
1
Mobile Database System

1.1 INTRODUCTION

The objective of this chapter is to highlight the current trends in information manage-
ment discipline. It begins with a brief history of mobile and wireless communication
technology and reviews a number of milestones.

Mobility -The Most Desirable Environment

Information retrieval by users with mobile devices such as cell phones, PDA (Personal
Digital Assistant), MP3 music players, etc., has become a common everyday activity.
Navigational systems in vehicles are now a standard accessary like music system.
These gadgets are quite useful and user-friendly because they can retrieve desired
information from databases from anywhere through wireless channels. However,
they have a serious limitation: The information flow in these systems is only from
the server to users. This limitation does not allow users to query or manipulate the
database which can be located anywhere in the world. Consequently, users just have
to contend with what the server sends them, which may not always be accurate or up to
date. In database terminology these system are not capable of managing transactional
activities.

Database researchers, practitioners, and commercial organizations have a common
vision of building an information management system on a mobile platform which
is capable of providing full transaction management and database functionality from

1

2 MOBILE DATABASE SYSTEM

anywhere and anytime. The recent advances in mobile discipline clearly indicate that
reaching this ambitious goal is around the corner.

Traditionally, database is processed by immobile processing units: servers or
clients. The spatial coordinates of these processing units are fixed, and users go
to them with their data processing requests. Under this information management
model, both the processing units and their users are immobile at the time of data
processing. This way of managing information has some inherent efficiency prob-
lems leading to unacceptably low productivity, and it is not scalable because it is
unable to grow with the present-day information processing needs. Recent changing
social structure, necessity to have stronger connectivity among national and interna-
tional communities, increasing spatial mobility, and fear of isolation have generated
a very different class of information processing needs and demands. One of the
important aspects of these demands is that a user must be free from temporal and
spatial constraints in processing the desired information which can only be achieved
by geographical mobility during data processing. The inherent immobility of pro-
cessing units of legacy systems was a serious impediment in achieving the desired
objective. A restricted type of mobility is possible to achieve in conventional sys-
tems (TV, music systems, etc). For example, a remote control unit can be connected
to the system with a longer cable to turn the system on and off from anywhere in
the room. Such arrangement did work and was used in many audio systems. How-
ever, such cable-assisted mobility was quite troublesome rather than a convenience
and the kind of mobility which is free from visible connecting cables was urgently
needed.

The introduction of mobility actually happened through remote control units. A
glance at the history of remote controllers reveals interesting facts [I , 21. The first
remote control unit to activate remote machines was used in Germany, where the
German navy used it to ram enemy ships in World War I. In World War I1 remote
control units were used to detonate bombs and and activate weapons. In the United
States, at the end of the wars, engineers experimented with household activities and
in the late 1940’s introduced automatic garage door openers, which actually marks
the beginning of wireless era in the United States.

In 1952 Zenith developed a remote control called Lazy Bones, but it was not a
mobile device. It was rather connected to the TV set with a long cable. In 1955 a
unit called Flash-o-Matic was introduced, which activated units by throwing light on
light-sensitive cells connected toTV sets. In 1957 Zenith introduced a wireless remote
controller called Space Command, which used ultrasonic as an activation medium.
The partial success achieved through ultrasonic motivated the use of infrared to ac-
tivate TV sets through remote control unit, which is now an integral part of a large
number of consumer electronics products such as VCRs, stereo systems, electronic
toys, and computer keyboards, to name a few.

On the communication arena, the history of mobility is equally interesting. The
first mobile radio, capable of one-way communication, was developed by Detroit
Police in 1928 [3]. Police passenger cars, referred to as cruisers, were equipped with
radio receivers, which were used to carry detectives and patrol officers. In 1933 two-

INTRODUCTION 3

way radio communications were introduced, which was first used by the Bayonne,
N.J. police department.

The use of mobile radio systems spread fast, and it became necessary to control
the use of radio frequencies. In 1934 the United States Congress created the Fed-
eral Communications Commissions (FCC), which, in addition to regulating land-line
telephone systems, also managed the use of these frequencies. In 1935 Frequency
modulation was invented and developed by a Columbia University professor Maj.
Edwin H. Armstrong, which was used to improve the mobile radio communication.
In 1940 new frequencies between 30 and 40 MHz were made available by the FCC,
which provided the necessary resources to companies and individuals to operate their
own mobile units. In the same year the Connecticut State Police at Hartford and the
majority of police systems around the country converted to FM technology. This
marked the birth of mobile telephony.

On June 17, 1946 in St. Louis, AT&T together with Southwestern Bell made
available the first commercial mobile radio-telephone service to private customers
where mobile users were connected to a public switched telephone network (PSTN).
Their system operated on six channels in the 150-MHz band with a 60-kHz channel
spacing, but undesirable channel interference (e.g., cross-talk in a land-line phone)
soon forced Bell to use only three channels.

Cellular concept originated at Bell Laboratories in 1947 and AT&T began operat-
ing a radio telephone that provided service referred to as Highway service between
New York and Boston. This service operated in the 35- to 44-MHz band. This was a
very basic mobile service where a subscriber was given one specific channel for com-
munication. In the same year, the Bell company requested FCC for more frequencies,
which was granted in 1949. However, the FCC distributed these frequencies among
a number of companies, thus creating a competition among them for improving the
quality of service. This helped to increase the number of mobile units significantly
and set the need for automatic dialing capability.

The first fully automatic radiotelephone service started in Richmond, Indiana, on
March 1 , 1948, which eliminated human operator intervention for placing calls. In the
same year (July 1, 1948) the Bell System introduced transistors (a joint invention of
Bell Laboratories scientists William Shockley, John Bardeen, and Walter Braqttain),
which revolutionized every aspect of telephone and communication industries.

By 1950s the Paging systems began to appear and the first phone-equipped car
glided on the road in Stockholm, Sweden - the home of Ericsson’s corporate head-
quarters. The first user of this system was a doctor-on-call and a bank-on-wheels.
Tom Farley [3] narrates “The apparatus consisted of receiver, transmitter and logic
unit mounted in the trunk of the car, with the dial and handset fixed to a board
hanging over the back of the front seat. It was like driving around with a com-
plete telephone station in the car. With all the functions of an ordinary telephone,
the telephone was powered by the car battery. Rumor has it that the equipment
devoured so much power that you were only able to make two calls - the second
one to ask the garage to send a breakdown truck to tow away you, your car, and
your flat battery. These first car phones were just too heavy and cumbersome -
and too expensive to use for more than a handful of subscribers. It was not until

4 MOBILE DATABASE SYSTEM

the mid-1 960’s that new equipment using transistors were brought into the mar-
ket. Weighing a lot less and drawing not so much power, mobile phones now left
plenty of room in the trunk-but you still needed a car to be able to move them
around.“

In 1956 the Bell System began offering manual radio-telephone service at 450
MHz, a new frequency band assigned to relieve overcrowding. In 1958 the Rich-
mond Radiotelephone Company improved their automatic dialing system by adding
new features to it, which included direct mobile to mobile communications. Other
independent telephone companies and the Radio Common Carriers made similar ad-
vances to mobile-telephony throughout the 1950s and 1960s.

In 1964 the Bell System introduced Improved Mobile Telephone Service (IMTS),
which consisted of a broadcast system equipped with a higher-power transmitter.
IMTS succeeded by the badly aging Mobile Telephone System. It worked in full
duplex so people didn’t have to press a button to talk. Talk went back and forth
just like a regular telephone. It finally permitted direct dialing, automatic channel
selection, and reduced bandwidth to 25-30 kHz.

In 1970 the Federal Communication Commission (FCC) allocated spectrum space
for cellular systems and by 1977 AT&T and Bell Laboratories together developed and
began testing of a prototype cellular system. In 1978 public trials of the new system
were started in Chicago with over 2000 trial customers, and in 1979 the first commer-
cial cellular telephone system became operational in Tokyo. In 1981, Motorola and
American Radio telephone started a second U.S. cellular radio-telephone system test
in the Washington/Baltimore area. By 1982, the slow-moving FCC finally authorized
commercial cellular service for the USA. A year later, the first American commer-
cial analog cellular service or AMPS (Advanced Mobile Phone Service) was made
available in Chicago for public use (41.

In 1985 Total Access Communication System (TACS) was introduced in the United
Kingdom. It is the European version of AMPS and occupies the 900-MHz frequency
band with an RF channel spacing of 25-kHz. ETACS was an extended version of
TACS with more channels. TACS and ETACS are now obsolete and are replaced by
the more scalable and all-digital Global System for Mobile communications (GSM).
TACS was the first real vehicle-mounted mobile communications system, but later
developed into mobile units. In the same year, CNETZ was introduced in Germany
and Radiocom 2000 was deployed in France.

Until now, all system were based on analog communication, which had a number of
limitations. To eliminate some of these limitations in 1987 to 1995, new air interface
protocols such as TDMA (Time-Division Multiple Access), CDMA (Code-Division
Multiple Access), etc., were introduced. Today’s mobile systems are mainly based
on digital technology, but analog systems are in use too. The Table 1.1 chronology
lists important events in mobile communication.

The mobile phones and communication managed to establish apartially connected
informution space, which was free from spatial and temporal constraints. Thus, the
“anytime and any place” connectivity paradigm for voice became very common.

INTRODUCTION 5

Table 7.1 Important events in mobile communication

__
late

I867

L 887

I890

I896

1897

1898

1898

1901

I909

I928

1930

1935

1940

1946

1949

1950

1960

1960

1976

1979

1983

1989

1991

1993

1994

1995

1997

2000

__ __
Event

Maxwell speculated the existence of electromagnetic waves.

Hertz showed the existence of electromagnetic waves.

Branly developed technique for detecting radio waves.

Marconi demonstrated wireless telegraph.

Marconi patented wireless telegraph.

Marconi awarded patent for tuned communication.

Wireless telegraphic connection between England and France estab-
lished.

Marconi successfully transmits radio signal from Cornwall to Newfound-
land.

Marconi received Nobel prize in physics for Voice over Radio system.

Detroit police installed mobile receivers police patrol cars.

Mobile transmitters were deployed in most cars.

Armstrong demonstrated Frequency modulation (FM) scheme.

Majority of police systems converted to FM.

Mobile systems were connected to Public Switched Telephone Network
(PSTN).

FCC recognizes mobile radio as new class of service.

Number of mobile users increased more than 500,000.

Number of mobile users grew more than 1.4 million.

Improved Mobile Telephone Service (IMTS) introduced.

Bell Mobile used 12 channels to support 543 customers in New York.

NTT/Japan deploys first cellular communication system.

Advanced Mobile Phone System (AMPS) deployed in the United States.

GSM appeared as European digital cellular standard.

US Digital Cellular phone system introduced.

IS-95 code-division multiple-access (CDMA) digital cellular system de-
ployed in the United States.

GSM Global System for Mobile Communications deployed in the United
States.

FCC auctioned band 1.8-GHz frequencies for Personal Communications
System (PCS).

Number of cellular telephone users in the United States increased to 50
million.

Third-generation cellular system standards'? Bluetooth standards?

6 MOBILE DATABASE SYSTEM

1.1.1 Fully Connected Information Space

Figure 1.1 introduces the concept of a fully connected information space that people
envision today. Each object of this real world with some functionality is connected
to other object through wireless link. For example, a bank or a person is connected to
conference, bus, submarine, shark, and so on, with bidirectional wireless link. Thus
at any moment a person or a bank or a scuba diver can have complete information
about all other objects. Such wireless link has become essential for this highly mo-
bile and dynamic society. Consider the case of a working parents. Their children
are in different schools, and each parent works at a different place. Each member
of the family would like to have instant access to the situation of their children to
reach them at the time of need. Similarly, the president of a company would like
to have complete information about all activities of his company to manage it effi-
ciently.

Fig, 7.7 A fully connected information space

TYPES OF MOBILITY 7

However, this paradigm could not allow “anytime and any place” data processing
capability, which is an outstanding demand from users and industries alike. Users
desire that a mobile unit (cell phone, PDA, etc.) should have transaction management
capability, which will allow a user to perform everyday activities such as fund transfer,
seat reservation, stock trading, etc., and in addition to this they should be able to access
any information form anywhere in any state: mobile or static. Thus, a user should be
able to access his or her account information, be able to pay bills, be able to buy and
sell shares, etc., and allow a CEO to access his company’s database and offer salary
raises to its employees while traveling on a car or on a plane.

These demands and creative thinking laid down the foundation of “Ubiquitous
Information Management System” or “Mobile Database System (MDS)” which in
essence is a distributed clientherver database system where the entire processing
environment is mobile. The actual database may be static and stored at multiple sites
but the data processing nodes, such as laptop, PDA, cell phones, etc., may be mobile
and can access desired data to process transactions from anywhere and at any time.

The fully connected information space, in addition to wireless communication,
needs transactional services. Today each individual likes to have facility to inanage
information related to him. For example, a user would like to change his personal
profile for adding new call option on his cell phone service. The user would prefer
to have editing capability to edit his profile to incorporate new option himself instead
of reaching to the service provider. A customer would prefer to have facility to ex-
ecute a fund transfer transaction himself from anywhere to pay for his purchases or
to transfer money among his multiple accounts instead of requesting his bank to do

The mobile discipline defines two types of mobility: (a) terminal mobility and (b)
personal mobility. Each mobility type addresses a different set of mobility problems.

so.

1.2 TYPES OF MOBILITY

A mobile framework is composed of wired and wireless components and human users.
Its wireless part implements terminal mobility and personal mobility to eliminate some
of the spatial and temporal constraints from data processing activities.

Terminal Mobility: It allows a mobile unit (laptop, cell phone, PDA, etc.) to access
desired services from any location while in motion or stationary, irrespective of who
is carrying the unit. For example a cell phone can be used by its owner and it can also
be borrowed by Tome one else for use. In terminal mobility, it is the responsibility of
the wireless network to identify the communication device. Figure 1.2 illustrates the
notion of terminal mobility. A person at location C (IongitudeAatitude = C) uses the
mobile unit to communicate with the car driver at location A. He can still establish
communication with the driver from a new location D irrespective of the movement
of the car from A to B. The use of a phone card works on this principle. It can be used
from different locations and from different machines such as pay phones, residential
phones, etc.

8 MOBILE DATABASE SYSTEM

Fig. 1.2 Terminal mobility

In terminal mobility, from a telecommunication viewpoint, the network connection
point (referred to as a network access/termination point) is identified as not the called
party. Thus, the connection is established between two points and not between the
two persons calling each other. This type of connection in a session allows the use of
communication devices to be shared among anybody.

fig, 1.3 Personal mobility.

Personal Mobility.' In terminal mobility the mobility of a terminal is supported;
that is, the same terminal can be used to connect to the other party from anywhere
by any user. In personal mobility this capability is provided to a human being.
Thus, a user does not have to carry any communication equipment with him; he

SUMMARY 9

can use any communication device for establishing communication with the other
party. This facility requires an identification scheme to verify the person wishing
to communicate. Figure 1.3 illustrates the notion of personal mobility. A person at
location C communicates with the car at location A using his PDA, and from location
D also he can communicate with the car at location A using his laptop. At present,
personal mobility is available through the web. A user can log on to the web from
different machines located at different places and access his e-mail. The mobile
system extends this facility so that the user can use any mobile device for reaching
the internet. In personal mobility each person has to be uniquely identified, and one
way to do this is via a unique identification number.

There is no dependency relationship between terminal and personal mobility; each
can exist without the other. In personal mobility the party is free to move, and in
terminal mobility the communication unit is free to move.

Voice or data communication can be supported by either types of mobility. How-
ever, to visualize a complete mobile database management system both types of
mobility are essential.

1.3 SUMMARY

This chapter covered historical facts and the emergence of mobile and wireless dis-
ciplines and wireless gadgets starting from remote control units. It discussed the
types of mobility necessary to visualize mobile infrastructure and envisioned the
development of a fully connected information space where all functional units are
fully connected with each other through wireless links. It presented the rationale for
the development of a mobile database system necessary to manage all information
management tasks in the information space.

The entire development can be looked at in terms of analog and digital transmission
and data transmission aspects also. The first-generation wireless technology which
was basically analog is usually referred to as First Generation (1 G). 1G systems were
deployed only in the business world in the 1980’s. Mobile and cordless phones were
introduced and analog standards were defined. A number of wireless communication
companies such as Nokia (Finland), Motorola (USA), and Ericsson (Sweden), to
name a few, established their firm hold in the communication market.

The popularity of analog wireless technology motivated users to present new de-
mands on the system and soon the limitations of 1G infrastructure became known.
In early 1990’s, therefore, the second generation (2G) wireless technology was intro-
duced which was based on digital transmission. Digital technology provided higher
communication capacity and better accessibility. This marked the introduction of
Global System for Mobile Communication - Groupe SpecialMobile (GSM). Initially
GSM was confined to Europe gradually its standard spread to most other countries
of the world. The 2G mobile units could send not only voice but limited amount of
data as well.

The limited amount of data comniunication capability became one of its serious
limitations of2G system. A number of more powerful mobile phones were introduced

10 MOBILE DATABASE SYSTEM

in early 2000’s, which allowed higher voice and data transmission rates and improved
connectivity. This was only a partial enhancement to 2G systems, so it was referred
to as “2.SG” technologies. This allowed e-mails to be received and sent through
2.SG mobile phones which could be connected to laptop or PDA (Personal Digital
Assistant).

2 3 3 technology and system was not quite capable of handling multimedia data
transfer, unrestricted internet access, video streaming, etc. These kind of transfers
became very important for M-commerce community. The Third-Generation (3G)
technology made it possible to achieve these capabilities. 3G made it possible to
provide variety of services through internet and the emphasis moved from voice-
centric to data-centric environment. It also helped to establish a seamless integration
of business and user domains for the benefit of the entire society. Thus, 3G technology
made it possible to visualize f u l l y connected injormation space.

The next chapter further discuses mobility and wireless communication technology
necessary to build the desired mobile database system.

Exercises

1. What is the difference between wireless communication and mobile communi-
cation? Explain your answer and give some real-life example to illustrate the
differences.

2. Explain the differences between personal mobility and terminal mobility. How
do they affect the scope of wireless communication?

REFERENCES

1. R. C. Goertz, “Fundamentals of General-Purpose Remote Manipulators,” Nucle-
onics, Vol. 10, No. 1 I , Nov. 1952, pp. 36-45.

2. R. C. Coertz, “Electronically Controlled Manipulator,” Nucleonics, Vol. 12, No.
1 1, Nov. 1954, pp. 46-47.

3. http://www.privateline.com/PCS/hisoryS. htm.

4. http://inventors.about.com/library/weekly/aa070899.htm.

3
Location and Handof

Management

3.1 INTRODUCTION

The handoff process in mobile communication system was briefly introduced in Chap-
ter 2. In this chapter, further details of the handoff process is provided and the topic
of location management is introduced. It first explains how these processes work
and then discusses their relevance to transaction management in mobile database
systems. Quite a few location management schemes have been proposed recently,
but none of them have been implemented in any commercial system, so they are not
discussed. The working of existing handoff and location mechanisms given in IS-41
is explained 171.

3.1.1 Location Management

In cellular systems a mobile unit is free to move around within the entire area of cover-
age. Its movement is random and therefore its geographical location is unpredictable.
This situation makes it necessary to locate the mobile unit and record its location to
HLR and VLR when a call has to be delivered to it. Thus, the entire process of the
mobility management component of the cellular system is responsible for two tasks:
(a) location management- that is, identification of the current geographical location
or current point of attachment of a mobile unit which is required by the MSC (Mobile
Switching Center) to route the call- and (b) handoff- that is, transferring (handing off)
the current (active) communication session to the next base station, which seamlessly
resumes the session using its own set of channels. The entire process of location

45

46 LOCATION AND HANDOFF MANAGEMENT

management is a kind of directory management problem where locations are current
locations are maintained continuously.

One of the main objectives of efficient location management schemes is to mini-
mize the communication overhead due to database updates (mainly HLR) [6,9, 151.
The other related issue is the distribution of HLR to shorten the access path, which
is similar to data distribution problem in distributed database systems. Motivated
by these issues, recently a number of innovative location management schemes have
appeared in the research world [141.

The current point of attachment or location of a subscriber (mobile unit) is ex-
pressed in terms of the cell or the base station to which it is presently connected. The
mobile units (called and calling subscribers) can continue to talk and move around in
their respective cells; but as soon as both or any one of the units moves to a different
cell, the location management procedure is invoked to identify the new location.

The unrestricted mobility of mobile units presents a complex dynamic environ-
ment, and the location management component must be able to identify the correct
location of a unit without any noticeable delay. The location management performs
three fundamental tasks: (a) location update, (b) location lookup, and (c) paging.
In location update, which is initiated by the mobile unit, the current location of the
unit is recorded in HLR and VLR databases. Location lookup is basically a database
search to obtain the current location of the mobile unit and through paging the system
informs the caller the location of the called unit in terms of its current base station.
These two tasks are initiated by the MSC.

The cost of update and paging increases as cell size decreases, which becomes
quite significant for finer granularity cells such as micro- or picocell clusters. The
presence of frequent cell crossing, which is a common scenario in highly commuting
zones, further adds to the cost. The system creates location areas and paging areas
to minimize the cost. A number of neighboring cells are grouped together to form a
location area, and the paging area is constructed in a similar way. In some situations,
remote cells may be included in these areas. It is useful to keep the same set of
cells for creating location and paging areas, and in most commercial systems they
are usually identical. This arrangement reduces location update frequency because
location updates are not necessary when a mobile unit moves in the cells of a location
area. A large number of schemes to achieve low cost and infrequent update have been
proposed, and new schemes continue to emerge as cellular technology advances.

A mobile unit can freely move around in (a) active mode, (b) doze mode, or (c)
power down mode. In active mode the mobile actively communicates with other
subscriber, and it may continue to move within the cell or may encounter a handoff
which may interrupt the communication. It is the task of the location manager to
find the new location and resume the communication. In doze mode a mobile unit
does not actively communicate with other subscribers but continues to listen to the
base station and monitors the signal levels around it, and in power down mode the
unit is not functional at all. When it moves to a different cell in doze or power down
modes, then it is neither possible nor necessary for the location manager to find the
location.

INTRODUCTION 47

The location management module uses a two-tier scheme for location-related tasks.
The first tier provides a quick location lookup, and the second tier 4earch is initiated
only when the first tier search fails.

Location Lookup

A location lookup finds the location of the called party to establish the communication
session. It involves searching VLR and possibly HLR. Figure 3.1 illustrates the entire
lookup process IS], which is described in the following steps.

Fig. 3.1 Location search steps.

Step 1: The caller dials a number. To find the location of the called number (desti-
nation), the caller unit sends a location query to its base station source base
station.

Step 2: The source base station sends the query to the S-LS (source location server)
for location discovery.

Step 3: S-LS first looks up the VLR to find the location. If the called number is a visitor
to the source base station, then the location is known and the connection is set
U P .

Step 4: If VLK search fails, then the location query is sent to the HLR.

Step 5 : HLR finds the location of D-LS (destination location server).

Step 6: The search goes to D-LS.

48 LOCATION AND HANDOFF MANAGEMENT

Step 7: D-LS finds the address of D-BS (destination base station).

Step 8: Address of D-BS is sent to he HLR.

Step 9: HLR sends the address of D-BS to S-LS (source location server).

Step 10: The address of D-BS is sent to the source base station, which sets up the
communication session.

Location Update

The location update is performed when a mobile unit enters a new registration area. A
location update is relatively expensive, especially if the HLR is distributed. The fre-
quency of updates depends on the intercell movement pattern of the mobile unit such
as highly commuting subscribers. One of the tasks of a good location management
scheme is to keep such updates to a minimum.

In the new registration area the mobile unit first registers with the base station, and
the process of location update begins. Figure 3.2 illustrates the basic steps of location
update.

Fig. 3.2 Location update steps.

INTRODUCTION 49

Step 1: The mobile unit moves to a new registration area which is serviced by a new
location server (New LS). The mobile unit informs the new base station about
its arrival. '

Step 2: The new base station sends the update query to New LS.

Step 3: The New LS searches the address of the HLR in its local database.

Step 4: The new location of the mobile unit is sent to HLR.

Step 5: The old location of the mobile unit is replaced by the new location.

Step 6: The HLR sends user profile and other information to New LS

Step 7: The New LS stores the information it received from HLR.

Step 8: The New LS informs the new base station that location update has been com-
pleted.

Step 9: The HLR also sends a message about this location update to the Old LS. The
Old LS deletes the old location information of the mobile unit stored in its
database.

Step 10: The Old LS sends a confirmation message to the HLR.

Fig. 3.3 Transient loop in forward pointer scheme.

The current location management scheme has very high search and update costs,
which increase significantly in the presence of frequent cell crossing because every

'This is a part of registration process.

50 LOCATION AND HANDOFF MANAGEMENT

registration area crossing updates HLR. These issues motivated researchers to find
efficient and cost effective schemes. A number of new location management schemes
have been proposed recently, and a partial list is given here [1,2,3,4,5,10, 1 1, 131. A
good survey of some these schemes can also be found in [8,12]. Instead of presenting
a particular scheme a general description of forwarding pointer approach is discussed
here to present the main idea [5 , 81.

Forwarding Pointer Location Management Scheme

The objective of the forwarding pointer scheme is to minimize network overhead due
to HLR updates. Unlike conventional scheme, this scheme uses a pointer to the next
location of the mobile user. Thus instead of updating HLR, the scheme just sets a
pointer at the previous location of the mobile unit which points to its current location.
The pointer is a descriptor which stores mobile unit identity and its current location.
A mobile unit movement is unpredictable, and it is possible that the unit may visit
a registration area multiple times during a live communication session. If forward
pointers are continuously created and maintained, then a revisit to a registration area
creates a transient loop. Figure 3.3 illustrates the formation of transient loop in
forward pointer strategy. Initially, mobile units MU 1 and MU2 were communicating
in registration area R1. Unit MU2 makes its first move to R2, and then it moves back
to RI through R3 and R4. This type of movement creates a transient loop where the
communication path is R1 --+ R2 ---f R3 4 R4 + R 1 . However, even in the worst-case
scenario the transient loop does last for long.

Updates Using Forward Pointers: When MU2 leaves registration area R1 and
moves to R2 then (a) the user profile (MU2 profile) and the number of forward
pointers created so far by MU2 is transferred from R1 to R2 and (b) a forward pointer
is created at R1 which points to R2. This forward pointer can be stored in any BS
data structure.

At some point the current location of the MU needs to be updated in HLR. Usually,
heuristic based update approach is used. One scheme could be based on the number
of pointers created [S]. In this scheme an upper limit of pointers can be predefined;
and once this threshold is reached HLK is updated. Another scheme can be based
on the number of search requests, yet another can be based on constant update time.
Thus the HLR is updated after so many hours or minutes have elapsed since the last
update. The performance of these update schemes will very much depend on the user
mobility.

Location Search Using Forward Pointers: The search scheme is illustrated in
Figure 3.4. A user in "Source" registration area wants to communicate with a user in
"Destination" area. The following steps describes the location discovery.

Step I : The caller dials the number of destination user. To find the location of the called
number (destination), the caller unit sends a location query to its base station
source base station.

INTRODUCTION 51

Fig. 3.4 Location search using forward pointer.

Step 2: The source base station sends the query to the Source LS (source location
server) for location discovery.

Step 3: Source LS first looks up the VLR to find the location. If the called number is a
visitor to the source base station, then the location is known and the connection
is set up.

Step 4: If VLR search fails, then the location query is sent to the HLR.

Step 5: The Destination HLR finds the location of destination location server (Dest-
LS).

Step 6: The Destination HLR sends the location of destination location server (Dest-
LS) to the Source LS.

Step 7: The Source LS finds the first forward pointer (8) and traverses the chain of
forward pointers (9, 10, 11, . . .) and reaches the Destination location server
(Current LS).

Step i: The location of current base station is forward to the Source LS.

e p i + 1: Source LS transfers the address of current base station to the source base station
and the call is set up.

Forward Pointer Maintenance: Pointer maintenance is necessary to (a) remove
pointers which have not been used for some time and (b) delete dangling pointers.
During movement a mobile unit may create a number of pointers including transient
loops. In Figure 3.3 when the MU2 returns to R1, the forward pointers R2 + R3,
R3 --+ R4, and R4 i R2 will not be referenced to locate MU2, so they can be
safely removed from the search path. The identification of candidates for removal
can be achieved in a number of ways. One way is to associate a timestamp with each

52 LOCATION AND HANDOFF MANAGEMENT

forward pointer and define a purge time slots. At a purge slot ifpurge slot > apointer
timestamp then this pointer can be a candidate for removal. The another way is to
keep a directed graph of pointers. If a loop is found in the graph, then all edges except
the last one can be removed. It is possible that in a long path there may be a small
loop. For example, in path R2 -t R3, R3 + R4, R4 --f R3, and R3 + R5, the small
loop R3 + R4 and R4 -+ R3 can be replaced by R3 --f R5. In further refinement,
path R3 --j R5, with R5 being the current location, can be replaced by R2 --f R5.

Dangling pointers occur if redundant pointers are not removed in a correct order.
In the above removal process, if the path R2 + R3 is removed first, then the path
R2 + R5 cannot be set and paths R3 --f R4, R4 + R3, and R3 + R5 will create
dangling pointers. This is classical pointer management problem with a different
effect in mobile scenario.

The entire pointer management process must be synchronized with HLR update.
Note that HLR may have been updated many times during the creation of forward
pointers. Any reorganization must maintain the location consistency in HLR. Further
information about the performance of pointer maintenance schemes can be found in
Ref. [S].

3.1.2 Handoff Management

The process of handoff was briefly discussed in Chapter 2. This section discuses
how a handoff is managed to provide continuous connectivity. Figure 3.5 illustrates
the presence of an overlap region between Cell 1 and Cell 2. A mobile unit may
spends some time in this overlap area and the value of this duration depends upon the
movement speed of the mobile unit. The duration a mobile unit stays in this area is
called the degradation interval [101. The objective is to complete a handoff process
while the mobile unit is still in the overlap area. This implies that the handoff must not
take more than the degradation interval to complete he process. If for some reason
the process fails to complete in this area or within degradation interval, then the call
is dropped.

Fig. 3.5 Cell overlap region.

INTRODUCTION 53

A handoff may happen within or outside a registration area. If it happens within a
registration area, then it is referred to as intra-system handoff where the same MSC
manages the entire process. An intersystem handoff occurs between two separate
registration areas where two MSCs are involved in handoff processing. In each of
these cases the handoff processing is completed in three steps:

0 Handoff detection: The system detects when a handoff process needs to be
initiated.

0 Assignment of channels: During handoff processing the system identifies new
channels to be assigned for continuous connectivity.

0 Transfer of radio link: The identified channels are allocated to the mobile
unit.

Handoff Detection

Handoff processing is expensive, so the detection process must correctly detect a
genuine and False Handoff (see Chapter 2) which also occurs because of signal
fading. There are three approaches for detecting handoff effectively and accurately.
A brief description of these approaches, which are applied on GSM system but also
used in PCS, is presented here and further details can be found in Ref. [lo]. They
are called:

0 Mobile-Assisted Handoff (MAHO)

0 Mobile-Controlled Handoff (MCHO)

0 Network-Controlled Handoff (NCHO)

Mobile-Assisted Handoff (MAHO): This scheme is implemented in second-generation
systems where TDMA technology is used. In this approach, every mobile unit con-
tinuously measures the signal strength from surrounding base stations and notifies the
strength data to the serving base station. The strength of these signals are analyzed,
and a handoff is initiated when the strength of a neighboring base station exceeds the
strength of the serving base station. The handoff decision is made jointly by base
station and Mobile Switching Center (MSC) or base station controller (BSC). In case
the Mobile Unit (MU) moves to a different registration area, an intersystem handoff
is initiated.

Mobile-Controlled Handoff (MCHO): In this scheme the Mobile Unit (MU) is
responsible for detecting a handoff. The MU continuously monitors the signal strength
from neighboring base stations and identifies if a handoff is necessary. If it finds the
situation for more than one handoff, then it selects the base station with strongest
signal for initiating a handoff.

54 LOCATION AND HANDOFF MANAGEMENT

Network-Controlled Handoff (NCHO): In this scheme, Mobile Unit (MU) does
not play any role in handoff detection. The BS monitors the signal strength used by
MUs and if it falls below a threshold value, the BS initiates a handoff. In this scheme
also BS and MSC are involved in handoff detection. In fact the MSC instructs BSs to
monitor the signal strength occasionally, and in collaboration with BSs the handoff
situation is detected. The MAHO scheme shares some detection steps of NCHO.

Necessary resources for setting up a call or to process a handoff request may not
always be available. For example, during a handoff the destination BS may not have
any free channel, the MU is highly mobile and has requested too many handoffs,
the system is taking too long to process a handoff, the link transfer suffered some
problem, and so on. In any of these cases the handoff is terminated and the mobile
unit loses the connection.

Assignment of Channels

One of the objectives of this task is to achieve a high degree of channel utilization
and minimize chances of dropping connection due to unavailability of channel. Such
failure is always possible in a high traffic area. If a channel is not available, then the
call may be blocked (blocked calls); and if a channel could not be assigned, then call
is terminated (forced termination). The objective of a channel allocation scheme is
to minimize forced termination. A few schemes are presented here [101.

Channel assigned Ongoing call + [C c a r d __.

Fig. 3.6 Nonprioritized scheme steps. (Reproduced from Wireless and Mobile Network
Architectures under written permission of John Wiley & Sons.)

Nonprioritized Scheme: In this scheme the base station does not make any distinc-
tion between the channel request from a new call or from a handoff process. If a free
channel is not available then the call is blocked and may subsequently be terminated.
Figure 3.6 shows the entire channel assignment process.

Reserved Channel Scheme: In this scheme a set of channels are reserved for
allocating to handoff request. If a normal channel is available, then the system assigns
it to a handoff request; otherwise the reserved channel is looked for. If no channels
are available in either set, the call is blocked and could be dropped. Figure 3.7shows
the entire channel assignment process.

, ’ \\
Normal \

[Ne- ~ “channel
\

\

INTRODUCTION 55

~-

4 Call blocked 1 No

YesL -- -~~~
1 Channel assigned 1
I - il O n g o i n g ~ ~ - - ~ I C h a n n e l released 1

,
,/Normal , ’ Reserved ,

(Channel available;d!%,_Channel , available?) No

\ ,
v’ ‘-4 ’

Fig. 3.7 Reserved channel scheme steps. (Reproduced from Wireless and Mobile Network
Architectures under written permission of John Wiley & Sons.)

Queuing Priority Scheme: In this scheme a channel is assigned based on some
priority. If a channel is available, then the handoff request is process immediately;
otherwise the request is rejected and the call is dropped. There is a waiting queue
where requests are queued. When a channel becomes available, then one of the
requests from the waiting queue is selected for proccssing. The queuing policy may
be First in First Out (FIFO) or it may be rneasured-based or some other scheme. In
the measured-based approach the request which is close to the end of its degradation
interval is asGgned a channel first. In the absence of any free channel the call is
terminated. Figure 3.8 shows the entire channel assignment process.

, \

‘,

Insert call into the waiting queue

~

New call channel released I -~

Is a
<&annel availab?e\

\ ,expires?,/ ’
before the call , ,,-

, ‘,
NO(Is the waiting ,

The charm+

Fig. 3.8 Queuing priority scheme steps. (Reproduced from Wireless and Mobile Network
Architectures under written permission of John Wiley & Sons.)

56 LOCATION AND HANDOFF MANAGEMENT

-~
New call
channel
released

Subrating Scheme: In this scheme a channel in use by another call is subrated,
that is, the channel is temporarily divided into two channels with a reduced rate. One
channel is used to serve the existing call and the other channel is allocated to a handoff
request. Figure 3.9 shows the channel assignment process.

"
Each channel of

upgraded to full- " " of the subrated pair
the subrated pair is No

Handoff call Channel assigned Yes 4

Call blocked The channel is idle
~~

rate channel

Fig. 3.9 Subrating scheme steps. (Reproduced from Wireless and Mobile Network Archi-
tectures under written permission of John Wiley & Sons.)

Radio LinkTransfer

The last phase of handoff is the transfer of the radio link. The hierarchical structure
of cellular system (PCS and GSM) presents the following five-link transfer cases for
which handoff has to be processed.

0 Intracell handoff Link or channel transfer occurs for only one BS. In this
handoff a MU only switches channel. Figure 3.10 illustrates the scenario.

0 Intercell or Inter-BS handoff The link transfer takes place between two BSs
which are connected to the same BSC. Figure 3.1 1 illustrates the scenario.

0 Inter-BSC handoff: The link transfer takes place between two BSs which are
connected to two different BSCs and the BSC is connected to one MSC. Figure
3.12 illustrates the scenario.

0 Intersystem or Inter-MSC handoff The link transfer takes place between
two BSs which are connected to two different BSCs. These two BSCs are
connected to two different MSCs. Figure 3.13 illustrates the situation.

As discussed in Ref. [101, typical call holding time is around 60 seconds. Some
real-life data indicates that there could be around 0.5 inter-BS handoff, 0.1 inter-BSC

INTRODUCTION 57

Fig. 3.10 Channel transfer in intracell handoff.

Fig. 3.11 Channel transfer between two BSs with one BSC.

handoff, and 0.05 inter-MSC handoff. The data also indicate that the failure rate of
inter-MSC handoff is about five times more than inter-BS handoff. It is quite obvious
that efficient processing of handoff is quite important for minimizing the call waiting
time.

There are two ways to achieve link transfer. One way is referred to as Hard
Handofland the other as Soft Handoff.

58 LOCATION AND HANDOFF MANAGEMENT

Fig. 3.72 Channel transfer between two BSs connected to two BSCs.

/-/ad Handoff: In this handoff process the user experiences a brief silence or dis-
continuity in communication which occurs because at any time the MU is attached
to only one BS and when the link is transfer the connection is broken temporarily
resulting in a silence. The steps of the handoff for MCHO link transfer is described
below. Further detail is given in Ref. [lo].

1. MS sends a “link suspend” message to the old BS which temporarily suspends
the conversation (occurrence of silence).

2. The MS sends a “handoff request message“ to the network through the new BS.
The new BS then sends a “handoff acknowledgement“ message and marks the
slot busy. This message indicates the initiation of the handoff process.

3 . This acknowledgment message indicates to MU that the handoff process has
started, and so MU returns to the old channel it was using and resumes voice
communication while network process the handoff.

4. When the new BS receives the handoff request message, then two cases arise:
(a) It is an intra-BS handoff or (b) it is an inter-BS handoff. In the former case
the BS sends a handoff acknowledgment message and proceeds with handoff.
In the later case, since it is between two different BSCs, the BS must complete
some security check. It gets the cypher key from the old BS and associates it
with the new channel.

5. The MSC bridges the conversation path and the new BS.

INTRODUCTION 59

Fig. 3.13 Channel transfer between two BSs with two BSCs connected to two MSCs.

6. On the command of the network, the MS processes the handoff where it releases
the old channel by sending an “access release” message to the old BS. In this
process the voice communication is briefly interrupted again.

7. The MU sends a “handoff complete” message through the new channel and
resumes the voice communication.

A detailed discussion on hard handoff for other kinds of link transfer and soft
handoff can be found in Ref. [lo].

3.1.3 Roaming

In the presence of multiple wireless service providers the continuous connectivity is
provided through Roaming. Thus when a mobile moves from one GSM to another
system PCS or GSP or some other, the location of MU must be informed by the new
service provider to the old service provider. This facility is called roaming facility.
These two service providers communicates with each other to complete the location
management and the registration process as described earlier.

The other important aspect of roaming is the administrative issues related to billing.
Multiple service providers have to come to some agreement about the charges and
pri vi I eges.

EFFECT OF MOBILITY ON THE MANAGEMENT OF DATA 115

EXAMPLE6.4

In electronic commerce applications, such as auctions, it is expected that a
typical auction might bring together millions of interested parties. Updates
based on bids made must be disseminated promptly and consistently. A mobile
system may use broadcast facility to transmit the current state of the auction
while allowing the client to communicate their updates using low bandwidth
uplink channels. Broadcast based data dissemination is likely to be a major
mode of information transfer in mobile computing and wireless environments.

6.2 EFFECT OF MOBILITY ON THE MANAGEMENT OF DATA

The above set of examples illustrates the importance of mobile database systems to
manage real-life information processing activities. Mobile systems, however, cannot
function without the support of conventional systems. It is, therefore, important to
investigate how mobile discipline affects conventional data processing approaches
for understanding their seamless integration 131.

In conventional database systems there is one common characteristic: All com-
ponents, especially the processing units, are stationary. A user must go to a fixed
location to use the system. In distributed systems, depending upon the type of data,
distribution data may migrate from one node to another, but this migration is deter-
ministic; that is, data move from one fixed source to another fixed destination. Such
data migration does not satisfy any mobility criteria.

The integration of geographical mobility is an excellent way to efficiently salvage
time wasted in traveling. However, it gives rise to a number of problems related to the
maintenance of ACID properties in the presence of personal and terminal mobility.
A number of these problems are addressed in the following sections.

The ACID properties of a transaction must be maintained in all data manage-
ment activities. Concurrency control mechanisms and database recovery schemes
make sure that ACID is maintained. In mobile and wireless platform the nature of
data processing remains the same, but the situations under which data are processed
may change. It is, therefore, important to understand the effect of mobility on data
distribution and ACID properties of transactions.

6.2.1 Data Categorization

The data distribution in conventional distributed database systems can be done in three
ways: (a) partitioned, (b) partial replication, and (c) full replication. The presence
of processor mobility adds another dimension to conventional data distribution. It
introduces the concept of Location-Dependent Data (LDD).

116 DATA PROCESSING AND MOBILITY

Location-Dependent Data (LDD): It is a class of data where datavalues are tightly
linked to specific geographical location. There is 1 : 1 mapping between the data value
set and the region it serves. For example, City Tax data value is functionally dependent
on the city’s tax policy. It is possible that all cities may use the same city tax schema,
but each city will map to a unique instance of the schema. Some other example
of LDD are zip code, telephone area code, etc. In contrast, some classes of data
have no association with any location-for example, Social Security Number (SSN),
street names, rain fall, snow fall, etc. The value of SSN does not identify any specific
location such as a street name. The same street name may exist in Boston or in Seattle
or in Kansas City. These are called Location-Independent Data, and the conventional
data processing approach interprets all data as location-independent data.

Location Dependent Query: LDD gives rise to Location-Dependent Query and
Location-Aware Query. A location-dependent query needs LDD for computing the
result. For example, What is the distance from the airport to here? is a location-
dependent query because the value of the distance depends on the geographical lo-
cation of the mobile unit which initiated the query. If the coordinates of the location
“here“ is not known, then the query cannot be processed. Consider the situation when
a person is driving to the airport to catch his flight. He is running late, and so after
every 5 minutes he repeats the query How far is the airport now? Each answer to
this identical query will be different but correct because the geographical location of
“here“ is continuously changing. A similar situation arises in processing the query
Where am I? I will continuously ask this query after driving randomly to some loca-
tion and will have different correct answers. (I may get completely lost but that is a
different matter altogether!). This kind of situation exists only when the geographical
coordinates of the origin of query continuously change with time. This is a common
situation in every day life. If a traveler initiates a query What is the sales tax of this
city? while passing through a city, then the answer must be related to the current city
and not to the next city where he arrives soon after initiating the query. A similar sit-
uation arises in listening to a radio station while traveling. When the traveler crosses
the broadcast boundary, the same frequency tunes to a different radio station and the
broadcast program changes completely,

In processing a location-dependent query, the necessary LDD and the geographical
location of the origin of the query must be known. This requires that the system must
map the location with the data to obtain correct LDD. A number of service providers
have location discovery facility which can be used to access LDD.

Location-Aware Query: This type of query includes reference to a particular lo-
cation either by name or by suitable geographical coordinates. For example, What is
the distance between Dallas and Kansas City? is a location-aware query because it
refers to locations Kansas City and Dallas. The answer to this query or any location
aware query does not depend on the geographical location of the query; as a result,
the mobility does not affect its processing.

EFFECT OF MOBILITY ON THE MANAGEMENT OF DATA 117

6.2.2 Location Dependent Data Distribution

The I : 1 mapping between data and its geographical location restricts the three data
distribution approaches. The horizontal fragmentation and vertical fragmentation of
a relational database must include the location information implicitly or explicitly.
The partition of database, however, becomes easier because the decision is solely
based on the location parameter. The concept of data region is helpful to understand
the distribution of database partitions in mobile databases.

Definition 6.1 A data region is a geographical region or a geographical cell, and
every geographical point of this region satisfies 1: I mapping with data.

-------- ---/ -
Pi - A partition of Kansas City database A Cell - c - >

Fig. 6.1 Database partition for LDD.

Figure 6.1 illustrates data distribution for data partition scheme. It assumes Kansas
City as a data region for city sales tax. The entire data region is enclosed in a cell.
Every location of Kansas City satisfies 1 : 1 mapping between city tax value and the
location. The entire Kansas City database is partitioned into subdivisions identified
by PI through Pg. All subdivisions map to the same city sales tax; as a result, all
subdivisions charge the same city tax. If every subdivision maintains its own database,
then at each subdivision a database partition can be stored. A mobile unit which moves
among subdivisions will see the same one consistent value of a data item.

118 DATA PROCESSING AND MOBILITY

EXAMPLE6.5

A hotel chain or franchise can be used to demonstrate the problem of data
replication and its consistency for mobile databases. A particular hotel has a
number of branches across the nation. Each branch offers identical services;
however, its room rent, policy, facilities, etc., would depend on the branch
location. Thus, the same-size suite may cost more in Dallas than in Kansas
City. The data consistency constraints in Kansas City might be different from
those in Dallas, because of local taxes and environment policies. Each branch
may share the same schema but their instantiations (values for the data) may
differ.

In a partial replication approach the same partition can be replicated at more than
one subdivision. For example, at subdivision 1 and subdivision 2, PI and P.L can
be replicated without affecting the consistency. In a full replication, also the entire
database can be replicated and used at all subdivisions in a consistent manner.

Data region 1
- - _ _

Fig. 6.2 Database replication restriction.

The situation does not change if the data region is covered by multiple cells. A
mobile unit can move from one subdivision to another and use the same data item in
both subdivisions. However, the situation changes when a cell covers two or more
data regions as shown in Figure 6.2. Data of one region cannot be replicated at another
region. For example, the sales tax rate of Kansas City (region 1) cannot be replicated
at Springfield (region 2). This constraint requires that a location-dependent query
in Springfield must be processed in Springfield before the client enters Kansas City.
This restriction also affects mobile data caching. A mobile unit must clear its cache
before entering to another data region for maintaining global consistency.

Since the distribution of LDD is dependent on geographical locations, its distri-
bution is defined as spatial distribution to distinguish it from the conventional distri-
bution which is called a temporal distribution. In spatial distribution and in temporal
distribution spatial replication and temporal replication, respectively; are used.

EFFECT OF MOBILITY ON THE MANAGEMENT OF DATA 119

Definition 6.2 Spatial Replication refers to copies of data objects which may have
different correct data values at any point in time. Each value is correct within a given
location area. One of these copies is called a Spatial Replica.

Definition 6.3 Temporal Replication refers to copies of data objectsall of which have
only one consistent data value at any point in time. One of these copies is called a
Temporal Replica.

The temporal distribution mainly considers local availability of data and the cost
of communication, but for spatial distribution the geographical location must also be
included. The identification of data as spatial and temporal affects the definition of
consistency.

Effect of Mobility on Atomicity: The property of atomicity guarantees that partial
results of a transaction do not exist in the database. If a transaction fails to commit, then
all its effects are removedfrom the database. The mobility does not alter the definition
of atomicity but makes its enforcement quite difficult. Transaction execution log is
required for implementing atomicity. In a conventional system the log is stored at
the server and is easily available. In a mobile system, conventional logging approach
does not work satisfactorily because a mobile unit gets connected and disconnected to
several servers when it is mobile. There are a number of ways to manage a transaction
log in mobile systems; this is discussed in the recovery section.

Effect of Mobility on Consistency: In a centralized or distributed environment
there is only one correct value for each data object. The term mutual consistency is
used to indicate that all values of the same data item converge to this one correct value
[2] . A replicated database is said to be in a mutually consistent state if all copies have
the exact same value [2] . In addition, a database is said to be in a consistent state if
all integrity constraints identified for the database are followed [2].

In a mobile database system the presence of location-dependent data defines two
types of consistency: Spatial Consistency and Temporal Consistency.

Definition 6.4 Spatial consistency indicates that all data item values of a spatial
replication are associated with one and only one data region, and they satisfi consis-
tency constraints as defined by the region. Thus there is I : 1 mapping between data
vdue and the region it serves.

Every mobile unit that initiates transactions in a region must get a consistent view
of the region and the database must guarantee that the effect of the execution of the
transactions is durable in that region. To achieve this state, the region must satisfy
temporal consistency as well.

Definition 6.5 Temporal consistency indicates that all data item values must satisJL a
given set of integrity constraints. A database is temporally consistent if all temporal
replicas (replication of data items at multiple sites) of a data item have the mme
value.

720 DATA PROCESSING AND MOBILITY

Effect of Mobility on Isolation: Transaction isolation ensures that a transaction
does not interfere with the execution of another transaction. Isolation is normally
enforced by some concurrency control mechanism. As with atomicity, isolation is
needed to ensure that consistency is preserved.

In mobile database systems a mobile unit may visit multiple data regions and
process location-dependent data. The important thing is to ensure that execution
fragments satisfy isolation at the execution fragment level. It will do so under some
concurrency control mechanism which must recognize the relationship between a data
item. The mechanism must enforce isolation in each region separately but achieve
isolation for the entire transaction. This is quite different from a conventional dis-
tributed database system which, does not recognize spatial replication and thus does
not enforce regional isolation.

Effect of Mobility on Durability: Durability guarantees the persistence of commit-
ted data items in the database. In mobile database systems the durability is regional
as well as global. For spatial replicas and temporal replicas; regional durability and
global durability, respectively are enforced.

Effect of Mobility on Commit: Transaction commitment is not affected by mobil-
ity; however, because of the presence of location-dependent data, a location commit
is defined. A location commit binds a transaction commit to a region. For exam-
ple, a department manager initiates the following transaction on his mobile unit:
Reserve 5 seats in a vegetarian restaurant located I mile from here. . This is a
location-dependent update transaction, and it must be processed in the region where
the restaurant is located. The confirmation must be sent back as fast as possible to
the manager, which becomes necessary if the manager is waiting for the confirma-
tion. The database server responsible for processing this transaction must first map
the location of the query and the location of the restaurant and then access the cor-
rect database for making the reservation. The entire execution remains confined to
the region until the transaction commits. Thus the process of commit is identical
to the conventional notion of transaction commit; however, the requirements for the
commit are different. It is called location-dependent commit to differentiate it from
conventional notion of commit.

Definition 6.6 An execution,frugment, e t , satisfies a Location-Dependent Commit
iff the fragment operations terminate with u commit operation and a location to dutu
mupping exists. Thus all operutions in e , operate on spatial replicas dejned on the
location identGed by locution mapping. The commit is thus associated with a unique
location I,.

Effect of Connectivity on Transaction Processing

In a mobile environment an MU can process its workload in a continuoudy connected
mode or in disconnected mode or in an intermittent connected mode.

EFFECT OF MOBILITY ON THE MANAGEMENT OF DATA 121

Connectivity mode: In this mode an MU is continuously connected to the database
server. It has the option of caching required data for improving performance or can
request data from the server any time during transaction processing. If necessary, it
can enter into doze mode to save power and becomes active again. However, this
mode is expensive to maintain and is not necessary for processing users workload.

Disconnected mode: In this mode an MU voluntarily disconnects from the server
after refreshing the cache and continues to process workload locally. At a fixed
time it connects and sends its entire cache to the server using wireless or wired link.
The server install the contents of the cache such a way that global consistency is
maintained.

intermittent connected: This mode is similar to the disconnected mode, but here
the MU can be disconnected any time by the system or voluntarily by the user.
The disconnection by system may be due to lack of channel, low battery, security,
etc. The user may disconnect the MU to save power or to process data locally, or
no communication with the server is required for some time. Unlike disconnected
mode, intermittent mode does not have any fixed time for connecting and disconnect-
ing an MU.

This type of connectivity is useful for agents dealing with customers-for example,
insurance agents, UPS or FedEx, postal delivery, etc. For postal delivery, the entire
day’s delivery can be defined as a long workflow. The agent delivers a packet to a
house and locally updates the cached database on the mobile device. At the end of the
day or at a prescribed time the agent connects and ships the entire cache to the server
with through a wired or wireless channel. It is possible that the agent may connect
to server to report the status of the high priority shipment. The stock evaluator in
a supermarket also works in a similar manner. After recording the stock level the
agent connects the server for updating the main database. Connection on demand
is also a form of intermittent connectivity because a user’s need for data is usually
unpredictable.

The database consistency in disconnected or intermittently connected mode is
hard to define and maintain. This becomes relatively difficult in an e-commerce or
m-commerce environment, which can be explained with a simple example. Consider
a company called Pani’ Inc., sells water purifier aggressively. Two agents Kumar
and Prasad go house to house in a subdivision, demonstrate the water filter, and try
to win household’s business. Suppose the company has 100 water purifier units in
the warehouse and wants to sell them aggressively. Pani Inc. does not want to take a
chance, so it asks each agent to download 100 units on their laptop and to sell them
in a day. In this way if each agent sells 50 units, then the job is done. Now suppose
with a bit of luck and with some persuasion, Kumar and Prasad both sell 100 units
without being aware of each others success. This pushes the database into a real mess.
Pani Inc. handles the situation using a “back order” scheme and reduction in the cost

‘Pani is a Hindi word which means water

122 DATA PROCESSING AND MOBILITY

of water purifier. So in this situation, how can we define the consistent state of the
database? One way could be “existing inventory +back order,“ but this is quite risky.
If Pani Inc. could not supply all back orders within the promised time, then some
orders may have to be rolled back; as a result, it may be difficult to maintain ACID
constraints.

Managing ACID transactions processing in the connected state is easy and can
be handled in a conventional manner. However, their processing in the disconnected
and intermittent connected modes requires new caching consistency approaches, new
locking approaches, new commit protocol, new rollback and abort schemes, and most
important a new transaction model or new way of processing ACID transactions.

6.3 SUMMARY

This chapter discussed the relationship between mobility and transaction processing.
A clear understanding of this relationship is necessary for the development of mobile
transaction model and its management. Three types of connectivity modes and their
effect on database consistency and transaction processing were explained. In the next
chapter, various ways of executing ACID transactions on mobile database system and
mobile transaction models are presented.

Exercises

1. Define processor mobility from data management and transaction execution
viewpoints. Identify the set of problems exclusive to each.

2. In the presence of processor mobility, data and transactions acquire exclusive
properties. Identify and explain these properties. How do they affect database
query processing?

3. Explain the difference between location-dependent, location-independent, and
location-free queries. Give at least two real-life examples of each of them.

4. Explain the problems of location-dependent data distribution. How do they
affect database integrity and consistency. Are they similar to problems of data
distribution in federated and multidatabase systems? Explain your answer.

5. Give your own thoughts on the effect of mobility on database consistency,
database integrity, database distribution, and transaction execution.

REFERENCES

1. D. Barbara, “Mobile Computing and Databases - A survey,“ IEEE Trunsactions
on Knowledge and Data Engineering, Vol. 1 1, No. 1, January 1999.

SUMMARY 123

2 . T. Ozsu and P. Valduriez. Principles of Distributed Database Systems. Prentice
Hall, Engleewood Cliffs, NJ, 1999.

3. E. Pitroura and 8. Bhargava, “Revising Transaction Concepts for Mobile Comput-
ing,“ in Proceedings ofworkshop on Mobile Computing Systems andApplication,
1994.

134 TRANSACTION MANAGEMENT IN MOBILE DATABASE SYSTEMS

Fig. 7.4 Adjacent and nonadjacent cells.

7.3 MOBILE TRANSACTION MODEL

This section discusses the need for a new transaction model for mobile database
systems. It was recognized in some of the earlier chapters that the conventional ACID
transaction model was unable to satisfactorily manage mobile data processing tasks.
Some of the important reasons were: the presence of hundoff, which is unpredictable;
the presence of doze mode, disconnected mode, and forced disconnection; lack of
necessary resources such as memory, and wireless channels; presence of location-
dependent data; etc. To manage data processing in the presence of these new issues, a
more powerful transaction model or ACID transaction execution model that can handle
mobility during data processing was highly desirable. Two approaches to manage
mobile databases were proposed, and the chapter discusses them in detail. Under
each approach, a number of schemes were developed and each approach addressed
some specific issues.

The entire topic of mobile transaction modeling is highly research-oriented; and
although significant number of schemes have been proposed, none has become a
commonly accepted method. The chapter, therefore, identifies each execution model
and presents the original scheme as described by the author(s) of the report. The
discussion clearly indicates the incremental understanding of mobile data processing
and how researchers addressed related issues with their execution models.

In Chapter 6 the effect of new parameters such as mobility, location informa-
tion, intermittent connectivity, etc., was investigated. It was illustrated that the basic
ACID transaction model was unable to handle mobility aspect and location dependent
processing, which are now quite common in transactional requests.

There are basically two ways to handle transactional requests on MDS: (a) execu-
tion model based on ACID transaction framework and (b) mobile transaction model
and its execution. The first approach creates an execution model based on ACID
transaction framework. In the second approach a user query is mapped to a mo-

EXECUTION MODEL BASED ON ACID TRANSACTION FRAMEWORK 135

bile transaction model and executed under mobile ACID constraints. The execution
model approach managed to handle mobility and location information, but its scope
was somewhat limited. This gave rise to the development of mobile transaction mod-
els which captured and assimilated mobility and location property in its structure.
These two approaches are discussed in detail in subsequent sections.

7.4 EXECUTION MODEL BASED ON ACID TRANSACTION
FRAMEWORK

The concept of ACID transaction was introduced for consistency-preserving database
processing. Informally, “A transaction is a collection of operations on the physical
and abstract application state” [1 11. The conventional transaction model makes sure
that the ACID properties of a transaction are maintained during database processing
[1 11. The introduction of mobility significantly changed the database architecture
and management paradigm, and it became clear that the strict enforcement of ACID
properties was not necessary to maintain database consistency. As a matter of fact,
mobility changed and in many cases had to relaxed the notion of consistency because
in mobile database systems the notion of consistency is closely related to locations
in the geographical domain, which is defined as follows:

Definition 7.1 The Geographic Domain, G, is the total geographical area covered
by all mobile units o f a cellular system. Thus, G = (C, + C2 + . . . + Cn), where Ci
represent the area of a cell.

Definition 7.2 A Location is a precise point within the Geographic Domain. It rep-
resents the smallest identiJiable position in the domain. Each location is identiJed by
a spec& id, L. Also, G = UL, V L and C;: = {Li, L2, ..., L,rrL}.

In reality, a location of a mobile unit is identified with reference to the BS. If the
geographic domain were on the Earth, then one can think of a location as a lati-
tude/longitude pair. However, the granularity of the location used may be larger. For
example, the location could be an address, city, county, state, or country.

It is important to understand the complex relationship among the data, the op-
erations to be performed on the data, and the termination of the execution for the
development of an execution model. These issues were introduced in Chapter 6 and
are further elaborated in this chapter.

Location Dependent Query - LDQ: In legacy systems, the frequency of access
of a data items and not their association with geographical locations is used in data
distribution (partition and partial replication). In MDS this association plays an
important role in their processing as well as in their distribution. Figure 7.5 identifies
some important points. Suppose a person is traveling by car from Dallas to Kansas
City and asks, Tax rate please? The answer to this query will depend on where
actually the query originated. If the location is Dallas, then it will give the tax rate
for Dallas; and if it is Kansas City, then the tax rate will be for Kansas City. Now

d.

e.

f.

7.5.1

MOBILE TRANSACTION MODEL 149

After Ti ends its execution, the pre-commit phase starts. In pre-commit if there
is no conflict, thenpre-write lock mode is converted to write lock mode (Table
7.2).

The pre-commit of T, is announced where all read locks are released

The final commit begins where the database is updated with pre-write values
(final write). All write locks are released and commit is announced.

Pre-write Execution in Mobile Database Systems

The pre-write execution model tries to work within resource constraints of mobile
database system. One of the important consideration is the speed of the CPU. For
slow CPUs the execution model does not scale very well and MUs act as a simple
client with no database processing capability. The following transaction execution
example assumes a high speed CPU.

MUs with high-speed CPUs store consistent data items in their local cache. When
a transaction arrives at an MU, it uses cached data to process reads and returns the
pre-write values. Those reads for which cache does not have data are sent to the server
for processing. The server returns pre-write values or write values. The transaction
pre-commits when all values are returned by the server and MU has also completed
its processing. All locks are released and the pre-commit schedule is sent to the server
for the final commit of the transaction.

In some data processing situations, tolerable difference between apre-write version
and a final write version may appear. Consider a transaction rl’, that executes a pre-
read on data item IC which is the result of ape-write of Tj. Tj commits at the server.
In some cases, Ti may have an old value of 2 , but it is tolerated-for example, draft
and final version of a graphic object or some average salary data. A minor difference
in this version is not likely to influence the decision outcome.

7.6 MOBILE TRANSACTION MODEL

In the last few sections, mobile execution models for ACID transactions were dis-
cussed in detail. An execution model provides a scheme to execute ACID transactions
in a resource-limited mobile platforms; however, they have some inherent limitations.
Later mobile transaction models were developed to take care of these limitation. A
number of such transaction models are discussed in this section.

7.6.1

This model was presented in Ref. [29]. Although it has been presented as a mobile
tran5action model, in reality it is a mobile transaction execution model. The execu-
tion model is mainly for processing aggregate data stored in a data warehouse which
resides in mobile units. Since the data warehouse resides in mobile units, HiCoMo

HiCoMo: High Commit Mobile Transaction Model

150 TRANSACTION MANAGEMENT IN MOBILE DATABASE SYSTEMS

transactions are always initiated on mobile units where they are processed in a dis-
connected mode. As a result, transaction commitments are quite fast. The results of
these transactions are then installed in the database upon reconnection.

The base database resides on the fixed network. It is manipulated by transac-
tions called base or source transactions. These transactions are initiated at the fixed
network. Transaction which are initiated and processed at mobile units are called
HiCoMo. Since HiCoMo transactions do specialized processing, it is based on the
following assumptions:

The data warehouse stores aggregate data of the following types: average, sum,
minimum, and maximum.

Operations such as subtraction, addition, and multiplication are allowed with
some constraints on their order of application.

The model allows some margin of errors. This margin can be defined before
allowed operations are initiated and their value can be varied between a lower
and an upper bound.

The structure of HiCuMo transaction is based on nested transaction model. The
database consistency is satisfied through convergence criteria. It is satisfied when the
states of the base database and the data warehouse in mobile units are identical. This
transaction model ensures that convergence is always satisfied.

As mentioned earlier, the base database at the server is updated by Jource trans-
actions. This requires that to install updates of HiCoMo transactions, they must be
converted to source transactions. This conversion is done by a Transaction Transfor-
mation Function, which works as follows:

Conflict detection: A conflict is identified among other HiCoMo transactions
and between HiCoMo and bases transactions. If there is a conflict between
HiCoMo transaction, then the transaction which is being considered for trans-
formation is aborted,

Base transaction generation: In the absence of a conflict, initial base transac-
tions are generated and executed as subtransactions on the base database at the
server. The type of base transaction depends upon the HiCoMo transactions.

Alternate base transaction generation: It is possible that some of these sub-
transactions may violate integrity constraints (may be outside the error margin)
and, therefore, are aborted. These updates are tried again by redistribution of
error margin. In the worst-case scenario the original HiCoMu transactions are
aborted. If there is no integrity violation, then base transactions are committed.

7.6.2 Moflex Transaction Model

A mobile transaction model called Moflex, which is based on a flexible transaction
model (131, is presented in Ref. [24]. The structure of a Moflex has 7 components
andcanbedefinedas

MOBILE TRANSACTION MODEL 151

Moflex transaction T = { M , S, D, H , .I, G)

M = { t l , t z , . . ., t,,}, where t , are compensable on noncompensable subtransac-
tions. Every compensable t , is associated with a corresponding compensating
transaction.

S = a set of success-dependencies between ti and t,i (1: # j) . This defines the serial
execution order of these subtransactions. Thus, t j has a success-dependency
on t , (i.e., ti <,s t j) if t j can be executed only after t i commits successfully.

F = a set of failure-dependencies which indicates that t j can be executed only
after t , has failed. This dependency is represented as (i.e., t , < f t j) .

D = a set of external-dependencies which indicates that ti can be executed only if
it satisfies predefined external predicates. These predicates are defined on time
(p) , cost (Q), and location (L).

H = a set of handoff control rules which manages the execution of subtransactions
in the presence of a handoff. In this event a subtransaction may continue its
execution or restart or split-resume or split-restart. These execution states or
modes are related to handoff and are explained later.

J = a set of acceptablejoin rules which are used to determine he correct execution
of a subtransaction.

G = a set of all acceptable states of T (Mojex).

A Mojlex transaction can be (a) not submitted for execution - N , (b) currently
under execution - E, (c) successfully completed - S or (d) failed - F. An execution
of T is regarded as being complete if its current state exists in set G. When this is
satisfied, then T can commit. Otherwise, if no subtransaction of T is executing or
can be scheduled for execution, then T is aborted.

It is possible to process a location-dependent query with Mojex. The location-
dependent predicate, along with other constraints, can be defined in terms of time
such as from 8 AM to 5 PM. For example, a temporal dependency, which is a member
of D , can be stated as follows:

D = {8 Q, L }
P = (8 < time (t l) < 17, 8 < time (t z) < 17}
Q = {cost (t z) < $100, cost (t 3) < $100)
{tl, t 4 }

When a handoff occurs during the execution of T , then the subtransaction can
further split into finer subtransactions. If the parent subtransaction is compensable and
processing location-dependent data, then the handoff rule forces the subtransaction
to abort and restart in the new cell. A restart can be split-restart where the value of
the partial execution of the subtransaction in the last cell is preserved. In the case of
location-independent subtransaction, it further splits into finer subtransactions. One

152 TRANSACTION MANAGEMENT IN MOBILE DATABASE SYSTEMS

of these subtransactions which represents the portion of execution occurring in the
last cell is free to commit.

An Example of a Moflex

An emergency patient dispatch query can be stated as follows. The objective of this
hypothetical transaction is to illustrate how the transaction fits into Mojex transaction
structure. Find the right hospital or take the patient the defuult hospital, then dispatch
patient status to the emergency doctor,for getting the correct treatment. This can be
expressed in a Mojex as

In this example in set G, S indicates a successful execution of Mopex and “-‘I

means that the execution state of the subtransaction does not have to be one of the
predefined states. Further details about Mojlex can be found in Ref. [24].

7.6.3 Kangaroo MobileTransaction Model

In Ref. [7] a transaction model called Kangaroo is presented which captured both
data and the movement of mobile units. The model is based on a split transaction
model and enforces the majority of ACID properties.

A global or parent Kangaroo transaction, K T , is composed ofa number of subtrans-
actions. Each subtransaction is similar to an ACID transaction, which is composed of
a set of reads and writes. These subtransactions are called Joey Transaction (JT) and
are local to a base station. Upon initiation of a Kangaroo transaction, a base station
creates a JT for its execution which may be executed at mobile units. When these
mobile units migrate to another cell, the base station of this cell takes control of the
execution of this transaction.

KTs support transaction execution in Conzpensating or Split modes. When a fail-
ure occurs in a compensating mode, the JT all execution (preceding or following) is
undone and previously committed JTs are compensated. It is difficult for the system
to identify a compensating mode, so users provide useful input for creating compen-
sating JTs. The default execution mode is split mode. When a failure occurs (when
a JT fails) in a default mode, then no new local or global transaction is created from
KT and previously committed JTs are not compensated. As a result, in compensating
mode, JTs are serializable but may not be in split mode.

MOBILE TRANSACTION MODEL 153

Kangaroo transaction processing: A KT, when initiated by a mobile unit, is
assigned a unique identity. The initial base station immediately creates a JT with a
unique identity and becomes responsible for its execution. There is one JT per base
station. When the mobile unit encounters a handoff (i.e., moves to a different cell),
KT is split into two transactions - JT1 and JT2. Thus the mobility of a mobile unit is
captured by splitting a KT into multiple JTs. These JTs are executed sequentially; that
is, all subtransactions of JTl are executed and committed before all subtranactions of
JT2. Further details on KT and be found in the original paper.

Some other models have been reported in the literature which are mentioned briefly
here. The semantics-based mobile transaction processing scheme [57] views mobile
transaction processing as a concurrency and cache coherency problem. The model
assumes a mobile transaction to be a long-lived, one characterized by long network
delays and unpredictable disconnections. This approach utilizes thc object organi-
zation to split large and complex objects into smaller, manageable fragments. A
stationary database server dishes out the fragments of a object on a request from a
mobile unit. On completion of the transaction the mobile hosts return the fragments
to the server. These fragments are put together again by the merge operation at the
server. If the fragments can be recombined in any order, then the objects are termed
reorderable objects. Since a single database server is assumed, the ACID properties
can be maintained.

7.6.4 MDSTPM Transaction Execution Model

An execution model called Multidatabuse Transaction Processing Munager (MD-
STPM) is reported in Ref. 1.561 which supports transaction initiation from mobile
units. The model uses message and queuing facilities to establish necessary commu-
nication among mobile and stationary (base station) units. At each stationary unit a
personal copy of MDSTPM exists which coordinates the connected and disconnected
execution of transactions submitted at mobile units.

The MDSTPM has the following components:

0 Global Communication Manager (GCM): This module manages message
communication among transaction processing units. It maintains a message
queue for handling this task.

0 Global Transaction Manager (GTM): This module coordinates the initiation
of transactions and their subtransactions. It acts as a Global Scheduling Sub-
manager (GSS) which schedules global transactions and subtranactions. It can
also act as a Globul Concurrency Subnzanager (GCS), which is responsible for
the execution of these transactions and subtranactions.

0 Local Transaction Manager (LTM): This module is responsible local trans-
action execution and database recovery.

0 Global Recovery Manager (GRM): This module is responsible for managing
global transaction commit and their recovery in the event of failure.

154 TRANSACTION MANAGEMENT IN MOBILE DATABASE SYSTEMS

0 Global Interface Manager (GIM): This serves as a link between MDSTPM
and local database managers.

These transaction models did address most of the important issues of mobility,
however, no single model captured or incorporated these issues at one place. In the
Kangaroo model a transaction issued by a user at one mobile unit can be fragmented
and executed at multiple mobile units. This is acceptable on the research level, but
in reality this does not happen. A mobile unit is a resources dedicated to its own
transactions and not open for execution sharing. The location-dependent, location-
aware, location-independent, intermittent-execution, etc., are some of the important
issues which are interrelated and need a unified processing by a single model. A model
called Mobilaction has tried to capture these into one model which is discussed next.

7.6.5 Mobilaction-A Mobile Transaction Model

In this section a new mobile transaction model called Mobilaction is presented in Ref.
1201. Mobilaction is capable of processing location-dependent data in the presence
of spatial replication. It is composed of a set of subtransactions, which is also called
Execution Fragments, and each fragment is a Mobilaction.

Mobilaction is based on the framework of the ACID model. To manage location-
based processing, a new fundamental property called “location (L)” is incorporated
extending the ACID model to ACIDL. The “location (L)” property is managed by a
location mapping function.

Definition 7.8 Fragment Location Mapping FLM: Each executionfragment, e,7, of a
mobile transaction, Ti, is associated with a unique location. Given a set of execution
,fragments E, FLM is a mapping F L M : E + L.

The FLM identifies (a) the correct geographical location and (b) the correct spatial
replica (LDD) for the execution of a fragment. In addition, it is used to ensure spatial
consistency of fragments within a transaction. We first explain how Mobilaction
satisfies ACID properties and then formally define Mobilaction.

7.6.6 Atomicity for Mobilaction

The purpose of atomicity is to ensure the consistency of the data. However, in a mobile
environment we have two types of consistency. Certainly, atomicity at the execution
fragment level is needed to ensure spatial consistency. However, transaction atomicity
is not. We could have some fragments execute and others not.

Definition 7.9 A mobile transaction, Tt, satisjies Spatial Atomicity iff each execution
.fragment, el j , of T, is atomic. T, is said to be Spatially Atomic iff each execution
.frugment, e 7 j , is atomic.

7.6.7 Isolation for Mobilaction

Transaction isolation ensures that a transaction does not interfere with the execution
of another transaction. Isolation is normally enforced by some concurrency control

MOBILE TRANSACTION MODEL 155

mechanism. As with atomicity, isolation is needed to ensure that consistency is
preserved. Thus we need to reevaluate isolation when spatial consistency is present.
As with consistency, isolation at the transaction level is too strict. The important thing
is to ensure that execution fragments satisfy isolation at the execution fragment level.

Definition 7.10 A mobile transaction, T,, satisjies Spatial Isolation iff each execu-
tion,fragment, e t j , o jT , is isolated from all execution frugments of T, or any other
tmnsuction.

Note that Mobilaction will need to implement a concurrency control technique at
the fragment level. Any concurrency control technique could be used. As a matter of
fact, a different technique could be used for each fragment.

7.6.8 Consistency and Durability for Mobilaction

A conventional transaction commit satisfies the durability property. There is nor-
mally only one commit operation per T,. However, to ensure spatial consistency,
spatial isolation, and spatial atomicity, the mobility property requires that the commit
of Mobilaction must also change. We introduce the concept of location-dependent
commit.

Definition 7.11 An execution fragment, e,j, satisjies u Location-Dependent Commit
iff the fragment operations terminate with a commit operation and a FLM exists. Thus
all operations in e i j operate on spatial replicas dejined b y a data region mapping
on the location ident$ed b y the FLM. The commit is thus associated with a unique
location, L.

Definition 7.12 An Execution Fragment e z j is a partial order e,j = {o,, < J } ,
where

0 oJ = OS, U {N,}, where OS, = UkO,ik, O,k E {read,write}, and NJ E

{abortL, cornrmtL}. Here thehe are a location-dependent commit and abort.

0 For any 0 , k and 0 , l where O,k = R(r) and 0,I = W (x) for a data object
x, then either 0, ik <, 0,I or 0,l <, 0, k.

0 VO,k E OS,,O,k IJ N,.

The only difference between an execution fragment and a transaction is that either
a location dependent commit or abort is present instead of a traditional commit or
abort. Every fragment is thus associated with a location. However, keep in mind
that if the data object being updated is a temporal replica, then the fragment updates
all replicas. Thus it is not subjected to location constraints and appears as a regular
transaction.

Definition 7.13 A Mobilaction (T,) = <F,,L,,FLM7>, where F, = {el l , ..., p , n }

is a set ojexecution fragments, L , = { 1, 1 , . . . , I , n } is u set of locations, and FLMt =

156 TRANSACTION MANAGEMENT IN MOBILE DATABASE SYSTEMS

Model

{ f l * rn i l , ..., flmin} is a set offragment location mappings, where V j , f l m L j (e i j) =

lt:j. In addition, V j ? I ; , l z j <> lik.

A

In traditional database systems, ACID transaction is assumed to be a unit of con-
sistency. Even with spatial atomicity, this is still the case with a Mobilaction. A
Mobilaction is a unit of consistency. That is, given a database state which is both
temporally and spatially consistent, a Mobilaction T, converts this state into another
temporally and spatially consistent state.

Request

MU

NIA

NIA

MU

MU

MU

Table 7.3 Summary of previous mobile transaction models and ACID adherence

Execute

Fixed Network

NIA

NIA

MU or Fixed Network

Restricted Server/MU

MU or Fixed Network

I I

Clustering

Semantics
I I

I MDSTPM I No
I I

CII]D-

No No

Yes Yes Yes

No No
I I I I I

Table 7.3 compares the various mobile transaction models based on ACID prop-
erty compliance and processing location. Due to the fact that the Kangaroo model
assumes the autonomy of the underlying DBMS systems, subtransactions are allowed
to commitlabort independently. Atomicity may be achieved if compensating transac-
tions are provided. While the Semantics approach allows processing anywhere in the
mobile platform, it is a restricted type of processing in that only one server is assumed
and all fragments processed at the MU must be returned to the server prior to commit.
All but the Semantics-based approach may violate durability. This is because local
transactions which have committed may later be "undone" by a compensating trans-
action. It is certainly debatable as to whether this really violates durability, since the
compensating transaction is a completely separate transaction. The request column
indicates where the transaction is assumed to be requested. All but the Reporting
assume it is requested at the Mobile Unit. Since this model is a more general than the
others and not limited to a mobile computing environment, it does not assume that
the initial request is made from any particular site. The Execute column indicates
at what sites the kangaroo is assumed to execute. Again this really does not apply
to the Reporting approach. The Kangaroo limits processing to nodes on the fixed
network, while the Semantics approach assumes that the execution at a server on the
fixed network is limited to the creation and then update of the fragments.

DATA CONSISTENCY IN INTERMITTENT CONNECTIVITY 157

7.7 DATA CONSISTENCY IN INTERMITTENT CONNECTIVITY

Mobile clients encounter wide variations in connectivity ranging from high-bandwidth,
low-latency communications through wired networks to total lack of connectivity
[8, 15, 391. Between these two extremes, connectivity is frequently provided by
wireless networks characterized by low bandwidth, excessive latency, or high cost.
To overcome availability and latency barriers and reduce cost and power consump-
tion, mobile clients most often deliberately avoid use of the network and thus operate
switching between connected and disconnected modes of operation. To support such
behavior, disconnected operation-that is, the ability to operate in a disconnected
mode-is essential for mobile clients [15, 16, 36, 471. In addition to disconnected
operation, an operation that exploits weak connectivity; that is, connectivity provided
by intermittent, low-bandwidth, or expensive networks), is also desirable [14, 321.
Besides mobile computing, weak and intermittent connectivity also applies to com-
puting using portable laptops. In this paradigm, clients operate disconnected most of
the time, and occasionally connect through a wired telephone line or upon returning
back to their working environment.

In the proposed scheme, data located at strongly connected sites are grouped
together to form clusters. Mutual consistency is required for copies located at the same
cluster, while degrees of inconsistency are tolerated for copies at different clusters.
The interface offered by the database management system is enhanced with operations
providing weaker consistency guarantees. Such weak operations allow access to
locally (i.e., in a cluster) available data. Weak reads access bounded inconsistent
copies and weak writes make conditional updates. The usual operations, called strict
in this chapter, are also supported. They offer access to consistent data and perform
permanent updates.

The scheme supports disconnected operation since users can operate even when
disconnected by using only weak operations. In cases of weak connectivity, a bal-
anced use of both weak and strict operations provides for better bandwidth utilization,
latency, and cost. In cases of strong connectivity, using only strict operations makes
the scheme reduce to the usual one-copy semantics. Additional support for adapt-
ability is possible by tuning the degree of inconsistency among copies based on the
networking conditions.

In a sense, weak operations offer a form of upplication-aware adaptation [33].
Application-aware adaptation characterizes the design space between two extreme
ways of providing adaptability. At one extreme, adaptivity is entirely the responsi-
bility of the application; that is, there is no system support or any standard way of
providing adaptivity. At the other extreme, adaptivity is subsumed by the database
management system. Since, in general, the system is not aware of the application
semantics, it cannot provide a single adequate form of adaptation. Weak and strict
operations lie in an intermediate point between these two extremes, serving as mid-
dleware between a database system and an application. They are tools offered by
the database system to applications. The application can at its discretion use weak
or strict transactions based on its semantics. The implementation, consistency con-

CONCURRENCY CONTROL MECHANISM 175

are similar to weak read-only transactions with no consistency requirements. ESR
bounds inconsistency directly by bounding the number of updates. In Ref. [SO] a
generalization of ESR was proposed for high-level type specific operations on abstract
data types. In contrast, our approach deals with low-level read and write operations.

In an N-ignorant system, a transaction need not see the results of at most N prior
transactions that it would have seen if the execution had been serial [181. Strict trans-
actions are @ignorant and weak transactions are 0-ignorant of other weak transactions
at the same cluster. Weak transactions are ignorant of strict and weak transactions at
other clusters. The techniques of supporting N-ignorance can be incorporating in the
proposed model to define d as the ignorance factor N of weak transactions.

7.13 CONCURRENCY CONTROL MECHANISM

Consistency-preserving execution is necessary for maintaining database consistency.
In Chapter 5 a number of commonly known concurrency control mechanisms were
discussed. This chapter investigates if any of them would work satisfactorily in mobile
database systems.

Any scheme or mechanism, such as sorting, searching, concurrency control mech-
anism, system recovery, etc., has system overhead. In most cases a mechanism with
least system overhead is preferred, even though it may not be efficient. This is espe-
cially true for mobile database systems where system overhead can create a serious
performance problem because of low-capacity and limited resources. This is one of
the main reasons for not considering conventional currency control mechanisms for
serializing concurrent transactions for mobile database systems. However, they do
provide a highly useful base for modified CCMs or for developing new ones. Some
of these conventional CCMs can analyzed as follows:

7.13.1 Locking-Based CCMs

Two-phase incremental locking and simultaneous release is the most commonly used
concurrency control mechanism. This scheme can be implemented on distributed
database systems in three different ways: (a) centralized two-phase locking (primary
site approach), (b) primary copy locking, and (c) distributed two-phase locking. It is
useful to analyze if they are suitable for mobile database systems

Centralized Two-Phase Locking: In this scheme, one site (node) is responsible
for managing all locking activities. Since the locking request traffic is likely to be very
high, the central node should be almost always available. In a mobile database system,
this requirement limits the choice of central node. A mobile unit cannot be a central
node because (a) it is a kind of personal processing unit, (b) it is not powerful enough
to manage locking requests, (c) it cannot maintain the status (locked or free) of data
items, (d) it is not fully connected to other nodes in the network, and (e) its mobility
is unpredictable. Base stations are the next choice, but they also have a number of

176 TRANSACTION MANAGEMENT IN MOBILE DATABASE SYSTEMS

problems related mainly with functionality issues. A base station is a switch and
is dedicated to providing services to mobile units. Adding transaction management
functionality is likely to overload them, which would not be recommended by wireless
service providers. Theoretically, this may be the best choice, and many researchers
have selected base stations for incorporating database functions; however, in reality
this is not an acceptable solution. A fixed host can be configured to act as a central
node, but it is not equipped with a transceiver. As a result, it has to go through a base
station to reach any mobile unit. No matter what component is identified as a central
node, the problem of single-point failure cannot be avoided in this scheme.

Primary Copy Two-Phase Locking: This scheme eliminates a single point of fail-
ure and minimizes other problems of central node approach by distributing the locking
responsibility among distributed to multiple sites. Each lock manager is now respon-
sible for a subset of data items. The node executing a part of the transaction sends
lock requests to appropriate lock manager. This approach does not solve the problem
of identifying suitable sites for distributing locking responsibility. The choices are
either base station or fixed hosts or both.

Distributed Two-Phase Locking: This scheme simply maximizes the extent of
lock distribution. Here all nodes can serve as a lock manager. In the case of database
partition this algorithm degenerates to centralized two-phase scheme. It is obvious
that this scheme does not suggest a better selection of node for lock manager.

The other acceptable option for lock manager is to include separate database servers
connected to base stations through wired network. One of the database servers can be
identified as the central node for managing transactions under a centralized scheme,
a subset of them for a primary copy scheme, and all for a distributed scheme. Out of
all options, this seems to be a middle ground.

The communication overhead for managing locking and unlocking requests is
another important problem to investigate. If a mobile unit makes a lock request on
behalf of a transaction, it is executing and then (a) it will send the request to lock
manager site (wireless message), (b) the lock manager will decide to grant or to refuse
the lock and send the result to the mobile unit (wireless message), and (c) the mobile
unit makes the decision to continue with forward processing or block or rollback
depending upon lock manager’s decision. Thus, each lock request will generate two
wireless messages, which would become quite expensive with an increase in the
workload. Furthermore, every rollback will generate an additional message overhead
by restarting the transaction.

The amount of overhead closely related to the degree of consistency the database is
programmed to maintain. To maintain stronger degree of consistency requires more
resources compared to maintaining weaker degree of consistency. Thus one way of
reducing the cost is to maintain weaker consistency level, and in many data processing
situations a weaker consistency is acceptable. This is especially true for mobile
database systems because mobile users are not likely to issue CPU-intensive large
update transactions through their mobile units. If such a transaction is issued from a

CONCURRENCY CONTROL MECHANISM 177

laptop, then it could be executed at database servers with the strongest consistency
level.

It would be hard to achieve maximum benefit only through a new CCM that
maintains a weaker level of consistency. A new way of structuring and executing
ACID transactions is also necessary. Very few CCMs for mobile database systems
have been developed, and this section discuses a few of them.

Distributed HP-PPL CCM

In Ref. [28] a concurrency control mechanism called Distributed HP-2PL (DHP-
2PL) is presented. This CCM is based on two phase locking and it is an extension
of HP-2PL [l] CCM. It uses conflict resolution scheme of Cautious Waiting [19]
mechanism to reduce the degree of transaction roll-backs.

In this scheme, each base station has a lock schedular which manages the locking
requests for data items available locally. Each transaction, i.e., the holder of the
data item (Th) and the requestor of the data item (T,.) is assigned a unique priority.
Thus when a requestor and a holder conflicts then their associated priority and their
execution status (committing, blocked, etc.) are used to resolve the conflict. The
steps are as follows.

On a conflict check the priority of the holder and the requestor.

If Priority (T,) > Priority (TtJ then check the status of (Th). I f (TfL) is not
comtnitting (i.e., still active then check if it is a local transaction.

If (TtL) is a local transaction then restart it locally. A local transaction accesses
only those data items which are stored at the base station where the transaction
originates.

If (T h) is a global transaction then restart it globally. A global transaction ac-
cesses data at more than one base stations. Roll-back of a global transaction
requires communicating with all those base stations where the global transac-
tion has performed some update operations.

If (Th) is in committing process then it is not restarted rather the (Tr) is forced
to wait until (Th) commits and releases all its lock. Adjust the priority of (TtL)
as follows:
Priority (TlJ := Priority (T,) + someJixed priority level.

if Priority (T,) 5 Priority (TI,) then block (T,) until (Th) commits and releases
its locks.

A Cautious waiting approach is incorporated in the above method to minimize the
impact of disconnection and unnecessary blocking. The modified algorithm is given
below:

178 TRANSACTION MANAGEMENT IN MOBILE DATABASE SYSTEMS

If Priority (TT) > Priority (Th) and T h is still active (not committing), then

Else
global or local restart (TtJ.

IfTf, is a mobile client, then
I f the time T h spent at mobile unit > threshold, then ping the mobile unit.

(The ping is done by the base station to check f Tt, is active.)
I f there is no response, then restart TfL
Else

Endif
Block T, . This check is repeated at the end of a threshold.

Else block T,. This checking is pegormed again when the time spent at

Endif
the mobile unit is > threshold.

Else Block T,
Endf

Endq

The threshold is a function of average system performance which is used as a
tuning parameter. This acts as a timeout value which helps to decide the status of a
mobile unit. If the base station does not get a response from the mobile unit within
the threshold value, then a disconnection is assumed. This may not be true but its
effect is similar to a disconnection. The holder Th is restarted even though it has a
higher priority. This may increase the chances of missing the deadline for T,.

Two more CCMs are discussed below. One takes the approach of weaker consis-
tency, and the other uses transaction restructuring for developing CCMs for MDS.

7.1 3.2 CCM Based on Epsilon Serializability

A CCM based on epsilon serializability (ESR) [45] is presented here, which tolerates
a limited amount of inconsistency. The mechanism is based on a two-tier replication
scheme [121 that produces an epsilon serializable schedule. The scheme provides
availability, accommodates the disconnection problem, and is scalable. It reduces
transactions commit time and number of transaction rejections. ESR approach keeps
the amount of inconsistency within a limit specified by epsilon. When epsdori ---f

0, ESR reduces to conventional serializability situation. For example, in banking
database a report that prints total summary in units of millions of dollars can tolerate
inconsistency of a few hundreds dollars. Divergence control methods guarantee ESR
the same way as concurrency control guarantee serializability. The concurrency
control method that is presented here is a divergence control method to maintain ESR,
which can be applied to a database whose state space is metric, Database state space
depends on database semantics. Many practical applications with different semantics
such as bank accounts, seats in airline reservation, and so on, are examples of metric
state space. Bank database contains client names, addresses, account numbers, and
account amounts but updates happen only to amount. Metric space S is defined as a
state space having the following properties:

CONCURRENCY CONTROL MECHANISM 179

0 A distance function dist (u, v) is defined over every u, v E S on real numbers;
dist (u, v) is the difference between u and v, which represent database states.

0 Triangular inequality, i.e., disl (u, v) + dist (v, w) = dist (u, w).

0 Symmetry, i.e., dist (u, I)) = dist (v, u).

In the mechanism, ESR [45,52] is used to achieve acceptable reduction in consis-
tency. ESR is an abstract framework, and an instance of ESR is defined by concrete
specification of tolerated inconsistency. The CCM that is discussed here can also
be applied on fragmentable, reorderable objects [57], which include aggregate item,
such as sets, queues, and stacks.

The two-tier replication does not use traditional mechanisms (like two-phase lock-
ing or timestamping) and it provides availability and scalability, accommodates a
disconnection problem, and achieves convergence. The basic idea of two-tier repli-
cation is first to allow users to run tentative transactions on mobile units, which makes
tentative updates on the replicated data locally. When the mobile node connects to the
database server, then these transactions are transformed to corresponding base trans-
actions and re-executed at the servers. The base transactions are serialized on the
master copy of the data and mobile units are informed about any failed base transac-
tions. But the problem with this approach is that the mobile unit executes transaction
without the knowledge of what other transactions are doing. This situation can lead
to a large number of rejected transactions [3]. Another drawback is that transaction
commit at MU tends to be large because these transactions know their outcome (i.e.,
committed or rejected) only after base transactions have been executed and the results
are reported back to the MU. The CCM discussed here the two-tier replication scheme
[121 is modified to reduce the number of rejected transactions and to reduce commit
time of transactions executed at the MU. The BS can broadcast information to all the
MUs in its cell.

A central server holds and manages the database D = { D z } , where i E N is set of
natural numbers and Di E S where 5’ is a metric space. Let di be the current value
of the data object Di. The data objects are replicated on the MU’S and let ni be the
number of replicas of Di in MDS. A limit A on the amount of change can occur on
the replica at each MU, thus Ai denotes the change allowed in each replica of data
object Di on any MU. If the transaction changes the value of the data item by at most
Ai in a MU, then they are free to commit; they do not have to wait for results of
the execution of the base transaction on DBS. This reduces the commit time of the
transactions and also the number of rejected transactions, which could happen due to
the base transaction not being able to commit. To control the validity of Ai, a timeout
parameter is defined whose value indicates a duration within which the value of A,;
is valid. Timeout values of the data item should be some multiple I of broadcast
cycle time T . The value I depends on the frequency of the incoming updates for
the data item, and also it should be sufficiently large so that the Mu’s can send their
updates within duration 1 x T . The server will not update the value of the data item
until time I x T has elapsed. It is assumed that the MUs take into consideration the
uplink time and send their updates before the timeout expires at the server. The client

180 TRANSACTION MANAGEMENT IN MOBILE DATABASE SYSTEMS

can disconnect from MDS during the timeout period and can perform updates. If the
client disconnects for a period longer than timeout, then when it reconnects it should
read the new values of A. If the updates are within the new limit set by A, then the
MU can send the updates to the server; otherwise the MU will have to block some
transactions so that total updates are within A. The blocked transactions will have
to wait until the new values of A arrive at the MU. The steps of the algorithm go as
follows:

At a DBS

1. A, is calculated for each data object D,. A2 is calculated using the function
A, = .f, (d,, nL). A function f,(d,, n,) is associated with each data object D,,
and it depends on the application semantics.

2. A timeout value T is linked with A, values of the data item.

3 . DBS broadcasts the values of (d 2 , A,) for each data item and a timeout T for
these values at the beginning of the broadcast cycle.

4. The DBS either receives pre-committed transactions (transactions which have
made updates to the replicas on the MU and committed) or can receive request
transactions (transactions which are directly sent to the DBS by the MU). A
transaction that violates the limit is not executed at an MU, because it could
change the value of replica D, by more than A, at the MU. It is sent to the DBS
as request transaction for execution on the master database.

5 . The DBS serializes the pre-committed transactions according to their order
of arrival. After the timeout expires, the DBS executes a request transaction,
reports to the MU whether the transaction was committed or aborted, and
repeats the procedure from the first step.

0 MU has the value of (&, A,) and timeout T for every data item Di it has cached.

0 MU executes transaction t,. It changes the current value of D, by A,-tt. Let
A,-ci be the current value of the total change in D, since its last broadcast of
value A,).

The value A7-tt is added The following cases are possible depending
on the value of A,-tz and AZpc:

1 . If A7,-tt 5 Ai and Ai-c 5 Ai, then t , is committed at MU and it is sent

2. If 5 Ai and Ai-c > A,L, then t , is blocked at MU until new set of

to DBS for re-execution as a base transaction on the master copy.

(Di , Ai) is broadcasted by the server.

CONCURRENCY CONTROL MECHANISM 181

3. If At-tc > Ai then t , is blocked at MU and submitted to the server as a
request transaction.

7.13.3 Relationship with ESR

The mechanism for maintaining ESR has two methods: (a) divergence control (DC)
and (b) consistency restoration. This section discuses these methods and show their
use in developing the concurrency control mechanism.

A transaction imports inconsistency by reading uncommitted data of other tranc-
actions. A transaction exports inconsistency by allowing other transaction to read
its uncommitted data. Transactions have import and export counters. The following
example shows how these counters are maintained.

In the above execution, t z reads from t l . So it is counted as tl exporting one
conflict to t 2 and tz importing one conflict from t l . So an export counter of tl is
incremented by 1, and an import counter of t 2 is incremented by 1. Transaction t:3
does not import or export any conflicts. The divergence control (DC) method sets
limit on conflicts by using import and export limits for each transaction. Thus, update
transactions have export limit and query transactions (read-only) have import limit,
which specify the maximum number of conflicts they can be involved in. When import
limit > 0 and export limit > 0, then successive transactions may introduce unbounded
inconsistency. For example, tl may change the value of a data item by a large amount
and t 2 will read this value and operate on it as import and export counters are not
violated. Later if tl aborts, t z would have operated on a value that was deviated from
consistent value by a large amount. This situation requires consistency restoration,
which is done by consistency restoration algorithms.

In this concurrency control mechanism, DC sets limits on the change allowed in
each data item value at MU and does not allow transactions to violate this limit. If it
does, then it is sent as a request transaction to DBS for execution. In this scheme a
transaction at MU will see an inconsistent value of data item for a maximum period
of T (the timeout period) after which it receives new consistent values of the data
items. During T , the value of data item d i may diverge from the consistent value
by a maximum of N, x Ai, where Ni is the number of replicas of di . In this way
transactions are allowed to execute on inconsistent data item but the inconsistency
in data value is bounded by Ni x Ai. So in this CCM the DC includes the function
f i (d i ; ai), which calculates Ai for each d, and also for the algorithm executed at MU
to execute transactions. Thus, the consistency restoration includes the execution of
request and pre-committed transactions at DBS and broadcasting of the consistent
value of the data item to the MU.

182 TRANSACTION MANAGEMENT IN MOBILE DATABASE SYSTEMS

EXAMPLE 7.7

This example explains the working of the CCM discussed in this section. Fig-
ure 7.12 illustrates the execution of concurrent transaction under this CCM.
Suppose a data item X represents total number of movie tickets. X belongs to
metric state space. Let N, be the number of replicas of X . Initially suppose
A' = 180 and N, = and X is replicated at MU1, MU2 and MU3. The functions
f x (X , N,) that calculates A, is A, = f z (X , N z) = (X / 2) / N , = X / 2 N z =
30. Here X is divided by 2 to keep some tickets for the request transaction,
which cannot be executed at the MU. This function depends on the application
semantics and the policy the application developer wants to follow. Each data
item will have different function depending on the semantics of that data item.
(Ax, X , T) , where 7 is timeout within which the MU should send committed
transaction for re-execution at the server, is broadcasted by the DBS server to
MU'S. The following three cases arise:

Case 7: Transactions t l , f2, and f 3 arrive at MU1, MU2, and MU3, respec-
tively. Consider the case where t~ books 20 ticket3, t 2 books 30 tickets, and
t 3 books 40 tickets. Figure 7.13 shows the state of the system at this instant.
Suppose A, repreqents change in value of data item X . Each MU that has a
replica of X will maintain the value As-c.

At MUl: Initially = 0.

tl books 20 tickets, so AT -t, = 20 and AT-< = + A,-,, = 20. As A, -c

< A,, t l is committed at MU1 and so X is updated to 160 and tl is sent to
DBS for re-execution on the master copy.

At MU2: Initially Az-c = 0

t 2 books 30 tickets, so A,-,, = 30 and = AxPC + & - t 2 = 30. As AL-c
< A,, t2 is committed at MU2 and X is updated to 150 and t a is sent to DBS
for re-execution.

CONCURRENCY CONTROL MECHANISM 183

At MU3: Initially = 0.

t 3 books 40 tickets and makes Ax--ts = 30 and Ax-c = AxPC + = 40.
Since Axcc > A,, t 3 is not executed at MU3 and is sent as request transaction
to DBS for execution.

DBS receives t n , t 2 , and tl in this order. Since t 3 is a request transaction,
it is executed after timeout 'T has expired and after the execution of t 2 and
t l on the master copy. So the execution at DBS is X = 180, t 2 , X = 150, 21,
X = 130, t 3 , X = 90; and after the execution, A is recomputed using the function
.fx;(X, N,). Thus, A, = f z (X , N,) = X / 2 N , = 15. The DBS broadcasts (X =
90, A, = 1 5 , ~) and each MU now can update the value of X by not more that
15 and sends the transaction for re-execution within T . Figure 7.13 illustrates
case 1.

X = 180 x = 90

X = 160 X = 150 x = 180
A x =30 A X =30 A X =30

(a) Transactions are sent to the server (b) New values of A and X are broadasted

Fig, 7.13 Intermediate state in CCM.

Transactions on MU see an inconsistent value of the number of tickets only
for period T ; after that, DBS sends their consistent value. The transactions
that want to know number of tickets available will get an approximate value
of number of tickets. Inconsistency in the value of data objects is bounded by
refreshing the data object value at a regular interval of 7 and setting a limit on
A on the maximum update that can be made during that period.

Case 2: MU3 receives the values (X = 90, A, = 15, T) from the DBS. For
every new timeout value, Ax-C is reset to zero. Transactions t 4 and t 5 arrive at
MU3. t 4 books 10 tickets and t ,5 books 8 tickets. Suppose the execution order
is t 4 , t 5 . After the execution of t 4 , &-t4 = 10 and Ax-c = Ax-c + A,-t4 = 10.
As As-c < A,, t 4 is executed at MU3 and is sent to the DBS for re-execution.
Before 7 expires, transaction t 5 arrives at MU3 where A,I:-,, = 10 and A:,;-c =
8. This makes AZcc = Ax-c + Ax-ts = 18. As Ax-C > A,, t 5 is not executed
at MU3 and sent to DBS for execution as a request transaction.

Case 3: MUs receive values (X = 80, A, = 0, 'T) from DBS. t 6 arrives at
MU2 and books 2 tickets. At MU2 initially, Axcc = 0. t 6 books 2 tickets and
makes Arc--ta = 2. At this point, = Axpc + Ax-t6 = 2. As Axpc > A,,
tB is not executed at MU2 but is sent as a request transaction to the DBS.

184 TRANSACTION MANAGEMENT IN MOBILE DATABASE SYSTEMS

All update transactions that arrive at MU will be sent to DBS as request
transaction because no change is allowed to the replica at MU since A, = 0.
Only read transactions at MU can access data item X .

7.14 TRANSACTION COMMIT

The distributed execution of a transaction requires collaboration among nodes to
commit the transaction. The collaboration is initiated and managed by the coordinator,
which makes sure that every subtransaction is executed successfully and ready to
commit. If any of its subtransactions cannot commit, then the parent transaction is
aborted by the coordinator.

The entire process of commit has two phases: (a) checking the intention of each
node participating in the execution of a transaction (participants) and (b) collecting
the intensions of participants and committing the transaction. The entire process is
atomic, and the commit protocol is referred to as Atomic Commitment Protocol (ACP).

The most common ACP used in conventional distributed database systems is called
a Two-Phase Commit (2PC) protocol. There is a Three-Phase Commit (3PC) protocol
[4] which claims to be more efficient than 2PC but requires a higher number of
messages compared to 2PC for making a commit decision. So far, no system has
implemented 3PC, but it continues to be an interesting research topic.

7.14.1 Two-Phase Commit Protocol - Centralized 2PC

A distributed database system with multiple nodes is assumed to describe 2PC. A
transaction T, originates at a node which assumes the role of coordinator for T,.
The coordinator fragments T, and distributes them to a set of participants. The
coordinator may or may not keep a fragment for itself. Thus a coordinator and a
set of participants together executes T, leading either to a commit or to an abort as
decided by the coordinator. The protocol makes sure of the following:

0 Participants’ decision: All participants reach a decision for their fragments.
All decision can be either Yes or No.

0 Decision change: A participant cannot change its final decision.

0 Coordinator’s decision: The coordinator can decide to commit Ti only if all
participants and the coordinator agree to commit their subtransactions. It is not
that in this situation the coordinator has no other option than to decide commit;
it can still abort the transaction.

When the failure scenario is included, then the following additional steps are
required for making some decision.

0 No failure: In the absence of any failure, if all processing nodes (participants
and coordinator) agree to commit, then the coordinator will commit T,.

TRANSACTION COMMIT 185

0 With failure: Failure of one or more participants or the coordinator may delay
the decision. However, if all failures are repaired within acceptable time,
then the coordinator will reach a decision. This identifies the non-blocking
property of centralized 2PC. The non-blocking property is essential for any
APC. However, it may not be strictly enforced; that is, a failure may generate
infinite blocking situation.

The working of centralized 2PC is described in the following steps [4]:

I . Transaction fragmentation and distribution: A transaction T, arrives to a
node. This node servers as the coordinator for TI . The coordinator fragments
Ti into subtransactions and distributes these fragments to a set of participants.
These nodes begin executing their subtransactions of Ti.

First phase of centralized 2PC - Voting phase

2. Voting: The coordinator multicasts a message (vote request - VR) to all par-
ticipants, asking them to vote if they can commit their subtransaction of Ti,

3. Participants’ vote: When a participant receives VR message from the coor-
dinator, it composes its response (vote) and sends it to the coordinator. This
response can be a Yes or a No. If the vote is Yes, then the participant enters into
an “uncertainty” period after sending it to the coordinator. During this period
a participant cannot proceed further (make any unilateral decision in behalf of
its subtransaction of Ti) and just waits for an abort or commit message from
the coordinator. If the vote of the participant is No, then it does not wait for
coordinator’s response and aborts its subtransaction and stops.

Second phase of centralized 2PC - Decision phase

4. Commit decision and dispatch: When the coordinator receives votes from all
participants and has its own vote, it performs an AND operation among these
votes. If the result is aYES, then the coordinator decides to commit otherwise
it decides to abort Ti. It multicasts the decision to all participants and stops.

5. Participants decision: All participants receives a coordinator’s decision and
act accordingly. If the decision is to abort, all participants abort their fragments
and then stop.

7.14.2 Node Failure and Timeout Action

In order to make sure that the non-blocking property of centralized 2PC is effectively
implemented, the occurrences of infinite wait because of node failure must be dealt
with. One of the schemes to enforce non-blocking property is to use timeout action. A
timeout value identifies how long aparticipant should wait for the anticipated message
before its takes some action.

In the description of centralized 2PC participants wait for VR messages from the
coordinator at the beginning of step 3, and the coordinator waits for participants’ Yes

186 TRANSACTION MANAGEMENT IN MOBILE DATABASE SYSTEMS

or No decision at the end of step 3. Similarly, all participants either wait for the
coordinator’s commit or abort message in step 5 . If a participant times out at the
beginning of step 3, then it can unilaterally decide to abort because it is not in its
uncertainty period. At the end of step 3, the coordinator may time out waiting for Yes
or No messages from some or all participants. It may decide to abort and send abort
messages to those participants who did not send their vote and who send Yes votes.

The timing out of participants at the beginning of step 4 is more involved because
participants are in their uncertainty period and they cannot change their vote from
Yes to No and abort their subtransactions. It is possible that the coordinator might
have sent the commit message and it reached only to a subset of participants. If a
participant times out in its uncertainty period and decides to abort, then it would be
a wrong action. To take care of this immature abort by a timed-out participant, a
cooperative termination protocol can be used. A cooperative termination protocol
helps a participant to gather information about the last message from the coordinator
which this participant missed and timed out.

Cooperative Termination Protocol: When a participant in uncertainty period fails
to receive a commit or abort message from the coordinator, then it has two options: (a)
Ask the coordinator about its last message or (b) Ask one of is neighbor participants.
In case (a) if the coordinator is available to respond, then it can get the desired
information and decide accordingly. To use (b), every participant must know the
identity of all other participants. This can be easily provided by the coordinator at
the time of sending an VR message in step 2. The following three cases arise when
(b) is used:

1. Participant P1 asks P2 about the final outcome. If P2 has decided to commit
or abort (it did receive coordinator’s decision message), then it can inform PI
about its decision and P1 can act accordingly.

2. P2 is not in uncertainty period and has not voted yet. It decided to abort and
informs P1. P1 also aborts.

3. P2 has votedyes but has not received a decision from the coordinator either. P2
is in a similar situation, that is, it timed out in its uncertainty period as P1 and
cannot help. P1 and P2 can continue to ask other participants, and hopefully at
least one participant might have received the coordinator’s decision. It informs
P1, and PI acts accordingly and so does P2. If a11 participants are timed out
and did not get coordinator’s decision, then possibly the coordinator has failed
and they can abort and stop.

The performance of a commit protocol largely depends on the number of messages
it uses to terminate (abort of commit) a transaction. To evaluate the cost of commu-
nication, two parameters are used: (a) time complexity and (b) message complexity.

Time Complexity: This parameter evaluates the time to reach a decision. It includes
the time to complete a number of other necessary activities such as logging messages,

TRANSACTION COMMIT 187

preparing messages, etc. A smaller value is highly desirable. The decision time in the
absence of any kind of failure (coordinator or participants of both) is obviously smaller
compared to the time with failure. In the absence of failures, the protocol uses three
message rounds. A message round is the total time the message takes to reach from
its source to the destination. The first message round is the broadcast of VR messages
to the participants from the coordinator; in the second round, all participants send
their votes; and in the third round the coordinator broadcasts its decision (commit or
abort). In the presence of failures, two additional rounds are required: (a) a timed-out
participant enquires the coordinator’s decision and (b) a response from a participant
who received coordinator’s decision (this participant is out of its uncertainty period).
Thus with no failure of any kind, three message rounds-and with failure, five message
rounds-are required to terminate a transaction.

Message Complexity: Message complexity evaluates the number of message ex-
changed between destinations and sources to reach a decision. In a centralized 2PC,
message exchange takes place between one coordinator and n, participants when there
is no failure. The total number of messages exchanged is 3n, in the three steps of the
protocol:

0 The coordinator sends VR message to 12 participants = n messages.

0 Each participant sends one vote message (Yes or No) to coordinator = rr vote
messages.

0 The coordinator sends decision message to ‘II participants = 12 messages.

In the presence of failure, each timed-out participant who voted Yes initiates
cooperative termination protocol. In the worst-case scenario, all participated
could be timed out and initiate the protocol. If there are m, such timed-out
participants with Yes vote, then 711 5 n,.

0 rr), participants will initiate the protocol and send n - 1 decision request mes-
sages. The requestor participant rn,? will get a response from at least one of the
‘rt, participants and would come out of its uncertainty period. This cycle will
continue until m participants come out from their uncertainty period. The total
number of messages used in this entire process will be

‘rri

m(n, - 1) + C(n - m, + i) = 2 m (n - 1) ~ rnd2/2 + m / 2
i=l

To minimize the time or message complexity or both, two variations of 2PC
exist: (a) decentralized 2PC and (b) linear or nested 2PC.

7.14.3 Decentralized 2PC

In this scheme the coordinator minimizes the message complexity by sending its vote
along with VR message to participants. If the coordinator’s vote is No, then partici-
pants know the decision and abort their subtransactions and stop. If the coordinator’s

188 TRANSACTION MANAGEMENT IN MOBILE DATABASE SYSTEMS

vote is Yes, then each participant sends its vote to all other participants. After re-
ceiving all votes, each participants decides. If all votes are Yes, then the transaction
commits; otherwise it is aborted.

Time Complexity: In a decentralized 2PC there are two message rounds: (a) The
coordinator sends a VR message and its vote, and (b) the participant sends its Yes vote
and transaction commits. When the coordinator sends its Yes vote to participants, it
implies that “I am ready to commit and if you are also, then go ahead and commit”
and, therefore, there is no need for the coordinator to send a Commit vote. Thi\
reduces one message round compared to centralized 2PC.

Message complexity: The reduction in time complexity unfortunately increases
the message complexity. In a centralized 2PC the coordinator makes the final decision
but in distributed 2PC everybody participates in the decision process. This requires
that each participant communicates with all other participants to know their votes. If
there are n participants, this process requires nz messages. Thus the total number
of messages to commit a transaction in failure as well as in no failure cases is n2
(participant to n - 1 participants) + n (coordinator to n participants). In the case
of n > 2, decentralized 2PC always takes a greater number of messages than a
centralized 2PC.

7.14.4 Linear or Nested 2PC

In linear 2PC the message complexity is reduced by collecting votes serially. All
participants and the coordinator are ordered linearly. Each participant has a left and
a right neighbor and a coordinator has only one neighbor. Figure 7.14 illustrates the
setup.

Fig- 7.74 Linear ordering of participants and coordinator.

The protocol works as follows:

1. The coordinator sends its Yes or No vote to participant PI .

2. PI performs Coordinator’s vote A PI’S vote = X . X =Yes or No.

3. PI sends X to 1’2 and the process continues until the result reaches to P,

4. If the outcome of P, computation is Yes, it decides to commit and sends this
message to P,,- 1 .

5. The return message containing the commit decision finally reaches to the co-
ordinator and completes the commit process.

COMMITMENT O f MOBILE TRANSACTIONS 189

Protocols

Centralized

Time Complexity: There is no message broadcast in a linear 2PC, so it requires the
same number of rounds as the number of messages to make the final decision. Thus
with n participants it will require 2.n rounds, which is much larger than centralized
and decentralized 2PC.

Messages Rounds

3n 3

Message Complexity: With n participants, this protocol requires 2n messages: n
forward messages and n return messages which is much smaller than the message
complexity of decentralized and centralized 2PC.

Table 7.6 compares the message and time complexity of centralized, decentralized,
and linear 2PC with no failure. It is hard to identify the most efficient protocol for
all systems because of the wide ranging values of parameters such as message size,
communication speed, processing delay, etc., which are highly system-dependent.
However, it can be seen that the centralized 2PC offers a good compromise.

Distributed

Linear

Table 7.6 Message and time complexity in various 2PC

n2 + 'n 2

2n 2 n,

I I I I

I I I I

7.1 5
7.15.1 Commit Protocols for Mobilaction

COMMITMENT OF MOBILE TRANSACTIONS

The mobility and other characteristics of MUs affect Mobilaction processing espe-
cially its commitment. Some of the common limitations are: (a) An MU may cease
to communicate with its BS for a variety of reasons, (b) it may run out of its lim-
ited battery power, (c) it may run out of its disk space, (d) it may be affected by
airport security, (e) physical abuse and accident, (f) limited wireless channels for
communication, and (8) unpredictable handofs.

A mobile computing environment creates a complex distributed processing envi-
ronment; therefore, it requires a distributed commit protocol. We have assumed the
two-phase commit approach as the basis of developing our mobile commit protocol.
One of the essential requirements of distributed processing is that all subtransactions
of T, must be ready to commit. In MDS a complete knowledge of this state becomes
relatively more complex because of mobility. It is crucial that the scheme to acquire
this knowledge must use minimum message communication, and it is also important
that this scheme should not be dependent on the mobility of the involved MUs.

The different types of data (temporal and spatial) in mobile computing provide
more freedom in designing commit protocols. Like conventional distributed database
systcms, a transaction in MDS may be processed by a number of DBSs and MUs;
therefore, some commit protocol is necessary for their termination. Legacy commit

190 TRANSACTION MANAGEMENT IN MOBILE DATABASE SYSTEMS

protocols such as 2PC (two-phase commit), 3PC (three-phase commit) 141, etc., will
not perform satisfactorily mainly because of limited resources, especially wireless
channel availability. For example, the most commonly used 2PC uses three message
rounds in the case of no failure and uses five in the case of failure for termination [4].
Note that it requires additional support (use of timeout) for termination in the presence
of blocked or failed subtransactions. Thus, the time and message complexities are too
high for MDS to handle and must be minimized to improve the utilization of scares
resources.

The mobility of MU adds another dimension to these complexities. It may force
MDS to reconfigure the initial commit setup during the life of a transaction 1221. For
example, a proper coordination among the subtransactions of a transaction under a
participants-coordinator paradigm may be difficult to achieve with the available re-
sources for its commitment. Mobile database systems, therefore, require commitment
protocols which should use a minimum number of wireless messages, and MU and
DBSs involved in T, processing should have independent decision-making capability
and the protocol should be norz-blocking [4].

7.1 6 TRANSACTION COMMITMENT IN MOBILE DATABASE SYSTEMS

The mobility and other characteristics of MUs affect transaction processing, especially
its commitment. Some of the common limitations are: (a) An MU may cease to
communicate with its BS for a variety of reasons, (b) it may run out of its limited
battery power, (c) it may run out of its disk space, (d) it may be affected by airport
security, (e) physical abuse and accident, (f) it has limited wireless channels for
communication, and (g) unpredictable handofl.

Like conventional distributed database systems, a transaction in MDS may be
processed by a number of nodes such as DBSs and MUs; therefore, some commit
protocol is necessary for their termination. Conventional commit protocols such as
2PC, 3PC [4], etc., could be molded to work with MDS; however, they will not perform
satisfactorily mainly because their resource requirements may not be satisfied by MDS
on time. For example, the most commonly used centralized 2PC uses three message
rounds in the case of no failure and uses five in the case of failure for termination
[4]. It requires additional support (use of timeout) for termination in the presence of
blocked or failed “subtransactions.” Thus, the time and message complexities are too
high for MDS to handle and must be minimized to improve the utilization of scares
resources (wireless channel, battery power, etc.)

The mobility of MU adds another dimension to these complexities. It may force
MDS to reconfigure the initial commit setup during the life of a transaction [2 1,22,23].
For example, a proper coordination among the subtransctions of a transaction under
participants-coordinator paradigm may be difficult to achieve with the available re-
sources for its commitment. For example, a mobile unit may not receive coordinator’s
vote request and commit messages and it may not send its vote on time because of
its random movement while processing a subtranaction. This may generate unneces-
sary transaction aborts. These limitations suggests that MDS commit protocol must

TRANSACTION COMMITMENT IN MOBILE DATABASE SYSTEMS 191

support independent decision-making capability for coordinator and for participants
to minimize cost of messages. A new commit protocol is required for MDS which
should have the following desirable properties:

0 It should use a minimum number of wireless messages

0 MU and DBSs involved in T, processing should have independent decision-
making capability, and the protocol should be non-blocking.

An analysis of conventional commit protocols indicates that timeout parameter
could be used to develop a commit protocol for MDS. In conventional protocols,
timeout parameter is used to enforce non-blocking property. A timeout identifies
the maximum time a node can wait before taking any decision. The expiration of
timeout is always related to the occurrence of some kind of failure. For example, in
conventional 2PC the expiration of timeout indicates a node failure and it allows a
participant to take a unilateral decision.

If a timeout parameter can identify a failure situation, then it can also be used to
identify a success situation. Under this approach the end of timeout will indicate a
success. The basic idea then is to define a timeout for the completion of an action and
a sume that at the end of this timeout the action will be completed successfully. For
example, a participant defines a timeout within which it completes the execution of
its subtransaction and sends its update through the coordinator to DBSs for installing
it in the database. If the updates does not arrive within timeout, then it would indicate
a failure scenario. The coordinator does not have to query the participant to learn
about its status.

Recently timeout parameter has been used in a nonconventional way for developing
solutions to some of the mobile database problems. This section presents a commit
protocol which is referred to as Transaction Commit on Timeout (TCOT) [21,22]. It
uses timeout parameter to indicate a success rather than a failure.

The TCOT protocol is discussed below in detail. A transaction T, is fragmented
into several subtransactions, which are distributed for execution among a number of
DBSs and the MU where T, originated. These nodes are defined as Commit Set of
T,; the MU where T, originates is referred to as Home MU (n / f U ~) ; and the BS of
ILIU~J is referred to as Home BS (BSH) .

Definition 7.21 A commit set o f a T, is dejined as the set of DBS and the M U H ,
which take part in the processing and commit of T,. A DBS is identijied as a static
rnembel; and the MU is a mobile member of a commit set.

TCOT strives to limit the number of messages (especially uplink). It does so by
assuming that all members of a commit set successfully commit their fragments within
the timeout they define after analyzing their subtransactions leading to commit of T,.
Unlike 2PC or 3PC, no further communications between the CO and participants take
place for keeping track of the progress of fragments. However, the failure situation
is immediately communicated to CO to make a final decision.

It is well known that finding the most appropriate value of a timeout is not always
easy because it depends on a number of system variables, which could be difficult to

192 TRANSACTION MANAGEMENT IN MOBILE DATABASE SYSTEMS

quantify. However, it is usually possible to define a value for timeout, which performs
well in all cases. An imprecise value of timeout does not affect the correctness but
affects the performance of the algorithm.

Every CO (new or existing) must know the identity of each member of a commit
set. Every ~ I U H stores the identity of it5 current CO for each transaction requested
there. When M U H moves to.another cell, then during registration it also informs the
BS about its previous CO. As soon as M U F I sends T, to BSR, the latter assumes the
role of CO for T,. In the dynamic approach also the transfer of CO does not require
extra uplink or downlink messages because the notification process is a part of the
registration.

Types of Timeout

TCOT protocol uses two types of timeout: Execution Timeout (E t) and Update Ship-
ping Timeout (&).

Execution Timeout (Et): This timeout defines a value within which a node of
a commit set completes the execution (not commit) of its execution fragment or
subtransaction e i . It is an upper bound of the time a DBS or the ~ L ~ U I I requires to
complete the execution of ei.

The CO assumes that the MUH or a DBS will complete the execution of its ei
within Et. The value of Et may be node-specific. It may depend on the size of ei and
the characteristics of the processing unit; thus, Et(MUi) may or may not be equal
to Et(APUj), (i # j) . We identify M U H ’ s timeout by & (M U) and identify DBS’s
timeout by E,(DBS). The relationship between these two timeouts is & (M U)
= Et(DBS) &A. The A accounts for the characteristics such as poor resources,
disconnected state, availability of wireless channel, etc., compared to DBS. It is
possible that a MU may take less time than its Et to execute its e i . We also do not
rule out the possibility that in some cases Et(DBS) may be larger than E t (M U ~) .
Et typically should be just long enough to allow a fragment to successfully finish its
entire execution in a normal environment (i.e., no failure of any kind, no message
delay, etc.)

Shipping timeout (St): This timeout defines the upper bound of the data shipping
time from MUH to DBS.

In E t , the cached copy of the data is updated at the MU. To maintain global
consistency, all data updates done by the M U H must be shipped and installed at the
database located at DBS. Thus, at the end of Et the CO expects the updates to be
shipped to the DBS and logged there within St.

7.1 6.1 TCOT Steps-No Failure

In TCOT three components, M U H , CO, and DBSs, participate. The steps in the
absence of any kind of failure are:

TRANSACTION COMMITMENT IN MOBILE DATABASE SYSTEMS 193

Activities o j b l U ~ :

- A Ti originates at MUf1. The BSH is identified as the CO. AJUt, extracts
its ei from T?,, computes its Et, and sends Ti - ei to the CO along with
the Et of c i . MUH begins the processing of e i .

- While processing e i , M U H updates its cache copy of the database, com-
poses update shipment, and appends it to the log.

- During processing, if it is determined that e, will execute longer than Et,
then M U H extends its value and sends it to CO. Note that this uses one
extra uplink message. The frequency of such extension requests can be
minimized with a careful calculation.

- If the local fragment ei aborts for any reason, then M U f , sends an Abort
message to CO (failure notification).

- After execution of ei M U H sends log of updates to the CO. The updates
must reach to CO before St expires. It could be possible that updates may
reach CO much earlier, in which case it may decide commit sooner.

- In the case of read-only ei , M U H sends a commit message to CO. This
is not an extra message, it just replaces shipping update message.

- Once the updates are dispatched to CO, M U H declares commit of e,.
Note that the underlying concurrency control may decide to release all
the data items to other fragments. If for some reason Ti is aborted, then
fragment compensation may be necessary.

- If M U H fails to send updates to CO within SL and it did not extend Et,
then the CO aborts e,.

0 Activities of CO:

- Upon receipt of T, - e, from M U H , the CO creates a token list for Ti,
which contains one entry for each of its fragments. Figure 7.15 shows a
token list entry for et of Ti. In the case of CO change, a token is used to
inform the new CO the status of fragment and commit set members. The
CO splits Ti - e, into e,7’s (i # j) and sends them to the set of relevant
DBSs.

- ~~

~ e, ~ E, (MU,) or E, (DBS,) Coordinator Id Commit s A , -
Fig. 7.75 An entry of a token list.

- After receiving Et from a DBS, the CO constructs a token for that fragment

- H a new Et (extension) is received either from MUJ, or from a DBS, then

and keeps it for future use.

the CO updates the token entry for that fragment.

794 TRANSACTION MANAGEMENT IN MOBILE DATABASE SYSTEMS

- CO logs the updates from M U H .

- If the CO has MUH’S shipment before St expires and commit messages
from other DBSs of the commit set, then the CO commits T,. At this
time the updates from the MUH are sent to the DBSs for update to the
primary copy of the databases. Note that no further message is sent to
any member of the commit set of T,.

- If CO does not receive updates from MUH within the timeout or does
not receive commit message from any of DBSs of the commit set, then
it aborts T, and sends a Global Abort message (wired message to DBSs
and wireless to MU) to those members of the commit set who committed
their fragments.

Activities of DBS:

- Each DBS, upon receiving its fragment, computes Et and sends it to the
CO. DBS begins processing its fragment and updates its own database.

- If it is determined that the fragment will execute longer than Et, then this
value is extended and the new value is sent to the CO.

- At the end of e,, it sends a “commit message” to the CO.

- If DBS cannot complete the execution of its e, for any reason and did not
extend Et, then it sends an Abort message to the CO.

Discussion: One may argue that either Et or the “commit message” is sufficient
for making a commit decision. This is not entirely correct. Et identifies when a
fragment will finish its execution and will be ready to commit. Thus, at the end of
Et, CO will assume that the DBS has committed its fragment, which may not be true
(fragment may not have been processed because of the failure of the DBS). Since
a DBS does not ship updates, it must use a message for informing the status of the
fragment. On the other hand, if there is only “commit message,” then the CO could
never get this message from a DBS for some reason and wait for ever to make the
final commit decision. Thus, for making the final decision and doing it efficiently,
both Et and “commit message” are necessary. Note that a DBS communicates with
the CO through wired channel and any extra message does not create any message
overhead.

TCOT, unlike 2PC, has only one phase commit operation. No vote-request or
commit message is sent to commit set members. The task assignment message to
these members provides necessary information and directives for completing com-
mit. Only in the case of abort, one extra wireless message is used. In reality, not
many transactions are aborted and this extra message not likely to generate noticeable
overhead.

In the case of a read-only fragment, M U I ~ does not send any update to the CO;
but similar to a DBS, it sends only a “commit“ message.

TRANSACTION COMMITMENT IN MOBILE DATABASE SYSTEMS 195

7.1 6.2 Node Failure-Fragment Compensation

The process of compensation is not related to commit; rather, it comes under recovery
[171 but it becomes an issue for long running transaction. In TCOT a member of
TL’s commit set may commit its fragment, and the underlying concurrency control
(two-phase locking scheme is assumed) may decide to release its data items to other
concurrent fragments before the CO declares the commit of T,. For example, if e, (77%)
is committed by MUIT but T, is aborted, then e, must be compensated. When MUII
receives a message to abort e, from the CO, then, if possible [17], a compensating
transaction for e7 is executed. At the end of compensation, MU11 informs CO and
sends new updates if there is any. Figure 7.16 illustrates the relationship among Et ,
St, abort, and compensation. After St the M U H can make data items available to t‘,
(1 # 3) . This means that after St an e, may be compensated.

<- e, can be aborted -++ e, can be aborted

Execution timeout (E,)- t--- Shipping timeout (S,) +

Execution -> I
Data available to ei e, may be compensated

Fig. 7.16 Relationship between l3t and St, abort, and compensation.

7.1 6.3 TCOT with Handoff

Updates from MUH and dispatch of commit message from DBSs in the case of a
handoff must be sent to the right CO if it changes. The change in CO is notified using
a token. The following steps define the commit process in the presence of a handoff.

MUH moves to a different cell and it registers with the new BS.

If MDS employs dynamic selection of CO, then the M U H sends the identity
of its last CO in the registration process and accepts the new BS as its next
CO. The new BS gets the token from the last CO, which provides necessary
information.

The new CO identifies other members of the commit set from the token and
notifies them about the change of CO. Note that the communication between
the new CO and DBSs is through wired channel. The processing of T, resumes
normally.

A doze mode of M U H will mainly affect its Et. MUH may not be aware of its
movement, but it knows when it enters into the doze mode. Therefore, before entering
doze mode, MUH can always request for extension to its Et. If granted, then the
fragment will not be aborted; otherwise a global abort will be initiated.

196 TRANSACTION MANAGEMENT IN MOBILE DATABASE SYSTEMS

7.1 6.4 Special Cases

A number of special cases may arise during commit, and TCOT manages them as
follows:

0 St expires before DBSs sends commit message: It is possible that M U H
commits its ei and sends its updates to the CO, before DBSs send their commit
messages to the CO. In this case the CO will wait for the commit messages.

0 DBSs send commit messages before St expires: The CO will wait for St to
expire before making any decision.

0 SL expires but no updates or no commit message: The CO will send abort
message to the members of the commit set.

Note that the abort could be received at any time. If it is received prior to commit,
then a local abort with corresponding undo is needed. If, however, it is received
after the local commit, then a compensation is needed. Further, when a fragment
is executed, the decision to commit or abort is made locally. However, the implicit
assumption is that a global commit occurs.

7.1 6.5 An Alternate TCOT Protocol

In the first version of TCOT, M U H is responsible for extracting ei from Ti, computing
El, and sending Ti ~ ei to the CO. In this approach, every Ti is examined by M U H ,
which is not necessary. This can be improved by sending the entire Ti to the CO and
letting the CO do the fragmentation, estimate Et , and send the information back to
MUH. This will use one extra wireless downlink message but reduces the workload
of M U , since many Ti’s may not be processed by MUH. The other advantage of
this is related to token passing. The CO can send the token to M U H , which in turn
can send it to the new CO during registration. The steps, which differ from the first
version of TCOT. are:

0 M U H forwards Ti to the CO.

0 The CO fragments Ti, computes Els of all the fragments, creates tokens, and
sends them to the members of the commit set. (This step uses one extra down-
link message)

0 M ~ J H computes St for its fragment.

7.16.6 Correctness

A commit decision by a CO is said to be “correct” if the decision to commit is
unanimous. Suppose the CO decides to commit Ti when at least one member of the
commit set is undecided. This is possible only if the CO declares commit before the

SUMMARY 197

expiration of either S, or absence of commit message from at least one DBS. This,
however, cannot happen. Further, suppose that the MUH failed and could not send
updates to the CO within St or the "commit message" is not received by the CO. In
this situation, the CO will abort T,. Since our algorithm is based on timeout, it is not
possible that at any stage the CO will enter into an infinite wait.

7.17 SUMMARY

This chapter introduced a reference architecture of mobile database system and dis-
cussed a number of transaction management issues. It identified a number of unique
properties of mobile database system and discussed the effect of mobility on its func-
tionality.

It demonstrated that location of the database and the location of the origin of
the query must be considered to enforce ACID properties of transactions. To handle
these requirements, the concept of Location Dependent Data and Locution Dependent
Commit were introduced. Thus in mobile database systems a user initiates (a) a
location-dependent query, (b) location-aware query, or (c) a location-independent
query. The concept of data region was introduced to accommodate cellular structure
in mobile database processing and transaction commit.

It identified unique system requirements for concurrency control mechanisms and
transaction commitment. First it analyzed the relationship between mobility and
transaction processing. A clear understanding of this relationship is necessary for the
development of mobile transaction model and its management.

It argued that conventional 2-phase or 3-phase commit protocols were not suitable
for mobile database systems and illustrated that a commit protocol which uses least
number of messages and offer independent commit decision capability was highly
desirable. It introduced one-phase commit protocol with above properties.

A data replication scheme for connected and disconnected operations was dis-
cussed for mobile database \ystem. Under this scheme, data located at strongly
connected sites are grouped in clusters. Bounded inconsistency was defined by re-
quiring mutual consistency among copies located at the same cluster and controlled
deviation among copies at different clusters. The database interface is extended with
weak operations.

This chapter provided necessary material for the development of mobile database
system framework and mobile transaction model.

Exercises

1. Highlight the essential differences of mobile database system with conventional
database systems. What are the problems in using mobile units or a base station
or a fixed host as (a) a client, (b) a server, or (c) a peer?

198 TRANSACTION MANAGEMENT IN MOBILE DATABASE SYSTEMS

2. Consider the architecture of a given mobile database system. What types of
scenario a transaction may encounter during its execution? Explain your own
ideas in managing these situations successfully.

3. Develop your own mobile transaction model and a way of executing them on
a mobile database system.

4. Implement a strict two-phase locking mechanism in a mobile database system
and count the total number of messages it requires to (a) commit a transaction,
(b) roll-back a transaction, and (c) execution a transaction (not commit).

5. Consider modifying TCOT to manage transaction failure more efficiently.

1. R. J. Abbott and Hector Garcia-Molina, “Scheduling Real-Time Transactions: A
Performance Evaluation,” ACM Transactions on Database Systems, Vol. 17, No.
3. 1992.

2. Alonso, R., D. Barbara, and H. Garcia-Molina. “Data Caching Issues in an
Information Retrieval System,“ ACM Transactions on Database Systems, Vol.
15, No. 3 , September 1990.

3. BarbarB, Daniel “Certification Reports: Supporting Transactions in Wireless Sys-
tems“. In ZCDCS, 1997.

4. P. A. Bernstein, V. Hadzilacos and N. goodman, “Concurrency Control and Re-
covery in Database Systems,“ Adison-Wesley, Reading, MA, 1987.

5. P. K. Chrysanthis, “Transaction Processing in a Mobile Computing Environment,“
in Proceedings of the IEEE Workshop on Advances in Parallel and Distributed
Systems, Princeton, NJ, Oct. 1993.

6. S. B. Davidson, H. Garcia-Molina, and D. Skeen. “Consistency in Partitioned
Networks,” ACM Computing Surveys, Vol. 17, No. 3, September 1985.

7. M. H. Dunham, A. Helal, and S. Baqlakrishnan. “A Mobile Transaction Model
that Captures Both the Data and the Movement Behavior,” ACM/Balter Journal
on special topics in mobile networks and applications, Vol. 2, No. 2, 1997.

8. G . H. Forman and J. Zahorjan, “The Challenges of Mobile Computing,” IEEE
Computer, Vol. 27, No. 6, April 1994.

9. H. Garcia-Molina and G. Wiederhold, “Read-only Transactions in a Distributed
Database,“ ACM Trunsuctions on Dafabu.se Systems, Vol. 7 , No. 2, June 1982.

SUMMARY 199

10. H. Garcia-Molina and K. Salem, “Sagas,“ in Proceedings of ACM SIGMOD
Conference, 1987.

11. J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques, Mor-
gan Kaufmann, San Francisco, 1993.

12. J. Gray, P. Helland, P. E. O’Neil, and D. Shasha, “The Dangers of Replication
and a Solution,“ in Proceedings ofACM SIGMOD Conference, 1996.

13. A. K. Elmagarmid, Y. Lie, and M. Rusinkiewicz, “A Multidatabase Transaction
Model for INTERBASE,“ in International conference on Very Large Databuses
(VLDB), Brisbane, Australia, Aug. 1990.

14. L. B. Huston and P. Honeyman, “Partially Connected Operation,” Computing
Systems, Vol. 4, No. 8, Fall 199.5.

15. T. Imielinksi and B. R. Badrinath, “Wireless Mobile Computing: Challenges in
Data Management,” Communications of the ACM, Vol. 37, No 10, Oct. 1994.

16. J. J.Kistler and M. Satyanarayanan, “Disconnected Operations in the Coda File
Systems,“ ACM Transactions on Computer Systems, Vol. 10, No. 1, Feb. 1992.

17. H. Korth, E.Levy, and A. Silberschatz, “A Formal Approachto Recovery by Com-
pensating Transactions,“ in Proceedings of the 16th VLDB Conference, Brisbane,
Australia 1990.

18. N. Krinshnakumar and A. J. Bernstein, “Bounded Ingnorance: A Technique for
Increasing Concurrency in a Replicated System,“ ACM Transactions on Database
Systems, Vol. 19, No. 4, Dee. 1994.

19. V. Kumar and M. Hsu, “A Superior Two-Phase Locking Algorithm and its Per-
formance,” Information Sciences, Vol. 54, No. 1-2, 1991.

20. V. Kumar, M. H. Dunham and N. Prabhu, “A Mobile Transaction Framework
Supporting Spatial Replication and Spatial Consistency,“ Special Issue on Mobile
Databases International Journal qf Computer Systems Science & Engineering,
Vol. 20, No 2, March 2005.

21. V. Kumar, N. Prabhu, M. H. Dunham, and A. Yasemin Seydim, “TCOT - A
Timeout-based Mobile Transaction Commitment Protocol,” Special issue of IEEE
Transaction on Computers, Vol. 5 1, No. 10, Oct. 2002.

22. V. Kumar, “A Timeout-based Mobile Transaction Commitment Protocol,” in 2000
ADBIS-DASFAA Symposium on Advances in Databases and Information Systems,
in cooperation with ACM SIGMOD-Moscow, Sep. 5-8, 2000, Prague, Czech
Republic.

23. V. Kumar and M. Dunham, “Defining Location Data Dependency, Transaction
Mobility and Commitment,” Technical Report 98-cse- 1, Southern Methodist Uni-
versity, Feb. 98.

Mobile Database
Recovery

This chapter deals with recovery in a mobile database system, which is more complex
compared to conventional database recovery. It first introduces fundamentals of
database recovery and briefly describes conventional recovery protocols and uses them
to focus on application recovery where information gathering and their processing
for recovery is quite complex. The chapter first identifies those aspects of a mobile
database system which affect recovery process. It then discusses recovery approaches
which have appeared in the literature. Similar to other areas such as transaction
modeling, concurrency control, etc., database recovery is also in the development
stage, so the coverage here is mostly limited to state -of-the art research and little on
commercial products. A number of recovery schemer have been developed [3,.5, 11,
1.5, 17, 18, 19,20, 22, 23, 241, and this chapter discusses a few of them.

8.1 INTRODUCTION

Database recovery protocols recover a database from transaction or system failures,
that is, they restore the database to a consistent state from where transaction processing
resumes. These failures may occur due to a number of reasons such as addressing
error, wrong input, RAM failure, etc. In a concurrent execution environment when a
failure occurs then a transaction may be active or blocked or being rolled back or in the
middle of a commit. The task of a recovery protocol is to identify the right operation
for for recovery for each transaction. These operations are (a) Roll forward or Redo
and (b) Roll backward or Undo. Depending upon the execution status of a transaction,
one of these operations is selected. Thus, in a recovery process some transactions are

203

204 MOBILE DATABASE RECOVERY

undone and some transactions are redone. To implement these operations, Transaction
log is required, which is generated and maintained by the system. The log contains
committed values of data items (Before Image - BFIM) and modified values of data
items (After Image - AFIM). The log is a crucial document for recovery; therefore,
it is generated and maintained by a protocol called Write Ahead Logging - WAL. The
protocol guarantees that the contents of a log is reliable and can be used for Undo
and Redo operations.

After a failure the database system reboots and, by using log, applies Redo and
Undo operations on transactions which were in the system when it failed. A Redo
completes the commit operation for a transaction, and an Undo rolls back a transaction
to maintain atomicity. These operations give us four different recovery protocols: (a)
Undo-Redo, (b) Undo-No Redo, (c) No Undo - Redo, and (d) No Undo - No Redo [X I .

Undo-Redo: This protocol applies Redo and Undo to recover the database systems.
This means that during transaction execution it can write to the database intermediate
values of its data item. If the transaction was active when the system failed, then the
transaction is Undone and it is Redone if the transaction was ready to commit.

Undo - No Redo: This protocol does not support Redo and recovers the database
by applying Undo operation only. This means that the system forces intermediate
updates of transactions to he database immediately.

NO Undo - Redo: This protocol makes sure that no intermediate results of a trans-
action are installed in the database. Thus, if a transaction cannot be Redone at the
time of recovery, then it is removed from the system.

NO Undo - NO Redo: This protocol does not apply Redo and Undo and recovers
the database by using the shadow copy of data items. Thus, during execution a
transaction creates a show copy of data items it modifies. During recovery it uses
actual and shadow copies of a data item to select the right version to install in the
database.

Recovery is a time-consuming and resource-intensive operation, and these proto-
cols require plenty of them. The most expensive operation is managing the log. This
operation is essential for recovery, so for a Mobile Database System an economical
and efficient scheme of its management is necessary.

A Mobile Database System (MDS) is a distributed system based on client server
paradigm, but if functions differently than conventional centralized or distributed
systems. It achieves such diverse functionalities by imposing comparatively more
constraints and demands on MDS infrastructure. To manage system-level functions,
MDS may require different transaction management schemes (concurrency control,
database and application recovery, query processing, etc.), different logging schemes,
different caching schemes, and so on.

In any database management system, distributed or centralized, the database is
recovered in a similar manner and the recovery module is as an integral part of the
database system. Database recovery protocols, therefore, are not tampered with user

LOG MANAGEMENT IN MOBILE DATABASE SYSTEMS 205

level applications. A system which executes applications, in addition to database
recovery protocol, requires efficient schemes for Application recovery [12, 131. The
application recovery, unlike database recovery, enhances application availability by
recovering the execution state of applications. For example, in MDS or in any dis-
tributed system a number of activities related to transactions' execution, such as
transaction arrival at a client or at a server, transaction fragmentation and and the
distribution of these fragments to relevant nodes for execution, dispatch of updates
made at clients to the server, migration of a mobile unit to another cell (handoff), etc.,
have to be logged for recovering the last execution state. With the help of the log
the application recovery module recreates the last execution state of application from
where normal execution resumes.

Application recovery is relatively more complex than database recovery because
of (a) the a large numbers of applications required to manage database processing, (b)
presence of multiple application states, and (c) the absence of the notion of the "last
consistent state." This gets more complex in MDS because of (a) unique processing
demands of mobile units, (b) the existence of random handoffs, (c) the presence of op-
erations in connected, disconnected, and intermittent connected modes, (d) location-
dependent logging, and (e) the presence of different types of failure. These failures
can be categorized as Hardfailure and Soft failure [171. Hard failures includes loss of
mobile unit (stolen, burnt, drowned, dropped, etc.), which cannot be easily repaired.
Soft failures include system failure (program failure, addressing errors, battery ran
out, processing unit switched off, etc.) and are recoverable.

An application can be in any execution state (blocked, executing, receiving data
slowly, and so on). In addition to this, the application may be under execution on
stationary units (base station or database server) or on mobile units or on both. These
processing units, especially the mobile unit, may be (a) going through a handoff, (b)
disconnected, (c) in a doze mode, (d) turned off completely. The application may
be processing a mobilaction or reading some data or committing a fragment, and so
on. If a failure occurs during any of these tasks, the recovery system must bring the
application execution back to the point of resumption.

In application recovery, unlike data consistency, the question of application consis-
tency does not arise because the application cannot execute correctly in the presence
of any error. Thus, the most important task for facilitating application recovery is the
management of log. The database recovery protocols provide a highly efficient and
reliable logging scheme; unfortunately, even with modifications, the conventional
logging scheme would impose unmanageable burden on resource constrained MDS.
What is needed is an efficient logging scheme, which stores, retrieves, and unify
fragments of application log for recovery within the constraints of MDS.

8.2 LOG MANAGEMENT IN MOBILE DATABASE SYSTEMS

Log is a sequential file where information necessary for recovery is recorded. Each
log record represents a unit of information. The position of a record in the log
identifies the relative order of the occurrence of the event the record represents. In

206 MOBILE DATABASE RECOVERY

legacy systems (centraliLed or distributed) the log resides at fixed locations which
survive system crashes. It is retrieved and processed to facilitate system recovery
from any kind of failure. This persistence property of log is achieved through the
protocol called Write Ahead Logging (WAL) [41.

This static property of log ensures that no additional operation other than only its
access is required to process it for recovery. The situation completely changes in the
systems which support terminal and personal mobility by allowing the processing
units to move around. As a result they get connected and disconnected many times
during the entire execution life of transactions they process. The logging becomes
complex because the system must follow the WAL protocol while logging records at
various servers.

An efficient applicaion recovery scheme for MDS requires that the log management
must consume minimum system resources and must recreate the execution environ-
ment as soon as possible after MU reboots. The mobile units and the servers must
build a log of the events that change the execution states of mobilaction. Messages
that change the log contents are called write events [22]. The exact write events de-
pend on the application type. In general, the mobile unit records events like (a) the
arrival of a mobilaction, (b) the fragmentation of mobilaction, (c) the assignment of
a coordinator for mobilaction, (d) the mobility history of the mobile unit (handoffs,
current status of the log, its storage location, etc.), and (e) dispatch of updates from
mobilaction to DBS?. The DBSs may record similar events in addition to events
relating to the commit of mobilaction.

8.2.1 Where to Save the Log?

Schemes that provide recovery in the PCS (Personal Communication System) system
saves the log at the BS where the mobile unit currently resides [19,221. It is important
to note that managing log for PCS failure is relatively easy because it does not support
transaction processing. However, the concept can be used to develop efficient logging
schemes for MDS.

There are three places the log can be saved: (a) MSC (Mobile Switching Center),
(b) Base Station (BS), and (c) Mobile Unit (MU). The reliability and availability
of mobile units, however, make it a less desirable place to save the log. MSC and
BS are suitable places; but from cost and management viewpoints, MSC is not a
convenient location. An MSC may control a large number of BSs; in the event
of a failure, accessing and processing the log for specific transaction may be time-
consuming. An MSC is not directly connected to database servers (Figure 7.1),
which provide necessary log management applications. BSs, on the other hand, are
directly connected to DBSs and also to mobile units. Therefore, fromconnectivity and
availability aspects, BSs are comparatively better candidates for saving an application
log. Under this setup a mobile unit can save log at the current BS and the BS then
can archive it on DBSs.

Effect of Mobility on Logging: In conventional database systems, the log genera-
tion and its manipulation are predefined and fixed. In a mobile environment, this may

LOG MANAGEMENT IN MOBILE DATABASE SYSTEMS 207

not always be true because of the frequent movements and disconnections of mobile
units. A mobiluction may be executed at a combination of mobile units, base stations
and fixed hosts. Furthermore, if a fragment of mobilaction happens to visit more than
one mobile unit, then its log may be scattered at more than one base stations. This
implies that the recovery process may need a mechanism for log unification (logical
linking of all log portions). The possible logging schemes can be categorized as
follows:

Centralized logging-Saving of log at a designated site: Under this scheme a
base station is designated as logging site where all mobile units from all data regions
save their log. Since the logging location is fixed and known in advance, and the
entire log is stored at one place, its management (access, deletion, etc.) becomes
easier. Under this scheme, each mobile unit generates the log locally and, at suitable
intervals or when a predefined condition exists, copy its local log to the logging base
station. If a fragment or mobiluction fails, then the local recovery manager acquires
the log from the base station and recover the mobiluction. This scheme works, but it
has the following limitations:

0 It has very low reliability. If the logging base station fails, then it will stop
the entire logging process; consequently, transaction processing will stop until
the BS recovers. Adding another backup base station will not only increase
resource cost but will increase log management cost as well.

0 Logging may become a bottleneck. The logging traffic at logging base station
may become unmanageably heavy, causing significant logging delays.

For a lightly loaded system with little MU movement, however, this scheme provides
a simple and efficient way of managing the log.

Home logging: Every mobile unit stores its log at the base station it initially reg-
isters. Although a mobile unit will roam around in the geographical domain freely
and continue to access data from any sites, all logging will still be at its base station.
This scheme has the following limitations:

0 Under this scheme the entire log ofmobiluction may be scattered over a number
of base stations if its fragments are processed by different mobile units with
different base stations. To recover the mobiluction, all pieces of log will require
linking (logically).

0 It may not work for spatial replicas (location-dependent data). Consider a
location-dependent query which comes to a mobile unit for processing but
whose base station is not the one that stores the location dependent data. This
may happen if a traveler from Kansas City issues a query on hisher mobile unit
for Dallas Holiday Inn data. This scheme can cause excessive message traffic.

0 Since the logging location is not distributed, it has poor availability and exces-
sive message traffic during transaction execution.

208 MOBILE DATABASE RECOVERY

At a designated base station

Under this scheme a mobile unit locally composes the log and, at some predefined
intervals, saves it at the designated base station. At the time of saving the log a mobile
unit may be in the cell of the designated base station or at a remote base station, In
the latter case, the log must travel through a chain of base stations, ending up at the
designated base station. This will work as long as there is no communication failure
anywhere in the chain of base stations.

At all visited base stations

In this scheme a mobile unit saves the log at the base station of the cell it is currently
visiting. The entire application log is stored in multiple base stations, and at the time
of recovery all log portions are unified to create the complete log. It is possible that
two or more portions of the entire log may be stored at one base station if the mobile
unit revisits the station. A number of logging schemes were developed under these
two approaches, some of which are discussed below.

Lazy scheme: In lazy scheme [22], logs are stored on the current base station and
if the mobile unit moves to a new base station, a pointer to the old base station is
stored in the new base station. These pointers are used to unify the log distributed
over several base stations. This scheme has the advantage that it incurs relatively
less network overhead during handoff as no log information needs to be transferred.
Unfortunately, this scheme has a large recovery time because it requires unification
of log portions.

The log unification can be performed in two ways: (a) distance-based scheme and
(b) frequency-based scheme. In a distance-based scheme [19] the log unification is
initiated as soon as the mobile unit covers the predefined distance. This distance
can be measured in terms of base station visited or in terms of cell site visited. In
the frequency-based scheme [19], log unification is performed when the number of
handoffs suffered by the MU increases above a predefined value. After unifying the
log, the distance or handoff counter is reset.

Pessimistic scheme: In the pessimistic scheme [22], the entire log is transferred at
each handoff from old to new base station. This scheme, therefore, combines logging
and log unification. Consequently, the recovery is fast, but each handoff requires
large volumes of data transfer.

The existing mobile network framework is not efficient for full-fledged database
transactions running at DBSs and mobile units. In the above schemes the location
change of MU has to be updated by DBSs, which would be a big disadvantage.
To overcome this, mobile IP was introduced. In Ref. [25] log recovery based on
the mobile IP architecture is described where base stations store the actual log and
checkpoint information and the base station or the home agent as defined i n Ref.
12 11 maintains the recovery information as the mobile unit traverses. This scheme
has the advantage that log management is easy and the database servers need not be

MOBILE DATABASE RECOVERY SCHEMES 209

concerned with the mobile unit’s location update, but it suffers when the mobile unit
is far away from home. Consequently, recovery is likely to be slow if the home agent
is far from the mobile unit. The other problem with using mobile IP is triangular
routing where all messages from the database server to the mobile unit have to be
routed through the home agent. This invariably impedes application execution. The
schemes discussed so far do not consider the case where a mobile unit recovers in a
base station different from the one in which it crashed. In such a scenario, the new
base station does not have the previous base station information in its VLR (Visitor
Location Register), and it has to access the HLR (Home Location Register) to get this
information [8], which is necessary to get the recovery log. HLR access may increase
the recovery time significantly if it is stored far from the MU. A similar disadvantage
can be observed in the mobile IP scheme of Ref. [2S], where the mobile unit needs
to contact the home agent each time it needs recovery.

8.3 MOBILE DATABASE RECOVERY SCHEMES

In this section a number of recovery schemes have been discussed. These schemes
take different approaches; however, they build their scheme on same mobile database
platform. The platform contains a set of mobile unites and base stations. These
units save logs and checkpoint necessary activities and make sure that necessary
information is available for recovering from failure efficiently and economically.

8.3.1

A three-phase checkpointing and recovery scheme is discussed in Ref. [111 which
combines coordinated and communication-induced checkpointing schemes. All base
stations use coordinated checkpointing, and the communication-based checkpointing
is used between mobile units and base stations. Following steps briefly describe the
working of the algorithm. Further details can be found in Ref. [1 11. The algorithm
uses mobile units MU,, MU2, MU3, and MU4, as well as base stations MSS1.
hfSS2, and MS&, for describing message traffic.

A Three-Phase Hybrid Recovery Scheme

0 Initially, a coordinator (base station) MSSl broadcasts a request message with
a checkpoint index to MSS2 and MSS;<.

0 Each MSS sets up a timer Tlazy. It uses a lazy coordination scheme to re-
duce the number of messages, therefore, it is especially suitable for mobile
database systems. In this approach, infrequent snapshots are taken which only
occasionally impose high checkpoint overheads of coordinated snapshots on
the low-bandwidth network connecting all mobile units. This approach also
prevents the global snapshot from getting out of date; as a result, the amount
of computation for recovery from failure is minimized.

Mobile unit MU2 or MU3, whichever is active, takes a checkpoint before
message i n 2 or m3 arrives from MSS2 or MSS3 during Tlnzy.

210 MOBILE DATABASE RECOVERY

0 MU1 or MU4 takes a checkpoint when Tlazy has expired, and it receives a
checkpoint request from MSSl or MSSs .

0 MSS2 and MSS, responds (send a response message) to MSS1.

0 MSSl broadcasts a commit message to all M S S s after receiving response
messages from other base stations.

0 MU:$ migrates from MSS3 to MSSz and sends a message to wake MU4 if it
is in doze mode.

0 MU2 takes a checkpoint before it disconnects itself from the network. If MU,
is already in disconnected mode, then it does not take any checkpoint.

0 In case MU1 fails, it stops executing and sends a recovery message to M S S l .

0 MSSl broadcasts a recovery messages to all MSSs.

0 Each M S S sends recovery message to all its MUs. These M U s roll back to
their last consistent state.

Fig. 8.1 An example of snapshot generation.

8.3.2 Low-Cost Checkpointing and Failure Recovery

In Ref. [23] a low-cost synchronous snapshot collection scheme is presented in
which allows minimum interference to the underlying computation. The working of
the algorithm is explained with the following example. Figure 8. I illustrates the flow
of messages which manage the snapshot process. The processing noes are represented
as Po, PI , PL, and l'3, and ml, mz, 7713, m4, I T I S , and r n ~ represent the messages.

MOBILE DATABASE RECOVERY SCHEMES 21 1

0 The node Pz first collects local snapshots at the point X time point.

0 Assume that nodes PI, l'?, and Pz are dependent, so a snapshot request message
is sent to PI and F'3 by P2. Node P3 sends message m.4 to node PI after taking
its own snapshot.

0 Their are two possibilities when message m q reaches PI: (a) PI has not pro-
cessed any message since its last local snapshot or (b) PI has already processed
a message from any node since its last snapshot. In this example, since PI has
not processed any message, as a result it takes its tentative snapshot and records
this event before processing message r n d . It then propagates the snapshot.

0 Node Po takes a local snapshot since it has not received any message from any
node and sends a message m5 to PI. When rri5 reaches PI, it finds that m.5 is
not a new message to force a snapshot so PI does not take a snapshot.

When a node P, fails, then it rolls back to its latest checkpoint and sends rollback
requests to a subset of nodes. When a node Pj receives its first rollback message,
then (a) it rolls back to its latest checkpoint and (b) it sends a rollback request to a
selective set of nodes. Node P3 may receive subsequent rollback messages as a result
of PI 's failure, but it ignores all of them. In the case of mobile units, all their rollback
requests are routed through their base stations.

8.3.3 A Mobile Agent-Based Log Management Scheme

Mobile agents have been successfully used in managing a number of application and
system activities. It has also been used to develop a scheme to manage an application
log in MDS (Mobile Database Systems). A mobile agent is an autonomous program
that can move from machine to machine in a heterogeneous network under its own
control. It can suspend its execution at any point, transport itself to a new machine,
and resume execution from the point it stopped execution. An agent carries both the
code and the application state. Actually a mobile agent paradigm is an extension of
the cliendserver architecture with code mobility. Some of the advantages of mobile
agents as described in Ref. [141 are:

0 Protocol Encapsulation: Mobile agents can incorporate their own protocols
in their code instead of depending on the legacy code provided by the hosts

0 Robustness and fault-tolerance: When failures are detected, host systems
can easily dispatch agents to other hosts. This ability makes the agents fault-
tolerant.

Asynchronous and autonomous execution: Once the agents are dispatched
from a host, they can make decisions independently and autonomously. This is
particularly useful to the wireless environment where maintaining a connection
throughout an executing mohilaction may not be economical or necessary. In
such cases, the agents can visit the destination, perform any required processing,

212 MOBILE DATABASE RECOVERY

and bring the final data to the origin thereby removing the need for a continuous
wireless connection. For example, an agent can take a mobiluction from a
mobile unit, execute it at the most suitable node (could be remote), and bring
the result back to the mobile unit.

Agents do have disadvantages, and the one which is likely to affect the logging
scheme is its high migration and machine load overhead [2] . This overhead must
be minimized for improving the performance. The present scheme uses agent ser-
vices with the only when needed approach. It is not possible to develop a scheme,
which optimizes the performance at all levels and in all different situations. For this
reason, some recovery schemes improve the performance by targeting to minimize
the communication overhead, some might concentrate on total recovery time, some
may optimize storage space, and so on. Thus, each scheme involves certain trade-
offs. When these issues are taken into consideration, it becomes necessary to build
a framework that supports the implementation of the existing schemes and should
also be able to support any new scheme. The framework should support the acti-
vationldeactivation of a scheme, depending on the particular environment in which
it offers best performance. Such a framework should abstract the core base station
software (which handles the registration, handoff, etc., activities) from handling the
recovery procedures, thus allowing for better recovery protocols to be implemented
without the need for changing the core software. The framework may also support a
rapid deployment of the recovery code without much human intervention.

In MDS, the coordinator module resides in the base station. It splits mobilac-
tion into fragments if necessary, and it sends some of them to a set of DBSs. This
requirement asks for specific intelligence to be embedded in the base station code.
Mobilactian initiated by mobile unit may use different kinds of commit protocols
like 2-phase commit or 3-phase commit or TCOT (Transaction Commit on Timeout)
[9]. The coordinator module needs to support all of these. If such a module at a
base station does not support a particular protocol, then there should be an easy way
to access such a code. An extension to this is that, when a new efficient protocol is
introduced, all base stations should be able to upgrade to this as easily as possible
and with little or no human intervention. From the perspective of mobile unit log
recovery, an architecture is required which supports intelligent logging and is able to
incorporate any future developments without any difficulty.

Some recovery schemes specify that the logs move along with the mobile unit
through a multitude of base stations. The new base stations should be able to handle
the logs in the same way as the previous one did or log inconsistency might result. It
is argued that the flexibility and constraints mentioned above could be successfully
incorporated on a mobile-agent based architecture under which the code necessary for
recovery and coordination can be embedded in the mobile agents. The coordinator can
be modeled as a mobile agent and can be initiated by the mobile unit itself if necessary.
If during a handoff the new base station does not support a specific logging scheme,
then the agent in the previous base station which supports this can clone itself and the
new replica can migrate to the current base station without any manual intervention.
The same technique can be used in quickly populating the base stations with any new

MOBILE DATABASE RECOVERY SCHEMES 213

protocols. The mobile agent with the new protocol embedded in it can be introduced
in any base station and it can replicate and migrate to other base station.

8.3.4 Architecture of Agent-Based Logging Scheme

An architecture is presented where mobile agents are used to provide a platform for
managing logging. The architecture supports the independent logging mechanisms.
It is assumed that each base station supports the functionality of mobile agents. The
main components of the architecture are:

Bootstrap agent (BsAg): This agent handles a base station failure. Any agent that
wishes to recover should register with the bootstrap agent. The base station initiates
the bootstrap agent. Once loaded, this agent starts all the agents that have registered
with it. These agents have the capability to read the log information they have created
and act accordingly. The need for such an agent may be obviated if the mobile agent
provides an automatic revival of the agents with their state intact.

Base Agent (BaAg): This agent decides which logging scheme to use in the current
environment. Such functionality can be decided by its own intelligence or can be given
as an input. For every mobile unit, it creates an instance of an agent that handles the
recovery of mobilactions based on the relevant logging scheme.

Home Agent (HoAg): This agent handles rnohilactions for each mobile unit. It
is responsible for maintaining log and recovery information on behalf of the mobile
unit. The mobile unit sends log events to this agent, which is responsible for storing
them on the stable storage of the base station. The HoAg is a base station interface
to the mobile unit for Mobilactions

Coordinator Agent (CoAg): This agent resides at base station and acts as the
coordinator for all mobilactions.

Event Agent (EvAg): In addition to the above framework, the base station provides
mobile agents with an interface to the various events taking place like registration of
a mobile unit, failure of a mobile unit, handoff of a mobile unit, etc. This approach
abstracts away the core base station functions from application recovery support.
When a mobile unit suffers handoff, its HoAg should know about it so that it can
perform the required operations. The EvAg is the interface for the base station to the
agent framework for dissemination of such information.

Driver Agent (DrAg): The migration of a mobile agent during a handoff involves
the movement of its code and the actual data. This might generate considerable
overhead [2] even if the actual log transfer is not much.

214 MOBILE DATABASE RECOVERY

8.3.5 Interaction Among Agents for Log Management

These agents collaborate with each other to facilitate log management.

Interaction of CoAg and HoAg: An MU sends Mobilaction to its HoAg, which
forwards it to the corresponding CoAg. If the CoAg needs to contact the MU, it does
so through the MU’S corresponding HoAg. When CoAg sends a write event to the
HoAg, it stores it in its local store before sending it to the MU. Similarly if any events
come to the MU through user input, MU sends the corresponding log messages to the
HoAg.

Action of agents when handoff occurs: The HoAg moves along with the mobile
unit to the new base station in a handoff. Based on schemes like Lazy and Frequency-
based, the agent may or may not take the stored logs along with it to the new base
station. When a handoff occurs, a driver agent (DrAg) is sent along with the neces-
sary log information to the new base station instead of the whole HoAg with all its
intelligence for log unification. The DrAg has a very light code whose main function
is to see whether the code for HoAg is present in the new base station. If so, it requests
the resident BaAg in the new base station to create an instance of the HoAg for the
mobile unit. If any compatible code is not present, then the DrAg sends a request to
the previous base station’s BaAg, which clones the necessary HoAg and sends the
copy to the new base station. When the mobile unit moves out of a base station, its
log information is not deleted automatically but it is stored unless notified otherwise
by the agent of the mobile unit. This facilitates the unification of logs when logs are
distributed over a set of base stations.

8.3.6 Forward Strategy

All schemes reviewed earlier have assumed instant recovery of the mobile unit after a
failure, but Ref. [8] acknowledges the possibility where the mobile unit might crash
in one base station and recover in another base station. A time interval is defined
between the mobile unit failing and its subsequent rebooting as Expected Failure
Time (EFT). This scheme concentrates on such scenarios where the EFT is not so
trivial that the recovery occurs instantaneously. Base station detects the failure of
a mobile unit and agents do not play any part in such detection. For example, if
the communication between two mobile units breaks down because of the failure of
one of the mobile units, then the corresponding BS will immediately know about this
event. Similarly, base station also knows which mobile unit has executed power-down
registration, which mobile unit has undergone a handoff, and so on.

A base station also continuously pages its mobile units.’ If the mobile unit suf-
fers a handoff, then the communication with the last base station is not broken until

’Sprint PCS system pages its mobile units after every 10 to 15 minutes without generating any overhead
to learn their status, and a mobile unit also continuously scans the air by using its antenna to detect the
strongest signal.

MOBILE DATABASE RECOVERY SCHEMES 215

the connection with the new base station is established (soft handoff). These fea-
tures of PCS allow MDS to detect mobile unit failure. Thus, while a mobile unit is
executing its fragment, its status is continuously monitored by the base station and
any change in mobile unit’s situation is immediately captured by the Event Agent
interface. Since this detection is system-dependent, EFT (Expected Failure Time)
tends to be an approximate value. The detection can be passed on to the HoAg in
many ways. The MDS can provide an interface, which would allow the agents to
wait for an event. Another approach would be to provide an agent readable sys-
tem variable which would be set on any such event. The agent will periodically
poll the variable to check if it is set. Both approaches are possible and easy to im-
plement in languages such as Java in which many agent systems like IBM’s Aglets
and General Magic’s Odyssey have been developed [(i]. Since handoff does not
occur in the above case as pointed out in ref. [8], the new base station does not
know the location of the old base station. This situation leads to the new base sta-
tion contacting the Home Location Register (HLR) for the previous base station
[8, 18, 19, 231. This might be a hindrance to fast recovery if the HLR happens to
be far from the querying base station. Actually the Visitor Location Register (VLR)
is first queried for the previous base station information, which is stored in VLR if
both base stations happen to fall under the control of the same VLR. If base sta-
tions are under different VLRs, then the HLR of the mobile unit has to be queried.
Such information is stored in the HLR when a mobile unit first registers with a base
station.

In the lazy scheme [8], the base station starts building up the log immediately
upon failure of mobile unit. In the schemes presented in Ref. [19], the mobile unit
explicitly issues a recovery call to the base station and the base station begins the
log unification. This raises certain questions in the event of the mobile unit crashing
and recovering in a different base station. If the log is to be unified immediately
upon a failure, then it might be necessary for the new base station to wait for the
old base station to finish its unification and then present its log. If the failure time
is large or the total log size is small, then unification will be over by the time the
new base station queries the previous base station. In such a case, recovery can be
fast. In the case of a relatively small EFT (Expected Failure Time) or a large log size
(to be unified), the new base station must wait first for the unification and then for
the actual log transfer. This results in increased recovery time and network cost. In
such cases it might be preferable for the log unification to be done in the new base
station if the list of base stations where the log is distributed is known. Such a list
is transferred in schemes provided in Ref. [19] and not for those in Ref. [S]. In
the approach where the log is unified after a recovery call, the recovery time might
not be small enough if the log size to be unified is small. In this case the unifica-
tion has to begin after getting the list of base stations involved from the previous
base station. Also, if the mobile unit has not migrated to a new base station be-
fore recovery, then the log has to be unified, which is likely to increase the recovery
time.

216 MOBILE DATABASE RECOVERY

Reducing Recovery Time

The scheme of log unification is based on the number of handoffs occurred since
the last log unification or the start of the transaction whichever is later. The log
is unified periodically when the number of handoffs occurred crosses a predefined
handoff-threshold.

When a handoff occurs, the Truce information is transferred from the old base
station to the new base station. This trace information is an ordered list of elements
giving information about the base stations involved in storing mobile unit’s log. Each
array element consists of two values: (a) the identify of this base station (BS-ID) and
(b) the size of the log stored at BS-ID1 (Log-Sizei). When a handoff occurs, then
BS-ID of the new base station and a Log-Size value of zero are added to the end of
the trace. The Log-Size value is updated whenever mobile unit presents base station
with some log information. Optional parameters can also be present in the trace
information. Since the trace does not contain the actual log contents and is mostly an
array of base stations identities and log sizes, it does not present a significant overhead
during the handoff. The scheme also assumes the presence of EFT (expectedfuilure
time) value which can be stored as an environment attribute accessible to HoAg of
the mobile unit at the base station. If such support cannot be given by the system,
then HoAg can also estimate EFTfrom mobile unit’s activities. If the agent estimates
the EFT, then this value is also stored in the trace information. When the system
detects mobile unit failure, it informs the agent framework through the Event Agent
interface. This agent notifies the appropriate HoAg that starts the EFT clock. This
clock is stopped to get the Recorded-EFTvalue, when the HoAg receives mobile unit
recovery call, which can come from the mobile unit in the same base station or from
a different base station in which the mobile unit has recovered. In either case, the
agent residing in base station where the EFT clock is started. It estimates the new
EFT as

(K1 x Recorded-EFT) + (K2 x EFT), where K1 + K2 = 1

The new EFT is a weighted sum of the previous EFT and the Recorded-EFT. K 1
indicates the reliance on the Recorded-EFT, while K 2 indicates the reliance on the
previously calculated EFT. The values of K1 and K2 are functions of the environment.
In a network where the failure time is relatively stable, K2 is given more weight; and
in a network where the failure time varies frequently, K1 can be given more weight.
To improve storage utilization, unnecessary records from the log is deleted. This
garbage collection is optional and is done upon log unification. When a mobile unit
log is unified at a base station, a garbage-collect message is sent to all the base stations
hosting the mobile unit logs as specified in the trace BS-ID list. The previous base
stations purge these logs on receiving this message. The BS-ID and the Log-Size
lists are erased from the trace information at the current base station to reflect the
unification, and a ringle entry is created in the trace with the current base station
identity and the unified log size.

MOBILE DATABASE RECOVERY SCHEMES 217

8.3.7 Forward Log Unification Scheme

Since the trace information contains the size of the log stored at different base stations,
the HoAg can estimate the time for log unification based on the network link speed
and the total log size. This time is called the Estimated Log Unijication Time (ELUT),
which can be measured as: Max (BSi-Log-Size/Network link Speed + Propagation
Delay), for all base stations in the trace. The exact characterization of the ELUTvalue
depends other factors such as whether base stations are located in the same VLR area or
different areas, queuing delay, etc. The HoAg should take into consideration as many
parameters available from the system as possible to estimate the ELUT accurately.
Log unification is started if (6 * ELUT) 5 EFT or else it is deferred until a recovery
call is heard from the mobile unit.

The Unification factor “6” describes what fraction of the log unification will be
done by the time the failure time of the mobile unit comes to an end. The default
value can be kept as 1 , which indicates that the log unification starts only if it can be
totally completed by the time the mobile unit is expected to complete its reboot. If
the mobile unit reboots in a different base station while the log is being unified in the
previous base station, it has to wait for the unification to complete. Variations of this
scheme are possible if the HoAg can estimate the effective handoff time. Based on
this value, if there is still a long time for the next handoff, then the log unification
can start immediately upon a failure, as it is more probable that the failed mobile unit
will recover in the base station where it failed rather than in any other base station. In
the event the log unification is not performed because (6 x ELUT) 5 EFT, the HoAg
waits for the mobile unit to recover. If the recovery happens in the same base station,
then the log unification starts; but if the mobile unit reboots in a different base station,
then the HoAg transfers the trace information and the log stored at this base station
when requested. In this case, the new base station has to perform the log unification
after getting the trace information from the previous base station. This trace contains
the newly calculated EFT value.

8.3.8 Forward Notification Scheme

This scheme addresses the issue of time spent in getting the previous base station
information from the HLR. To minimize this time, a scheme involving forward no-
tifications is proposed. When a mobile unit fails in a particular base station and if
the actual failure time (total duration before mobile unit is rebooted) is not too high,
then there is a high probability that the mobile unit will recover in the same VLR or
in a BS that is in adjacent VLRs. Thus a VLR and its adjacent VLRs cover a large
area, and the situation where the mobile unit reboots in a nonadjacent VLR does not
occur frequently. If the mobile unit happens to restart in a non-adjacent VLR, then it
must have been extremely mobile and most of the recovery schemes are not designed
for such unrealistic situation. The other implication is that the mobile unit had been
in the failed state for a longer period and so it is likely that the coordinator could
have decided to abort the rnohilaction. Each VLR also stores mobile unit’s status
information (normal, failed, and forwarded).

218 MOBILE DATABASE RECOVERY

When a mobile unit fails, its corresponding HoAg informs the VLR about this
failure. The VLR first changes the status of the mobile unit in its database from
normal to failed. The VLR then issues a message containing its own identity (e.g.,
identity of theVLR that sends this message), the identity of the failed mobile unit, and
the identity of the we propose in which the mobile unit crashed to its adjacent VLRs
that the mobile unit has failed. The adjacent VLRs store these messages until explicit
denotify messages are received. The mobile unit is recorded in these adjacent VLRs
with the status as forwarded. The following scenarios may arise when the mobile unit
reboots:

Case 1-The mobile unit reboots in the same base station where it crashed:
In this scenario, the HoAg informs the VLR that the mobile unit has recovered. The
VLR then issues a denotify message to all the adjacent VLRs indicating that the
forward notification information is no longer valid. The status of the mobile unit is
changed back to normal from failed.

Case 2-The mobile unit reboots in a different base station but in the same VL R:
First the mobile unit registers with the base station and the registration message is
logged on to the corresponding VLR. This VLR identifies the status of the mobile
unit as failed, and then it proceeds as in case 1 and sends denotify messages to the
adjacent VLRs. The status of the mobile unit is changed back to normal from failed.
The new base station then proceeds to perform log unification from the previous base
station.

Case 3-The mobile unit reboots in a different base station and a different
VLR: The mobile unit requests for registration. The corresponding VLR identifies
the mobile unit as a forward notified mobile unit and returns the identity of the
previous base station and the identity of the VLR to the HoAg of the mobile unit in
the recovered base station. The base station then proceeds to perform log unification
from the previous base station. Simultaneously, the new VLR sends a recovered
message to the previous VLR regarding the recovered status of the mobile unit and
also sends a registration message to the HLR regarding the registration of the mobile
unit in the new location. The status of the mobile unit is changed to normal from
forwarded in the new VLR. Upon receiving the recovered message, the previous
VLR sends a denotify message to all adjacent VLRs except the one in which the
mobile unit recovered and removes the registration of the mobile unit from itself as
well. In the situation where the mobile unit recovers in a nonadjacent VLR that has
not received the forward notifications, the new base station has to get the previous
base station information from the HLR and then send the previous VLR a recovered
message. Upon receiving this message, the previous VLR acts similar to the previous
VLR of case 3 . The forward notification scheme is unsuitable if the mobile unit
suffers failures with a very small EFT. In that case the mobile unit recovers in the
same base station where it failed. Hence, the forward notifications and subsequent
denotifications generate communication overhead. To alleviate this, we might delay
the sending of these notifications immediately on failure of the mobile unit. The

