orthogonal with respect to specifying path expressions. That is, 
attributes, relationships, and operation names (methods) can be used interchange-
ably within the path expressions, as long as the type system of OQL is not compro-
mised. For example, one can write the following queries to retrieve the grade point 
average of all senior students majoring in Computer Science, with the result ordered 
by GPA, and within that by last and first name:

Q5A: select struct (  last_name: S.name.Lname, first_name: S.name.Fname, 
gpa: S.gpa )

 from S in CS_DEPARTMENT.Has_majors
 where S.Class = ‘senior’
 order by gpa desc, last_name asc, first_name asc;

Q5B: select struct (  last_name: S.name.Lname, first_name: S.name.Fname,  
gpa: S.gpa )

 from  S in STUDENTS
 where S.Majors_in.Dname = ‘Computer Science’ and
  S.Class = ‘senior’
 order by gpa desc, last_name asc, first_name asc;

Q5A used the named entry point CS_DEPARTMENT to directly locate the reference 
to the Computer Science department and then locate the students via the relation-
ship Has_majors, whereas Q5B searches the STUDENTS extent to locate all students 
majoring in that department. Notice how attribute names, relationship names, and 
operation (method) names are all used interchangeably (in an orthogonal manner) 
in the path expressions: gpa is an operation; Majors_in and Has_majors are relation-
ships; and Class, Name, Dname, Lname, and Fname are attributes. The implementa-
tion of the gpa operation computes the grade point average and returns its value as 
a float type for each selected STUDENT.

The order by clause is similar to the corresponding SQL construct, and specifies in 
which order the query result is to be displayed. Hence, the collection returned by a 
query with an order by clause is of type list.

12.5.3 Other Features of OQL

Specifying Views as Named Queries. The view mechanism in OQL uses the 
concept of a named query. The define keyword is used to specify an identifier of the 
named query, which must be a unique name among all named objects, class names, 
method names, and function names in the schema. If the identifier has the same 
name as an existing named query, then the new definition replaces the previous 
definition. Once defined, a query definition is persistent until it is redefined or 
deleted. A view can also have parameters (arguments) in its definition.
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For example, the following view V1 defines a named query Has_minors to retrieve 
the set of objects for students minoring in a given department:

V1: define Has_minors(Dept_name) as
 select S
 from S in STUDENTS
 where S.Minors_in.Dname = Dept_name;

Because the ODL schema in Figure 12.10 only provided a unidirectional Minors_in 
attribute for a STUDENT, we can use the above view to represent its inverse without 
having to explicitly define a relationship. This type of view can be used to represent 
inverse relationships that are not expected to be used frequently. The user can now 
utilize the above view to write queries such as

Has_minors(‘Computer Science’);

which would return a bag of students minoring in the Computer Science depart-
ment. Note that in Figure 12.10, we defined Has_majors as an explicit relationship, 
presumably because it is expected to be used more often.

Extracting Single Elements from Singleton Collections. An OQL query will, 
in general, return a collection as its result, such as a bag, set (if distinct is specified), or 
list (if the order by clause is used). If the user requires that a query only return a sin-
gle element, there is an element operator in OQL that is guaranteed to return a  
single element E from a singleton collection C that contains only one element. If C 
contains more than one element or if C is empty, then the element operator raises 
an exception. For example, Q6 returns the single object reference to the Computer 
Science department:

Q6: element ( select D
    from D in DEPARTMENTS
    where D.Dname = ‘Computer Science’ );

Since a department name is unique across all departments, the result should be one 
department. The type of the result is D:DEPARTMENT.

Collection Operators (Aggregate Functions, Quantifiers). Because many 
query expressions specify collections as their result, a number of operators have been 
defined that are applied to such collections. These include aggregate operators as 
well as membership and quantification (universal and existential) over a collection.

The aggregate operators (min, max, count, sum, avg) operate over a collection.41 The 
operator count returns an integer type. The remaining aggregate operators (min, 
max, sum, avg) return the same type as the type of the operand collection. Two 
examples follow. The query Q7 returns the number of students minoring in Com-
puter Science and Q8 returns the average GPA of all seniors majoring in Computer 
Science.

41These correspond to aggregate functions in SQL.
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Q7: count ( S in Has_minors(‘Computer Science’));

Q8: avg ( select S.Gpa
  from S in STUDENTS
  where S.Majors_in.Dname = ‘Computer Science’ and 
   S.Class = ‘Senior’);

Notice that aggregate operations can be applied to any collection of the appropriate 
type and can be used in any part of a query. For example, the query to retrieve all 
department names that have more than 100 majors can be written as in Q9:

Q9: select D.Dname
 from D in DEPARTMENTS
 where count (D.Has_majors) > 100;

The membership and quantification expressions return a Boolean type—that is, true or 
false. Let V be a variable, C a collection expression, B an expression of type Boolean (that 
is, a Boolean condition), and E an element of the type of elements in collection C. Then:

(E in C) returns true if element E is a member of collection C.
(for all V in C : B) returns true if all the elements of collection C satisfy B.
(exists V in C : B) returns true if there is at least one element in C satisfying B.

To illustrate the membership condition, suppose we want to retrieve the names of 
all students who completed the course called ‘Database Systems I’. This can be writ-
ten as in Q10, where the nested query returns the collection of course names that 
each STUDENT S has completed, and the membership condition returns true if 
‘Database Systems I’ is in the collection for a particular STUDENT S:

Q10: select S.name.Lname, S.name.Fname
 from S in STUDENTS
 where ‘Database Systems I’ in
  ( select C.Section.Of_course.Cname
    from C in S.Completed_sections);

Q10 also illustrates a simpler way to specify the select clause of queries that return a 
collection of structs; the type returned by Q10 is bag<struct(string, string)>.

One can also write queries that return true/false results. As an example, let us 
assume that there is a named object called JEREMY of type STUDENT. Then, query 
Q11 answers the following question: Is Jeremy a Computer Science minor? Similarly, 
Q12 answers the question Are all Computer Science graduate students advised by 
Computer Science faculty? Both Q11 and Q12 return true or false, which are inter-
preted as yes or no answers to the above questions:

Q11: JEREMY in Has_minors(‘Computer Science’);

Q12: for all G in
  ( select S
    from S in GRAD_STUDENTS
    where S.Majors_in.Dname = ‘Computer Science’ )
  : G.Advisor in CS_DEPARTMENT.Has_faculty;
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Note that query Q12 also illustrates how attribute, relationship, and operation 
inheritance applies to queries. Although S is an iterator that ranges over the extent 
GRAD_STUDENTS, we can write S.Majors_in because the Majors_in relationship is 
inherited by GRAD_STUDENT from STUDENT via extends (see Figure 12.10). Finally, 
to illustrate the exists quantifier, query Q13 answers the following question: Does 
any graduate Computer Science major have a 4.0 GPA? Here, again, the operation 
gpa is inherited by GRAD_STUDENT from STUDENT via extends.

Q13: exists G in
 ( select S
   from S in GRAD_STUDENTS
   where S.Majors_in.Dname = ‘Computer Science’ )
 : G.Gpa = 4;

Ordered (Indexed) Collection Expressions. As we discussed in Section 12.3.3, 
collections that are lists and arrays have additional operations, such as retrieving 
the ith, first, and last elements. Additionally, operations exist for extracting a sub-
collection and concatenating two lists. Hence, query expressions that involve lists 
or arrays can invoke these operations. We will illustrate a few of these operations 
using sample queries. Q14 retrieves the last name of the faculty member who earns 
the highest salary:

Q14: first ( select struct(facname: F.name.Lname, salary: F.Salary)
  from F in FACULTY
  order by salary desc );

Q14 illustrates the use of the first operator on a list collection that contains the sala-
ries of faculty members sorted in descending order by salary. Thus, the first element 
in this sorted list contains the faculty member with the highest salary. This query 
assumes that only one faculty member earns the maximum salary. The next query, 
Q15, retrieves the top three Computer Science majors based on GPA.

Q15: ( select struct(  last_name: S.name.Lname, first_name: S.name.Fname,  
gpa: S.Gpa )

   from S in CS_DEPARTMENT.Has_majors
   order by gpa desc ) [0:2];

The select-from-order-by query returns a list of Computer Science students ordered 
by GPA in descending order. The first element of an ordered collection has an 
index position of 0, so the expression [0:2] returns a list containing the first, second, 
and third elements of the select … from … order by … result.

The Grouping Operator. The group by clause in OQL, although similar to the 
corresponding clause in SQL, provides explicit reference to the collection of objects 
within each group or partition. First we give an example, and then we describe the 
general form of these queries.

Q16 retrieves the number of majors in each department. In this query, the students 
are grouped into the same partition (group) if they have the same major; that is, the 
same value for S.Majors_in.Dname:
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Q16: ( select struct( dept_name, number_of_majors: count (partition) )
   from S in STUDENTS
   group by dept_name: S.Majors_in.Dname;

The result of the grouping specification is of type set<struct(dept_name: string, partition: 
bag<struct(S:STUDENT>)>), which contains a struct for each group (partition) that 
has two components: the grouping attribute value (dept_name) and the bag of the 
STUDENT objects in the group (partition). The select clause returns the grouping 
attribute (name of the department), and a count of the number of elements in each 
partition (that is, the number of students in each department), where partition is the 
keyword used to refer to each partition. The result type of the select clause is 
set<struct(dept_name: string, number_of_majors: integer)>. In general, the syntax for 
the group by clause is

group by F1: E1, F2: E2, … , Fk: Ek

where F1: E1, F2: E2, … , Fk: Ek is a list of partitioning (grouping) attributes and each 
partitioning attribute specification Fi: Ei defines an attribute (field) name Fi and an 
expression Ei. The result of applying the grouping (specified in the group by clause) 
is a set of structures:

set<struct(F1: T1, F2: T2, … , Fk: Tk, partition: bag)>

where Ti is the type returned by the expression Ei, partition is a distinguished field 
name (a keyword), and B is a structure whose fields are the iterator variables (S in 
Q16) declared in the from clause having the appropriate type.

Just as in SQL, a having clause can be used to filter the partitioned sets (that is, select 
only some of the groups based on group conditions). In Q17, the previous query is 
modified to illustrate the having clause (and also shows the simplified syntax for the 
select clause). Q17 retrieves for each department having more than 100 majors, the 
average GPA of its majors. The having clause in Q17 selects only those partitions 
(groups) that have more than 100 elements (that is, departments with more than 
100 students).

Q17: select dept_name, avg_gpa: avg ( select P.gpa from P in partition)
 from S in STUDENTS
 group by dept_name: S.Majors_in.Dname
 having count (partition) > 100;

Note that the select clause of Q17 returns the average GPA of the students in the 
partition. The expression

select P.Gpa from P in partition

returns a bag of student GPAs for that partition. The from clause declares an iterator 
variable P over the partition collection, which is of type bag<struct(S: STUDENT)>. 
Then the path expression P.gpa is used to access the GPA of each student in the 
partition.
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12.6  Overview of the C++ Language Binding  
in the ODMG Standard

The C++ language binding specifies how ODL constructs are mapped to C++ con-
structs. This is done via a C++ class library that provides classes and operations 
that implement the ODL constructs. An object manipulation language (OML) is 
needed to specify how database objects are retrieved and manipulated within a 
C++ program, and this is based on the C++ programming language syntax and 
semantics. In addition to the ODL/OML bindings, a set of constructs called physi-
cal pragmas are defined to allow the programmer some control over physical stor-
age issues, such as clustering of objects, utilizing indexes, and memory 
management.

The class library added to C++ for the ODMG standard uses the prefix d_ for 
class declarations that deal with database concepts.42 The goal is that the pro-
grammer should think that only one language is being used, not two separate 
languages. For the programmer to refer to database objects in a program, a class 
D_Ref<T> is defined for each database class T in the schema. Hence, program 
variables of type D_Ref<T> can refer to both persistent and transient objects of 
class T.

In order to utilize the various built-in types in the ODMG object model such as 
collection types, various template classes are specified in the library. For example, 
an abstract class D_Object<T> specifies the operations to be inherited by all objects. 
Similarly, an abstract class D_Collection<T> specifies the operations of collections. 
These classes are not instantiable, but only specify the operations that can be 
inherited by all objects and by collection objects, respectively. A template class is 
specified for each type of collection; these include D_Set<T>, D_List<T>,  
D_Bag<T>, D_Varray<T>, and D_Dictionary<T>, and they correspond to the collection 
types in the object model (see Section 12.3.1). Hence, the programmer can create 
classes of types such as D_Set<D_Ref<STUDENT>> whose instances would be sets 
of references to STUDENT objects, or D_Set<string> whose instances would be sets 
of strings. Additionally, a class d_Iterator corresponds to the Iterator class of the 
object model.

The C++ ODL allows a user to specify the classes of a database schema using  
the constructs of C++ as well as the constructs provided by the object database  
library. For specifying the data types of attributes,43 basic types such as d_Short 
(short integer), d_Ushort (unsigned short integer), d_Long (long integer), and  
d_Float (floating-point number) are provided. In addition to the basic data types, 
several structured literal types are provided to correspond to the structured literal 
types of the ODMG object model. These include d_String, d_Interval, d_Date, d_Time, 
and d_Timestamp (see Figure 12.5(b)).

42Presumably, d_ stands for database classes.
43That is, member variables in object-oriented programming terminology.
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To specify relationships, the keyword rel_ is used within the prefix of type names; 
for example, by writing

d_Rel_Ref<DEPARTMENT, Has_majors> Majors_in;

in the STUDENT class, and

d_Rel_Set<STUDENT, Majors_in> Has_majors;

in the DEPARTMENT class, we are declaring that Majors_in and Has_majors are rela-
tionship properties that are inverses of one another and hence represent a 1:N 
binary relationship between DEPARTMENT and STUDENT.

For the OML, the binding overloads the operation new so that it can be used to 
create either persistent or transient objects. To create persistent objects, one 
must provide the database name and the persistent name of the object. For 
example, by writing

D_Ref<STUDENT> S = new(DB1, ‘John_Smith’) STUDENT;

the programmer creates a named persistent object of type STUDENT in database 
DB1 with persistent name John_Smith. Another operation, delete_object() can be 
used to delete objects. Object modification is done by the operations (methods) 
defined in each class by the programmer.

The C++ binding also allows the creation of extents by using the library class  
d_Extent. For example, by writing

D_Extent<PERSON> ALL_PERSONS(DB1);

the programmer would create a named collection object ALL_PERSONS—whose 
type would be D_Set<PERSON>—in the database DB1 that would hold persistent 
objects of type PERSON. However, key constraints are not supported in the C++ 
binding, and any key checks must be programmed in the class methods.44 Also, 
the C++ binding does not support persistence via reachability; the object must be 
statically declared to be persistent at the time it is created.

12.7 Summary
In this chapter, we started in Section 12.1 with an overview of the concepts utilized 
in object databases, and we discussed how these concepts were derived from gen-
eral object-oriented principles. The main concepts we discussed were: object iden-
tity and identifiers; encapsulation of operations; inheritance; complex structure of 
objects through nesting of type constructors; and how objects are made persistent. 

44We have only provided a brief overview of the C++ binding. For full details, see Cattell et al. (2000), 
Chapter 5.
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Then, in Section 12.2, we showed how many of these concepts were incorporated 
into the relational model and the SQL standard; we showed that this incorporation 
leads to expanded relational database functionality. These systems have been called 
object-relational databases.

We then discussed the ODMG 3.0 standard for object databases. We started by 
describing the various constructs of the object model in Sction 12.3. The various 
built-in types, such as Object, Collection, Iterator, set, list, and so on, were described by 
their interfaces, which specify the built-in operations of each type. These built-in 
types are the foundation upon which the object definition language (ODL) and 
object query language (OQL) are based. We also described the difference between 
objects, which have an ObjectId, and literals, which are values with no OID. Users 
can declare classes for their application that inherit operations from the appropriate 
built-in interfaces. Two types of properties can be specified in a user-defined class—
attributes and relationships—in addition to the operations that can be applied to 
objects of the class. The ODL allows users to specify both interfaces and classes, and 
permits two different types of inheritance—interface inheritance via “:” and class 
inheritance via extends. A class can have an extent and keys. A description of ODL 
followed, and an example database schema for the UNIVERSITY database was used to 
illustrate the ODL constructs.

Following the description of the ODMG object model, we described a general tech-
nique for designing object database schemas in Section 12.4. We discussed how 
object databases differ from relational databases in three main areas: references to 
represent relationships, inclusion of operations, and inheritance. Finally, we 
showed how to map a conceptual database design in the EER model to the con-
structs of object databases.

In Section 12.5, we presented an overview of the object query language (OQL). The 
OQL follows the concept of orthogonality in constructing queries, meaning that an 
operation can be applied to the result of another operation as long as the type of the 
result is of the correct input type for the operation. The OQL syntax follows many 
of the constructs of SQL but includes additional concepts such as path expressions, 
inheritance, methods, relationships, and collections. Examples of how to use OQL 
over the UNIVERSITY database were given.

Next we gave an overview of the C++ language binding in Section 12.6, which 
extends C++ class declarations with the ODL type constructors but permits seam-
less integration of C++ with the ODBMS.

In 1997 Sun endorsed the ODMG API (Application Program Interface). O2 tech-
nologies was the first corporation to deliver an ODMG-compliant DBMS. Many 
ODBMS vendors, including Object Design (now eXcelon), Gemstone Systems, POET 
Software, and Versant Corporation45, have endorsed the ODMG standard.

45The Versant Object Technology product now belongs to Actian Corporation.
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Review Questions
 12.1. What are the origins of the object-oriented approach?

 12.2. What primary characteristics should an OID possess?

 12.3. Discuss the various type constructors. How are they used to create complex 
object structures?

 12.4. Discuss the concept of encapsulation, and tell how it is used to create abstract 
data types.

 12.5. Explain what the following terms mean in object-oriented database termi-
nology: method, signature, message, collection, extent.

 12.6. What is the relationship between a type and its subtype in a type hierarchy? 
What is the constraint that is enforced on extents corresponding to types in 
the type hierarchy?

 12.7. What is the difference between persistent and transient objects? How is 
persistence handled in typical OO database systems?

 12.8. How do regular inheritance, multiple inheritance, and selective inheritance 
differ?

 12.9. Discuss the concept of polymorphism/operator overloading.

 12.10. Discuss how each of the following features is realized in SQL 2008: object identi-
fier, type inheritance, encapsulation of operations, and complex object structures.

 12.11. In the traditional relational model, creating a table defined both the table 
type (schema or attributes) and the table itself (extension or set of current 
tuples). How can these two concepts be separated in SQL 2008?

 12.12. Describe the rules of inheritance in SQL 2008.

 12.13. What are the differences and similarities between objects and literals in the 
ODMG object model?

 12.14. List the basic operations of the following built-in interfaces of the 
ODMG object model: Object, Collection, Iterator, Set, List, Bag, Array, and 
Dictionary.

 12.15. Describe the built-in structured literals of the ODMG object model and the 
operations of each.

 12.16. What are the differences and similarities of attribute and relationship prop-
erties of a user-defined (atomic) class?

 12.17. What are the differences and similarities of class inhertance via extends and 
interface inheritance via “:” in the ODMG object model?

 12.18. Discuss how persistence is specified in the ODMG object model in the C++ 
binding.
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 12.19. Why are the concepts of extents and keys important in database applica-
tions?

 12.20. Describe the following OQL concepts: database entry points, path expressions, 
iterator variables, named queries (views), aggregate functions, grouping, 
and quantifiers.

 12.21. What is meant by the type orthogonality of OQL?

 12.22. Discuss the general principles behind the C++ binding of the ODMG 
standard.

 12.23. What are the main differences between designing a relational database and 
an object database?

 12.24. Describe the steps of the algorithm for object database design by EER-to-
OO mapping.

Exercises
 12.25. Convert the example of GEOMETRY_OBJECTs given in Section 12.1.5 from 

the functional notation to the notation given in Figure 12.2 that distin-
guishes between attributes and operations. Use the keyword INHERIT to 
show that one class inherits from another class.

 12.26. Compare inheritance in the EER model (see Chapter 4) to inheritance in the 
OO model described in Section 12.1.5.

 12.27. Consider the UNIVERSITY EER schema in Figure 4.10. Think of what opera-
tions are needed for the entity types/classes in the schema. Do not consider 
constructor and destructor operations.

 12.28. Consider the COMPANY ER schema in Figure 3.2. Think of what operations 
are needed for the entity types/classes in the schema. Do not consider con-
structor and destructor operations.

 12.29. Design an OO schema for a database application that you are interested in. 
Construct an EER schema for the application, and then create the corre-
sponding classes in ODL. Specify a number of methods for each class, and 
then specify queries in OQL for your database application.

 12.30. Consider the AIRPORT database described in Exercise 4.21. Specify a num-
ber of operations/methods that you think should be applicable to that appli-
cation. Specify the ODL classes and methods for the database.

 12.31. Map the COMPANY ER schema in Figure 3.2 into ODL classes. Include 
appropriate methods for each class.

 12.32. Specify in OQL the queries in the exercises of Chapters 6 and 7 that apply to 
the COMPANY database.
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Selected Bibliography
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called ORION and related OO topics by Kim and Lochovsky (1989). Bancilhon 
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(1994) provides a thorough discussion on OO database topics by experts at a 
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trich (1986) and Zaniolo et al. (1986) survey the basic concepts of OO data 
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DeWitt (1981). Su et al. (1988) presents an OO data model that was used in 
CAD/CAM applications. Gupta and Horowitz (1992) discusses OO applica-
tions to CAD, Network Management, and other areas. Mitschang (1989) 
extends the relational algebra to cover complex objects. Query languages and 
graphical user interfaces for OO are described in Gyssens et al. (1990), Kim 
(1989), Alashqur et al. (1989), Bertino et al. (1992), Agrawal et al. (1990), and 
Cruz (1992).

The Object-Oriented Manifesto by Atkinson et al. (1990) is an interesting arti-
cle that reports on the position by a panel of experts regarding the mandatory 
and optional features of OO database management. Polymorphism in databases 
and OO programming languages is discussed in Osborn (1989), Atkinson and 
Buneman (1987), and Danforth and Tomlinson (1988). Object identity is dis-
cussed in Abiteboul and Kanellakis (1989). OO programming languages for 
databases are discussed in Kent (1991). Object constraints are discussed in Del-
cambre et al. (1991) and Elmasri, James, and Kouramajian (1993). Authoriza-
tion and security in OO databases are examined in Rabitti et al. (1991) and 
Bertino (1992).

Cattell et al. (2000) describe the ODMG 3.0 standard, which is described in this 
chapter, and Cattell et al. (1993) and Cattell et al. (1997) describe the earlier 
versions of the standard. Bancilhon and Ferrari (1995) give a tutorial presenta-
tion of the important aspects of the ODMG standard. Several books describe 
the CORBA architecture—for example, Baker (1996).

The O2 system is described in Deux et al. (1991), and Bancilhon et al. (1992) 
includes a list of references to other publications describing various aspects of 
O2. The O2 model was formalized in Velez et al. (1989). The ObjectStore system 
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is described in Lamb et al. (1991). Fishman et al. (1987) and Wilkinson et al. 
(1990) discuss IRIS, an object-oriented DBMS developed at Hewlett-Packard 
Laboratories. Maier et al. (1986) and Butterworth et al. (1991) describe the design 
of GEMSTONE. The ODE system developed at AT&T Bell Labs is described in 
Agrawal and Gehani (1989). The ORION system developed at MCC is described 
in Kim et al. (1990). Morsi et al. (1992) describes an OO testbed.

Cattell (1991) surveys concepts from both relational and object databases and 
discusses several prototypes of object-based and extended relational database sys-
tems. Alagic (1997) points out discrepancies between the ODMG data model and 
its language bindings and proposes some solutions. Bertino and Guerrini (1998) 
propose an extension of the ODMG model for supporting composite objects. 
Alagic (1999) presents several data models belonging to the ODMG family.
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