
425

13
XML: Extensible

Markup Language

Many Internet applications provide Web inter-
faces to access information stored in one or

more databases. These databases are often referred to as data sources. It is common
to use the three-tier client/server architectures for Internet applications (see Sec-
tion 2.5). Internet database applications are designed to interact with the user through
Web interfaces that display Web pages on desktops, laptops, and mobile devices.
The common method of specifying the contents and formatting of Web pages is
through the use of hypertext documents. There are various languages for writing
these documents, the most common being HTML (HyperText Markup Language).
Although HTML is widely used for formatting and structuring Web documents, it
is not suitable for specifying structured data that is extracted from databases. A new
language—namely, XML (Extensible Markup Language)—has emerged as the stan-
dard for structuring and exchanging data over the Web in text files. Another lan-
guage that can be used for the same purpose is JSON (JavaScript Object Notation;
see Section 11.4). XML can be used to provide information about the structure and
meaning of the data in the Web pages rather than just specifying how the Web
pages are formatted for display on the screen. Both XML and JSON documents
provide descriptive information, such as attribute names, as well as the values of
these attributes, in a text file; hence, they are known as self-describing documents.
The formatting aspects of Web pages are specified separately—for example, by
using a formatting language such as XSL (Extensible Stylesheet Language) or a
transformation language such as XSLT (Extensible Stylesheet Language for Trans-
formations or simply XSL Transformations). Recently, XML has also been pro-
posed as a possible model for data storage and retrieval, although only a few
experimental database systems based on XML have been developed so far.

chapter 13

426 Chapter 13 XML: Extensible Markup Language

Basic HTML is useful for generating static Web pages with fixed text and other
objects, but most e-commerce applications require Web pages that provide interac-
tive features with the user and use the information provided by the user for select-
ing specific data from a database for display. Such Web pages are called dynamic
Web pages, because the data extracted and displayed each time will be different
depending on user input. For example, a banking app would get the user’s account
number, then extract the balance for that user’s account from the database for dis-
play. We discussed how scripting languages, such as PHP, can be used to generate
dynamic Web pages for applications such as those presented in Chapter 11. XML
can be used to transfer information in self-describing textual files among various
programs on different computers when needed by the applications.

In this chapter, we will focus on describing the XML data model and its associated
languages, and how data extracted from relational databases can be formatted as
XML documents to be exchanged over the Web. Section 13.1 discusses the differ-
ence among structured, semistructured, and unstructured data. Section 13.2 pres-
ents the XML data model, which is based on tree (hierarchical) structures as
compared to the flat relational data model structures. In Section 13.3, we focus on
the structure of XML documents and the languages for specifying the structure of
these documents, such as DTD (Document Type Definition) and XML Schema.
Section 13.4 shows the relationship between XML and relational databases. Sec-
tion 13.5 describes some of the languages associated with XML, such as XPath and
XQuery. Section 13.6 discusses how data extracted from relational databases can be
formatted as XML documents. In Section 13.7, we discuss the new functions that
have been incorporated into XML for the purpose of generating XML documents
from relational databases. Finally, Section 13.8 is the chapter summary.

13.1 Structured, Semistructured,
and Unstructured Data

The information stored in relational databases is known as structured data because
it is represented in a strict format. For example, each record in a relational database
table—such as each of the tables in the COMPANY database in Figure 5.6—follows
the same format as the other records. For structured data, it is common to carefully
design the database schema using techniques such as those described in Chapters 3
and 4 in order to define the database structure. The DBMS then checks to ensure
that all data follows the structures and constraints specified in the schema.

However, not all data is collected and inserted into carefully designed structured
databases. In some applications, data is collected in an ad hoc manner before it is
known how it will be stored and managed. This data may have a certain structure,
but not all the information collected will have the identical structure. Some attri-
butes may be shared among the various entities, but other attributes may exist only
in a few entities. Moreover, additional attributes can be introduced in some of the
newer data items at any time, and there is no predefined schema. This type of data
is known as semistructured data. A number of data models have been introduced

 13.1 Structured, Semistructured, and Unstructured Data 427

for representing semistructured data, often based on using tree or graph data struc-
tures rather than the flat relational model structures.

A key difference between structured and semistructured data concerns how the
schema constructs (such as the names of attributes, relationships, and entity types)
are handled. In semistructured data, the schema information is mixed in with the
data values, since each data object can have different attributes that are not known
in advance. Hence, this type of data is sometimes referred to as self-describing
data. Many of the newer NOSQL systems adopt self-describing storage schemes
(see Chapter 24). Consider the following example. We want to collect a list of bib-
liographic references related to a certain research project. Some of these may be
books or technical reports, others may be research articles in journals or conference
proceedings, and still others may refer to complete journal issues or conference
proceedings. Clearly, each of these may have different attributes and different types
of information. Even for the same type of reference—say, conference articles—we
may have different information. For example, one article citation may be com-
plete, with full information about author names, title, proceedings, page numbers,
and so on, whereas another citation may not have all the information available.
New types of bibliographic sources may appear in the future—for instance, references
to Web pages or to conference tutorials—and these may have new attributes that
describe them.

One model for displaying semistructured data is a directed graph, as shown in
Figure 13.1. The information shown in Figure 13.1 corresponds to some of the
structured data shown in Figure 5.6. As we can see, this model somewhat resem-
bles the object model (see Section 12.1.3) in its ability to represent complex objects
and nested structures. In Figure 13.1, the labels or tags on the directed edges
represent the schema names: the names of attributes, object types (or entity types

LocationNumber

Project Project

Company projects

Name

‘Bellaire’1‘Product X’

Worker Worker

HoursLast_
name

Ssn HoursFirst_
name

Ssn

32.5‘Smith’‘123456789’ 20.0‘Joyce’‘435435435’

Figure 13.1
Representing
semistructured data
as a graph.

428 Chapter 13 XML: Extensible Markup Language

or classes), and relationships. The internal nodes represent individual objects or
composite attributes. The leaf nodes represent actual data values of simple
(atomic) attributes.

There are two main differences between the semistructured model and the object
model that we discussed in Chapter 12:

 1. The schema information—names of attributes, relationships, and classes
(object types) in the semistructured model—is intermixed with the objects
and their data values in the same data structure.

 2. In the semistructured model, there is no requirement for a predefined
schema to which the data objects must conform, although it is possible
to define a schema if necessary. The object model of Chapter 12 requires
a schema.

In addition to structured and semistructured data, a third category exists, known as
unstructured data because there is very limited indication of the type of data. A
typical example is a text document that contains information embedded within it.
Web pages in HTML that contain some data are considered to be unstructured
data. Consider part of an HTML file, shown in Figure 13.2. Text that appears
between angled brackets, <…>, is an HTML tag. A tag with a slash, </…>, indicates
an end tag, which represents the ending of the effect of a matching start tag. The
tags mark up the document1 in order to instruct an HTML processor how to dis-
play the text between a start tag and a matching end tag. Hence, the tags specify
document formatting rather than the meaning of the various data elements in the
document. HTML tags specify information, such as font size and style (boldface,
italics, and so on), color, heading levels in documents, and so on. Some tags provide
text structuring in documents, such as specifying a numbered or unnumbered list
or a table. Even these structuring tags specify that the embedded textual data is to be
displayed in a certain manner rather than indicating the type of data represented in
the table.

HTML uses a large number of predefined tags, which are used to specify a variety of
commands for formatting Web documents for display. The start and end tags spec-
ify the range of text to be formatted by each command. A few examples of the tags
shown in Figure 13.2 follow:

 ■ The <HTML> … </HTML> tags specify the boundaries of the document.

 ■ The document header information—within the <HEAD> … </HEAD>
tags—specifies various commands that will be used elsewhere in the docu-
ment. For example, it may specify various script functions in a language
such as JavaScript or PERL, or certain formatting styles (fonts, paragraph
styles, header styles, and so on) that can be used in the document. It can also
specify a title to indicate what the HTML file is for, and other similar infor-
mation that will not be displayed as part of the document.

1That is why it is known as HyperText Markup Language.

 13.1 Structured, Semistructured, and Unstructured Data 429

<HTML>
 <HEAD>
 …
 </HEAD>
 <BODY>
 <H1>List of company projects and the employees in each project</H1>
 <H2>The ProductX project:</H2>
 <TABLE width=“100%” border=0 cellpadding=0 cellspacing=0>
 <TR>
 <TD width=“50%”>John Smith:</TD>
 <TD>32.5 hours per week</TD>
 </TR>
 <TR>
 <TD width=“50%”>Joyce English:</TD>
 <TD>20.0 hours per week</TD>
 </TR>
 </TABLE>
 <H2>The ProductY project:</H2>
 <TABLE width=“100%” border=0 cellpadding=0 cellspacing=0>
 <TR>
 <TD width=“50%”>John Smith:</TD>
 <TD>7.5 hours per week</TD>
 </TR>
 <TR>
 <TD width=“50%”>Joyce English:</TD>
 <TD>20.0 hours per week</TD>
 </TR>
 <TR>
 <TD width=“50%”>Franklin Wong:</TD>
 <TD>10.0 hours per week</TD>
 </TR>
 </TABLE>
 …
 </BODY>
</HTML>

Figure 13.2
Part of an HTML document
representing unstructured data.

 ■ The body of the document—specified within the <BODY> … </BODY>
tags—includes the document text and the markup tags that specify how the
text is to be formatted and displayed. It can also include references to other
objects, such as images, videos, voice messages, and other documents.

 ■ The <H1> … </H1> tags specify that the text is to be displayed as a level 1
heading. There are many heading levels (<H2>, <H3>, and so on), each
displaying text in a less prominent heading format.

 ■ The <TABLE> … </TABLE> tags specify that the following text is to be dis-
played as a table. Each table row in the table is enclosed within <TR> … </TR>

430 Chapter 13 XML: Extensible Markup Language

tags, and the individual table data elements in a row are displayed within
<TD> … </TD> tags.2

 ■ Some tags may have attributes, which appear within the start tag and
describe additional properties of the tag.3

In Figure 13.2, the <TABLE> start tag has four attributes describing various charac-
teristics of the table. The following <TD> and start tags have one and two
attributes, respectively.

HTML has a very large number of predefined tags, and whole books are devoted to
describing how to use these tags. If designed properly, HTML documents can be
formatted so that humans are able to easily understand the document contents and
are able to navigate through the resulting Web documents. However, the source
HTML text documents are very difficult to interpret automatically by computer pro-
grams because they do not include schema information about the type of data in the
documents. As e-commerce and other Internet applications become increasingly
automated, it is becoming crucial to be able to exchange Web documents among
various computer sites and to interpret their contents automatically. This need was
one of the reasons that led to the development of XML. In addition, an extendible
version of HTML called XHTML was developed that allows users to extend the tags
of HTML for different applications and allows an XHTML file to be interpreted by
standard XML processing programs. Our discussion will focus on XML only.

The example in Figure 13.2 illustrates a static HTML page, since all the information
to be displayed is explicitly spelled out as fixed text in the HTML file. In many cases,
some of the information to be displayed may be extracted from a database. For
example, the project names and the employees working on each project may be
extracted from the database in Figure 5.6 through the appropriate SQL query. We
may want to use the same HTML formatting tags for displaying each project and the
employees who work on it, but we may want to change the particular projects (and
employees) being displayed. For example, we may want to see a Web page displaying
the information for ProjectX, and then later a page displaying the information for
ProjectY. Although both pages are displayed using the same HTML formatting tags,
the actual data items displayed will be different. Such Web pages are called dynamic,
since the data parts of the page may be different each time it is displayed, even though
the display appearance is the same. We discussed in Chapter 11 how scripting lan-
guages, such as PHP, can be used to generate dynamic Web pages.

13.2 XML Hierarchical (Tree) Data Model
We now introduce the data model used in XML. The basic object in XML is the XML
document. Two main structuring concepts are used to construct an XML document:
elements and attributes. It is important to note that the term attribute in XML is not

2<TR> stands for table row and <TD> stands for table data.
3This is how the term attribute is used in document markup languages, which differs from how it is used
in database models.

 13.2 XML Hierarchical (Tree) Data Model 431

used in the same manner as is customary in database terminology, but rather as it is used
in document description languages such as HTML and SGML.4 Attributes in XML
provide additional information that describes elements, as we will see. There are addi-
tional concepts in XML, such as entities, identifiers, and references, but first we concen-
trate on describing elements and attributes to show the essence of the XML model.

Figure 13.3 shows an example of an XML element called <Projects>. As in HTML,
elements are identified in a document by their start tag and end tag. The tag names
are enclosed between angled brackets < … >, and end tags are further identified by
a slash, </ … >.5

Complex elements are constructed from other elements hierarchically, whereas
simple elements contain data values. A major difference between XML and HTML
is that XML tag names are defined to describe the meaning of the data elements in
the document rather than to describe how the text is to be displayed. This makes it
possible to process the data elements in the XML document automatically by com-
puter programs. Also, the XML tag (element) names can be defined in another doc-
ument, known as the schema document, to give a semantic meaning to the tag
names that can be exchanged among multiple programs and users. In HTML, all
tag names are predefined and fixed; that is why they are not extendible.

It is straightforward to see the correspondence between the XML textual representa-
tion shown in Figure 13.3 and the tree structure shown in Figure 13.1. In the tree
representation, internal nodes represent complex elements, whereas leaf nodes rep-
resent simple elements. That is why the XML model is called a tree model or a
hierarchical model. In Figure 13.3, the simple elements are the ones with the tag
names <Name>, <Number>, <Location>, <Dept_no>, <Ssn>, <Last_name>, <First_name>,
and <Hours>. The complex elements are the ones with the tag names <Projects>,
<Project>, and <Worker>. In general, there is no limit on the levels of nesting of elements.

It is possible to characterize three main types of XML documents:

 ■ Data-centric XML documents. These documents have many small data
items that follow a specific structure and hence may be extracted from a
structured database. They are formatted as XML documents in order to
exchange them over the Web. These usually follow a predefined schema that
defines the tag names.

 ■ Document-centric XML documents. These are documents with large
amounts of text, such as news articles or books. There are few or no struc-
tured data elements in these documents.

 ■ Hybrid XML documents. These documents may have parts that contain
structured data and other parts that are predominantly textual or unstruc-
tured. They may or may not have a predefined schema.

4SGML (Standard Generalized Markup Language) is a more general language for describing documents
and provides capabilities for specifying new tags. However, it is more complex than HTML and XML.
5The left and right angled bracket characters (< and >) are reserved characters, as are the ampersand
(&), apostrophe (’), and single quotation mark (‘). To include them within the text of a document, they
must be encoded with escapes as <, >, &, ', and ", respectively.

432 Chapter 13 XML: Extensible Markup Language

<?xml version=“1.0” standalone=“yes”?>
 <Projects>
 <Project>
 <Name>ProductX</Name>
 <Number>1</Number>
 <Location>Bellaire</Location>
 <Dept_no>5</Dept_no>
 <Worker>
 <Ssn>123456789</Ssn>
 <Last_name>Smith</Last_name>
 <Hours>32.5</Hours>
 </Worker>
 <Worker>
 <Ssn>453453453</Ssn>
 <First_name>Joyce</First_name>
 <Hours>20.0</Hours>
 </Worker>
 </Project>
 <Project>
 <Name>ProductY</Name>
 <Number>2</Number>
 <Location>Sugarland</Location>
 <Dept_no>5</Dept_no>
 <Worker>
 <Ssn>123456789</Ssn>
 <Hours>7.5</Hours>
 </Worker>
 <Worker>
 <Ssn>453453453</Ssn>
 <Hours>20.0</Hours>
 </Worker>
 <Worker>
 <Ssn>333445555</Ssn>
 <Hours>10.0</Hours>
 </Worker>
 </Project>
 …
 </Projects>

Figure 13.3
A complex XML
element called
<Projects>.

XML documents that do not follow a predefined schema of element names and cor-
responding tree structure are known as schemaless XML documents. It is impor-
tant to note that data-centric XML documents can be considered either as
semistructured data or as structured data as defined in Section 13.1. If an XML
document conforms to a predefined XML schema or DTD (see Section 13.3), then
the document can be considered as structured data. On the other hand, XML allows

 13.3 XML Documents, DTD, and XML Schema 433

documents that do not conform to any schema; these would be considered as
semistructured data and are schemaless XML documents. When the value of the
standalone attribute in an XML document is yes, as in the first line in Figure 13.3,
the document is standalone and schemaless.

XML attributes are generally used in a manner similar to how they are used in
HTML (see Figure 13.2), namely, to describe properties and characteristics of the
elements (tags) within which they appear. It is also possible to use XML attributes
to hold the values of simple data elements; however, this is generally not recom-
mended. An exception to this rule is in cases that need to reference another ele-
ment in another part of the XML document. To do this, it is common to use
attribute values in one element as the references. This resembles the concept of for-
eign keys in relational databases, and it is a way to get around the strict hierarchical
model that the XML tree model implies. We discuss XML attributes further in Sec-
tion 13.3 when we discuss XML schema and DTD.

13.3 XML Documents, DTD, and XML Schema

13.3.1 Well-Formed and Valid XML Documents and XML DTD
In Figure 13.3, we saw what a simple XML document may look like. An XML docu-
ment is well formed if it follows a few conditions. In particular, it must start with an
XML declaration to indicate the version of XML being used as well as any other
relevant attributes, as shown in the first line in Figure 13.3. It must also follow the
syntactic guidelines of the tree data model. This means that there should be a single
root element, and every element must include a matching pair of start and end tags
within the start and end tags of the parent element. This ensures that the nested ele-
ments specify a well-formed tree structure.

A well-formed XML document is syntactically correct. This allows it to be pro-
cessed by generic processors that traverse the document and create an internal tree
representation. A standard model with an associated set of API (application pro-
gramming interface) functions called DOM (Document Object Model) allows pro-
grams to manipulate the resulting tree representation corresponding to a
well-formed XML document. However, the whole document must be parsed
beforehand when using DOM in order to convert the document to that standard
DOM internal data structure representation. Another API called SAX (Simple API
for XML) allows processing of XML documents on the fly by notifying the process-
ing program through callbacks whenever a start or end tag is encountered. This
makes it easier to process large documents and allows for processing of so-called
streaming XML documents, where the processing program can process the tags as
they are encountered. This is also known as event-based processing. There are also
other specialized processors that work with various programming and scripting
languages for parsing XML documents.

A well-formed XML document can be schemaless; that is, it can have any tag
names for the elements within the document. In this case, there is no predefined

434 Chapter 13 XML: Extensible Markup Language

set of elements (tag names) that a program processing the document knows to
expect. This gives the document creator the freedom to specify new elements but
limits the possibilities for automatically interpreting the meaning or semantics of
the elements within the document.

A stronger criterion is for an XML document to be valid. In this case, the document
must be well formed, and it must follow a particular schema. That is, the element
names used in the start and end tag pairs must follow the structure specified in a
separate XML DTD (Document Type Definition) file or XML schema file. We
first discuss XML DTD here, and then we give an overview of XML schema in Sec-
tion 13.3.2. Figure 13.4 shows a simple XML DTD file, which specifies the elements
(tag names) and their nested structures. Any valid documents conforming to this
DTD should follow the specified structure. A special syntax exists for specifying
DTD files, as illustrated in Figure 13.4(a). First, a name is given to the root tag of
the document, which is called Projects in the first line in Figure 13.4. Then the ele-
ments and their nested structure are specified.

When specifying elements, the following notation is used:

 ■ A * following the element name means that the element can be repeated zero
or more times in the document. This kind of element is known as an optional
multivalued (repeating) element.

 ■ A + following the element name means that the element can be repeated one
or more times in the document. This kind of element is a required multival-
ued (repeating) element.

 ■ A ? following the element name means that the element can be repeated zero
or one times. This kind is an optional single-valued (nonrepeating) element.

 ■ An element appearing without any of the preceding three symbols must
appear exactly once in the document. This kind is a required single-valued
(nonrepeating) element.

 ■ The type of the element is specified via parentheses following the element. If
the parentheses include names of other elements, these latter elements are
the children of the element in the tree structure. If the parentheses include
the keyword #PCDATA or one of the other data types available in XML DTD,
the element is a leaf node. PCDATA stands for parsed character data, which is
roughly similar to a string data type.

 ■ The list of attributes that can appear within an element can also be specified
via the keyword !ATTLIST. In Figure 13.3, the Project element has an attribute
ProjId. If the type of an attribute is ID, then it can be referenced from another
attribute whose type is IDREF within another element. Notice that attributes
can also be used to hold the values of simple data elements of type #PCDATA.

 ■ Parentheses can be nested when specifying elements.

 ■ A bar symbol (e1 | e2) specifies that either e1 or e2 can appear in the document.

We can see that the tree structure in Figure 13.1 and the XML document in Fig-
ure 13.3 conform to the XML DTD in Figure 13.4. To require that an XML
document be checked for conformance to a DTD, we must specify this in the

 13.3 XML Documents, DTD, and XML Schema 435

declaration of the document. For example, we could change the first line in Fig-
ure 13.3 to the following:

<?xml version = “1.0” standalone = “no”?>
<!DOCTYPE Projects SYSTEM “proj.dtd”>

When the value of the standalone attribute in an XML document is “no”, the docu-
ment needs to be checked against a separate DTD document or XML schema docu-
ment (see Section 13.2.2). The DTD file shown in Figure 13.4 should be stored in

Figure 13.4
(a) An XML DTD
file called Projects.
(b) An XML
DTD file called
Company.

(a) <!DOCTYPE Projects [
 <!ELEMENT Projects (Project+)>
 <!ELEMENT Project (Name, Number, Location, Dept_no?, Workers)>
 <!ATTLIST Project
 ProjId ID #REQUIRED>
 <!ELEMENT Name (#PCDATA)>
 <!ELEMENT Number (#PCDATA)
 <!ELEMENT Location (#PCDATA)>
 <!ELEMENT Dept_no (#PCDATA)>
 <!ELEMENT Workers (Worker*)>
 <!ELEMENT Worker (Ssn, Last_name?, First_name?, Hours)>
 <!ELEMENT Ssn (#PCDATA)>
 <!ELEMENT Last_name (#PCDATA)>
 <!ELEMENT First_name (#PCDATA)>
 <!ELEMENT Hours (#PCDATA)>
] >

(b) <!DOCTYPE Company [
 <!ELEMENT Company((Employee|Department|Project)*)>
 <!ELEMENT Department (DName, Location+)>
 <!ATTLIST Department
 DeptId ID #REQUIRED>

 <!ELEMENT Employee (EName, Job, Salary)>
 <!ATTLIST Project
 EmpId ID #REQUIRED
 DeptId IDREF #REQUIRED>
 <!ELEMENT Project (PName, Location)
 <!ATTLIST Project
 ProjId ID #REQUIRED
 Workers IDREFS #IMPLIED>
 <!ELEMENT DName (#PCDATA)>
 <!ELEMENT EName (#PCDATA)>
 <!ELEMENT PName (#PCDATA)>
 <!ELEMENT Job (#PCDATA)
 <!ELEMENT Location (#PCDATA)>
 <!ELEMENT Salary (#PCDATA)>
] >

436 Chapter 13 XML: Extensible Markup Language

the same file system as the XML document and should be given the file name
proj.dtd. Alternatively, we could include the DTD document text at the beginning of
the XML document itself to allow the checking.

Figure 13.4(b) shows another DTD document called Company to illustrate the use
of IDREF. A Company document can have any number of Department, Employee,
and Project elements, with IDs DeptID, EmpId, and ProjID, respectively. The
Employee element has an attribute DeptId of type IDREF, which is a reference to
the Department element where the employee works; this is similar to a foreign key.
The Project element has an attribute Workers of type IDREFS, which will hold a list
of Employee EmpIDs that work on that project; this is similar to a collection or list
of foreign keys. The #IMPLIED keyword means that this attribute is optional. It is
also possible to provide a default value for any attribute.

Although XML DTD is adequate for specifying tree structures with required,
optional, and repeating elements, and with various types of attributes, it has several
limitations. First, the data types in DTD are not very general. Second, DTD has its
own special syntax and thus requires specialized processors. It would be advanta-
geous to specify XML schema documents using the syntax rules of XML itself so
that the same processors used for XML documents could process XML schema
descriptions. Third, all DTD elements are always forced to follow the specified
ordering of the document, so unordered elements are not permitted. These draw-
backs led to the development of XML schema, a more general but also more com-
plex language for specifying the structure and elements of XML documents.

13.3.2 XML Schema
The XML schema language is a standard for specifying the structure of XML docu-
ments. It uses the same syntax rules as regular XML documents, so that the same pro-
cessors can be used on both. To distinguish the two types of documents, we will use the
term XML instance document or XML document for a regular XML document that con-
tains both tag names and data values, and XML schema document for a document that
specifies an XML schema. An XML schema document would contain only tag names,
tree structure information, constraints, and other descriptions but no data values. Fig-
ure 13.5 shows an XML schema document corresponding to the COMPANY database
shown in Figure 5.5. Although it is unlikely that we would want to display the whole
database as a single document, there have been proposals to store data in native XML
format as an alternative to storing the data in relational databases. The schema in Fig-
ure 13.5 would serve the purpose of specifying the structure of the COMPANY database
if it were stored in a native XML system. We discuss this topic further in Section 13.4.

As with XML DTD, XML schema is based on the tree data model, with elements and
attributes as the main structuring concepts. However, it borrows additional concepts
from database and object models, such as keys, references, and identifiers. Here we
describe the features of XML schema in a step-by-step manner, referring to the sam-
ple XML schema document in Figure 13.5 for illustration. We introduce and describe
some of the schema concepts in the order in which they are used in Figure 13.5.

 13.3 XML Documents, DTD, and XML Schema 437

Figure 13.5
An XML schema file called company.

<?xml version=“1.0” encoding=“UTF-8” ?>
<xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema”>
 <xsd:annotation>
 <xsd:documentation xml:lang=“en”>Company Schema (Element Approach) - Prepared by Babak
 Hojabri</xsd:documentation>
 </xsd:annotation>
<xsd:element name=“company”>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name=“department” type=“Department” minOccurs=“0” maxOccurs=“unbounded” />
 <xsd:element name=“employee” type=“Employee” minOccurs=“0” maxOccurs=“unbounded”>
 <xsd:unique name=“dependentNameUnique”>
 <xsd:selector xpath=“employeeDependent” />
 <xsd:field xpath=“dependentName” />
 </xsd:unique>
 </xsd:element>
 <xsd:element name=“project” type=“Project” minOccurs=“0” maxOccurs=“unbounded” />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:unique name=“departmentNameUnique”>
 <xsd:selector xpath=“department” />
 <xsd:field xpath=“departmentName” />
 </xsd:unique>
 <xsd:unique name=“projectNameUnique”>
 <xsd:selector xpath=“project” />
 <xsd:field xpath=“projectName” />
 </xsd:unique>
 <xsd:key name=“projectNumberKey”>
 <xsd:selector xpath=“project” />
 <xsd:field xpath=“projectNumber” />
 </xsd:key>
 <xsd:key name=“departmentNumberKey”>
 <xsd:selector xpath=“department” />
 <xsd:field xpath=“departmentNumber” />
 </xsd:key>
 <xsd:key name=“employeeSSNKey”>
 <xsd:selector xpath=“employee” />
 <xsd:field xpath=“employeeSSN” />
 </xsd:key>
 <xsd:keyref name=“departmentManagerSSNKeyRef” refer=“employeeSSNKey”>
 <xsd:selector xpath=“department” />
 <xsd:field xpath=“departmentManagerSSN” />
 </xsd:keyref>

(continues)

438 Chapter 13 XML: Extensible Markup Language

 <xsd:keyref name=“employeeDepartmentNumberKeyRef”
 refer=“departmentNumberKey”>
 <xsd:selector xpath=“employee” />
 <xsd:field xpath=“employeeDepartmentNumber” />
 </xsd:keyref>
 <xsd:keyref name=“employeeSupervisorSSNKeyRef” refer=“employeeSSNKey”>
 <xsd:selector xpath=“employee” />
 <xsd:field xpath=“employeeSupervisorSSN” />
 </xsd:keyref>
 <xsd:keyref name=“projectDepartmentNumberKeyRef” refer=“departmentNumberKey”>
 <xsd:selector xpath=“project” />
 <xsd:field xpath=“projectDepartmentNumber” />
 </xsd:keyref>
 <xsd:keyref name=“projectWorkerSSNKeyRef” refer=“employeeSSNKey”>
 <xsd:selector xpath=“project/projectWorker” />
 <xsd:field xpath=“SSN” />
 </xsd:keyref>
 <xsd:keyref name=“employeeWorksOnProjectNumberKeyRef”
 refer=“projectNumberKey”>
 <xsd:selector xpath=“employee/employeeWorksOn” />
 <xsd:field xpath=“projectNumber” />
 </xsd:keyref>
</xsd:element>
<xsd:complexType name=“Department”>
 <xsd:sequence>
 <xsd:element name=“departmentName” type=“xsd:string” />
 <xsd:element name=“departmentNumber” type=“xsd:string” />
 <xsd:element name=“departmentManagerSSN” type=“xsd:string” />
 <xsd:element name=“departmentManagerStartDate” type=“xsd:date” />
 <xsd:element name=“departmentLocation” type=“xsd:string” minOccurs=“0” maxOccurs=“unbounded” />
 </xsd:sequence>
</xsd:complexType>
<xsd:complexType name=“Employee”>
 <xsd:sequence>
 <xsd:element name=“employeeName” type=“Name” />
 <xsd:element name=“employeeSSN” type=“xsd:string” />
 <xsd:element name=“employeeSex” type=“xsd:string” />
 <xsd:element name=“employeeSalary” type=“xsd:unsignedInt” />
 <xsd:element name=“employeeBirthDate” type=“xsd:date” />
 <xsd:element name=“employeeDepartmentNumber” type=“xsd:string” />
 <xsd:element name=“employeeSupervisorSSN” type=“xsd:string” />
 <xsd:element name=“employeeAddress” type=“Address” />
 <xsd:element name=“employeeWorksOn” type=“WorksOn” minOccurs=“1” maxOccurs=“unbounded” />
 <xsd:element name=“employeeDependent” type=“Dependent” minOccurs=“0” maxOccurs=“unbounded” />
 </xsd:sequence>
</xsd:complexType>

Figure 13.5 (continued)
An XML schema file called company.

 13.3 XML Documents, DTD, and XML Schema 439

<xsd:complexType name=“Project”>
 <xsd:sequence>
 <xsd:element name=“projectName” type=“xsd:string” />
 <xsd:element name=“projectNumber” type=“xsd:string” />
 <xsd:element name=“projectLocation” type=“xsd:string” />
 <xsd:element name=“projectDepartmentNumber” type=“xsd:string” />
 <xsd:element name=“projectWorker” type=“Worker” minOccurs=“1” maxOccurs=“unbounded” />
 </xsd:sequence>
</xsd:complexType>
<xsd:complexType name=“Dependent”>
 <xsd:sequence>
 <xsd:element name=“dependentName” type=“xsd:string” />
 <xsd:element name=“dependentSex” type=“xsd:string” />
 <xsd:element name=“dependentBirthDate” type=“xsd:date” />
 <xsd:element name=“dependentRelationship” type=“xsd:string” />
 </xsd:sequence>
</xsd:complexType>
<xsd:complexType name=“Address”>
 <xsd:sequence>
 <xsd:element name=“number” type=“xsd:string” />
 <xsd:element name=“street” type=“xsd:string” />
 <xsd:element name=“city” type=“xsd:string” />
 <xsd:element name=“state” type=“xsd:string” />
 </xsd:sequence>
</xsd:complexType>
<xsd:complexType name=“Name”>
 <xsd:sequence>
 <xsd:element name=“firstName” type=“xsd:string” />
 <xsd:element name=“middleName” type=“xsd:string” />
 <xsd:element name=“lastName” type=“xsd:string” />
 </xsd:sequence>
</xsd:complexType>
<xsd:complexType name=“Worker”>
 <xsd:sequence>
 <xsd:element name=“SSN” type=“xsd:string” />
 <xsd:element name=“hours” type=“xsd:float” />
 </xsd:sequence>
</xsd:complexType>
<xsd:complexType name=“WorksOn”>
 <xsd:sequence>
 <xsd:element name=“projectNumber” type=“xsd:string” />
 <xsd:element name=“hours” type=“xsd:float” />
 </xsd:sequence>
</xsd:complexType>
</xsd:schema>

Figure 13.5 (continued)
An XML schema file called company.

440 Chapter 13 XML: Extensible Markup Language

 1. Schema descriptions and XML namespaces. It is necessary to identify the
specific set of XML schema language elements (tags) being used by specify-
ing a file stored at a Web site location. The second line in Figure 13.5 speci-
fies the file used in this example, which is http://www.w3.org/2001/XMLSchema.
This is a commonly used standard for XML schema commands. Each such
definition is called an XML namespace because it defines the set of com-
mands (names) that can be used. The file name is assigned to the variable xsd
(XML schema description) using the attribute xmlns (XML namespace), and
this variable is used as a prefix to all XML schema commands (tag names).
For example, in Figure 13.5, when we write xsd:element or xsd:sequence, we
are referring to the definitions of the element and sequence tags as defined in
the file http://www.w3.org/2001/XMLSchema.

 2. Annotations, documentation, and language used. The next couple of lines
in Figure 13.5 illustrate the XML schema elements (tags) xsd:annotation and
xsd:documentation, which are used for providing comments and other
descriptions in the XML document. The attribute xml:lang of the
xsd:documentation element specifies the language being used, where en stands
for the English language.

 3. Elements and types. Next, we specify the root element of our XML schema.
In XML schema, the name attribute of the xsd:element tag specifies the ele-
ment name, which is called company for the root element in our example (see
Figure 13.5). The structure of the company root element can then be speci-
fied, which in our example is xsd:complexType. This is further specified to be
a sequence of departments, employees, and projects using the xsd:sequence
structure of XML schema. It is important to note here that this is not the
only way to specify an XML schema for the COMPANY database. We will
discuss other options in Section 13.6.

 4. First-level elements in the COMPANY database. Next, we specify the three
first-level elements under the company root element in Figure 13.5. These
elements are named employee, department, and project, and each is specified
in an xsd:element tag. Notice that if a tag has only attributes and no further
subelements or data within it, it can be ended with the backslash symbol (/>)
directly instead of having a separate matching end tag. These are called
empty elements; examples are the xsd:element elements named department
and project in Figure 13.5.

 5. Specifying element type and minimum and maximum occurrences. In
XML schema, the attributes type, minOccurs, and maxOccurs in the xsd:element
tag specify the type and multiplicity of each element in any document that
conforms to the schema specifications. If we specify a type attribute in an
xsd:element, the structure of the element must be described separately, typi-
cally using the xsd:complexType element of XML schema. This is illustrated
by the employee, department, and project elements in Figure 13.5. On the other
hand, if no type attribute is specified, the element structure can be defined
directly following the tag, as illustrated by the company root element in Fig-
ure 13.5. The minOccurs and maxOccurs tags are used for specifying lower

 13.3 XML Documents, DTD, and XML Schema 441

and upper bounds on the number of occurrences of an element in any XML
document that conforms to the schema specifications. If they are not speci-
fied, the default is exactly one occurrence. These serve a similar role to the *,
+, and ? symbols of XML DTD.

 6. Specifying keys. In XML schema, it is possible to specify constraints that
correspond to unique and primary key constraints in a relational database
(see Section 5.2.2), as well as foreign keys (or referential integrity) con-
straints (see Section 5.2.4). The xsd:unique tag specifies elements that cor-
respond to unique attributes in a relational database. We can give each
such uniqueness constraint a name, and we must specify xsd:selector and
xsd:field tags for it to identify the element type that contains the unique ele-
ment and the element name within it that is unique via the xpath attribute.
This is illustrated by the departmentNameUnique and projectNameUnique ele-
ments in Figure 13.5. For specifying primary keys, the tag xsd:key is used
instead of xsd:unique, as illustrated by the projectNumberKey, department-
NumberKey, and employeeSSNKey elements in Figure 13.5. For specifying
foreign keys, the tag xsd:keyref is used, as illustrated by the six xsd:keyref
elements in Figure 13.5. When specifying a foreign key, the attribute refer
of the xsd:keyref tag specifies the referenced primary key, whereas the tags
xsd:selector and xsd:field specify the referencing element type and foreign
key (see Figure 13.5).

 7. Specifying the structures of complex elements via complex types. The
next part of our example specifies the structures of the complex elements
Department, Employee, Project, and Dependent, using the tag xsd:complexType
(see Figure 13.5). We specify each of these as a sequence of subelements cor-
responding to the database attributes of each entity type (see Figure 7.7)by
using the xsd:sequence and xsd:element tags of XML schema. Each element is
given a name and type via the attributes name and type of xsd:element. We can
also specify minOccurs and maxOccurs attributes if we need to change the
default of exactly one occurrence. For (optional) database attributes where
null is allowed, we need to specify minOccurs = 0, whereas for multivalued
database attributes we need to specify maxOccurs = “unbounded” on the cor-
responding element. Notice that if we were not going to specify any key con-
straints, we could have embedded the subelements within the parent element
definitions directly without having to specify complex types. However, when
unique, primary key and foreign key constraints need to be specified; we
must define complex types to specify the element structures.

 8. Composite (compound) attributes. Composite attributes from Figure 9.2
are also specified as complex types in Figure 13.7, as illustrated by the
Address, Name, Worker, and WorksOn complex types. These could have been
directly embedded within their parent elements.

This example illustrates some of the main features of XML schema. There are other
features, but they are beyond the scope of our presentation. In the next section, we
discuss the different approaches to creating XML documents from relational data-
bases and storing XML documents.

442 Chapter 13 XML: Extensible Markup Language

13.4 Storing and Extracting XML Documents
from Databases

Several approaches to organizing the contents of XML documents to facilitate their
subsequent querying and retrieval have been proposed. The following are the most
common approaches:

 1. Using a file system or a DBMS to store the documents as text. An XML
document can be stored as a text file within a traditional file system. Alter-
natively, a relational DBMS can be used to store whole XML documents as
text fields within the DBMS recordss. This approach can be used if the
DBMS has a special module for document processing, and it would work for
storing schemaless and document-centric XML documents.

 2. Using a DBMS to store the document contents as data elements. This
approach would work for storing a collection of documents that follow a
specific XML DTD or XML schema. Because all the documents have the
same structure, one can design a relational database to store the leaf-level
data elements within the XML documents. This approach would require
mapping algorithms to design a database schema that is compatible with the
XML document structure as specified in the XML schema or DTD and to
re-create the XML documents from the stored data. These algorithms can be
implemented either as an internal DBMS module or as separate middleware
that is not part of the DBMS. If all elements in an XML document have IDs,
a simple representation would be to have a table with attributes XDOC(CId,
PId, Etag, Val) where CID and PId are the parent and child element IDs,
Etag is the name of the element of the Cid, and Val is the value if it is a leaf
node, assuming all values are the same type.

 3. Designing a specialized system for storing native XML data. A new type
of database system based on the hierarchical (tree) model could be designed
and implemented. Such systems are referred to as native XML DBMSs. The
system would include specialized indexing and querying techniques and
would work for all types of XML documents. It could also include data com-
pression techniques to reduce the size of the documents for storage. Tamino
by Software AG and the Dynamic Application Platform of eXcelon are two
popular products that offer native XML DBMS capability. Oracle also offers
a native XML storage option.

 4. Creating or publishing customized XML documents from preexisting
relational databases. Because there are enormous amounts of data already
stored in relational databases, parts of this data may need to be formatted as
documents for exchanging or displaying over the Web. This approach would
use a separate middleware software layer to handle the conversions needed
between the relational data and the extracted XML documents. Section 13.6
discusses this approach, in which data-centric XML documents are extracted
from existing databases, in more detail. In particular, we show how tree
structured documents can be created from flat relational databases that have

 13.5 XML Languages 443

been designed using the ER graph-structured data model. Section 13.6.2
discusses the problem of cycles and how to deal with it.

All of these approaches have received considerable attention. We focus on the
fourth approach in Section 13.6, because it gives a good conceptual understanding
of the differences between the XML tree data model and the traditional database
models based on flat files (relational model) and graph representations (ER model).
But first we give an overview of XML query languages in Section 13.5.

13.5 XML Languages
There have been several proposals for XML query languages, and two query language
standards have emerged. The first is XPath, which provides language constructs for
specifying path expressions to identify certain nodes (elements) or attributes within
an XML document that match specific patterns. The second is XQuery, which is a
more general query language. XQuery uses XPath expressions but has additional con-
structs. We give an overview of each of these languages in this section. Then we dis-
cuss some additional languages related to HTML in Section 13.5.3.

13.5.1 XPath: Specifying Path Expressions in XML
An XPath expression generally returns a sequence of items that satisfy a certain pat-
tern as specified by the expression. These items are either values (from leaf nodes)
or elements or attributes. The most common type of XPath expression returns a col-
lection of element or attribute nodes that satisfy certain patterns specified in the
expression. The names in the XPath expression are node names in the XML docu-
ment tree that are either tag (element) names or attribute names, possibly with
additional qualifier conditions to further restrict the nodes that satisfy the pattern.
Two main separators are used when specifying a path: single slash (/) and double
slash (//). A single slash before a tag specifies that the tag must appear as a direct
child of the previous (parent) tag, whereas a double slash specifies that the tag can
appear as a descendant of the previous tag at any level. To refer to an attribute name
instead of an element (tag) name, the prefix @ is used before the attribute name. Let
us look at some examples of XPath as shown in Figure 13.6.

The first XPath expression in Figure 13.6 returns the company root node and all its
descendant nodes, which means that it returns the whole XML document. We
should note that it is customary to include the file name in the XPath query. This
allows us to specify any local file name or even any path name that specifies a file on
the Web. For example, if the COMPANY XML document is stored at the location

www.company.com/info.XML

then the first XPath expression in Figure 13.6 can be written as

doc(www.company.com/info.XML)/company

This prefix would also be included in the other examples of XPath expressions.

444 Chapter 13 XML: Extensible Markup Language

The second example in Figure 13.6 returns all department nodes (elements) and
their descendant subtrees. Note that the nodes (elements) in an XML document are
ordered, so the XPath result that returns multiple nodes will do so in the same order
in which the nodes are ordered in the document tree.

The third XPath expression in Figure 13.6 illustrates the use of //, which is conve-
nient to use if we do not know the full path name we are searching for, but we do
know the name of some tags of interest within the XML document. This is particu-
larly useful for schemaless XML documents or for documents with many nested
levels of nodes.6

The expression returns all employeeName nodes that are direct children of an
employee node, such that the employee node has another child element employeeSalary
whose value is greater than 70000. This illustrates the use of qualifier conditions,
which restrict the nodes selected by the XPath expression to those that satisfy the
condition. XPath has a number of comparison operations for use in qualifier condi-
tions, including standard arithmetic, string, and set comparison operations.

The fourth XPath expression in Figure 13.6 should return the same result as the pre-
vious one, except that we specified the full path name in this example. The fifth
expression in Figure 13.6 returns all projectWorker nodes and their descendant
nodes that are children under a path /company/project and have a child node, hours,
with a value greater than 20.0 hours.

When we need to include attributes in an XPath expression, the attribute name is
prefixed by the @ symbol to distinguish it from element (tag) names. It is also pos-
sible to use the wildcard symbol *, which stands for any element, as in the following
example, which retrieves all elements that are child elements of the root, regardless
of their element type. When wildcards are used, the result can be a sequence of dif-
ferent types of elements.

/company/*

The examples above illustrate simple XPath expressions, where we can only move
down in the tree structure from a given node. A more general model for path
expressions has been proposed. In this model, it is possible to move in multiple
directions from the current node in the path expression. These are known as the

1. /company

2. /company/department

3. //employee [employeeSalary gt 70000]/employeeName

4. /company/employee [employeeSalary gt 70000]/employeeName

5. /company/project/projectWorker [hours ge 20.0]

Figure 13.6
Some examples of
XPath expressions
on XML documents
that follow the XML
schema file company
in Figure 13.5.

6We use the terms node, tag, and element interchangeably here.

 13.5 XML Languages 445

axes of an XPath expression. Our examples above used only three of these axes: child
of the current node (/), descendent or self at any level of the current node (//), and
attribute of the current node (@). Other axes include parent, ancestor (at any level),
previous sibling (a node at same level to the left), and next sibling (a node at the
same level to the right). These axes allow for more complex path expressions.

The main restriction of XPath path expressions is that the path that specifies the pat-
tern also specifies the items to be retrieved. Hence, it is difficult to specify certain
conditions on the pattern while separately specifying which result items should be
retrieved. The XQuery language separates these two concerns and provides more
powerful constructs for specifying queries.

13.5.2 XQuery: Specifying Queries in XML
XPath allows us to write expressions that select items from a tree-structured XML
document. XQuery permits the specification of more general queries on one or
more XML documents. The typical form of a query in XQuery is known as a
FLWOR expression, which stands for the five main clauses of XQuery and has the
following form:

FOR <variable bindings to individual nodes (elements)>
LET <variable bindings to collections of nodes (elements)>
WHERE <qualifier conditions>
ORDER BY <ordering specifications>
RETURN <query result specification>

There can be zero or more instances of the FOR clause, as well as of the LET clause
in a single XQuery. The WHERE and ORDER BY clauses are optional but can appear
at most once, and the RETURN clause must appear exactly once. Let us illustrate
these clauses with the following simple example of an XQuery.

LET $d : = doc(www.company.com/info.xml)
FOR $x IN $d/company/project[projectNumber = 5]/projectWorker,

$y IN $d/company/employee
WHERE $x/hours gt 20.0 AND $y.ssn = $x.ssn
ORDER BY $x/hours
RETURN <res> $y/employeeName/firstName, $y/employeeName/lastName,

$x/hours </res>

 1. Variables are prefixed with the $ sign. In the above example, $d, $x, and $y
are variables. The LET clause assigns a variable to a particular expression for
the rest of the query. In this example, $d is assigned to the document file
name. It is possible to have a query that refers to multiple documents by
assigning multiple variables in this way.

 2. The FOR clause assigns a variable to range over each of the individual ele-
ments in a sequence. In our example, the sequences are specified by path
expressions. The $x variable ranges over elements that satisfy the path expres-
sion $d/company/project[projectNumber = 5]/projectWorker. The $y variable

	part 5 Object, Object-Relational, and XML: Concepts, Models, Languages, and Standards
	chapter 13 XML: Extensible Markup Language
	13.1 Structured, Semistructured, and Unstructured Data
	13.2 XML Hierarchical (Tree) Data Model
	13.3 XML Documents, DTD, and XML Schema
	13.4 Storing and Extracting XML Documents from Databases
	13.5 XML Languages

