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Mobile Database System 

1.1 INTRODUCTION 

The objective of this chapter is to highlight the current trends in information manage- 
ment discipline. It begins with a brief history of mobile and wireless communication 
technology and reviews a number of milestones. 

Mobility -The Most Desirable Environment 

Information retrieval by users with mobile devices such as cell phones, PDA (Personal 
Digital Assistant), MP3 music players, etc., has become a common everyday activity. 
Navigational systems in vehicles are now a standard accessary like music system. 
These gadgets are quite useful and user-friendly because they can retrieve desired 
information from databases from anywhere through wireless channels. However, 
they have a serious limitation: The information flow in these systems is only from 
the server to users. This limitation does not allow users to query or manipulate the 
database which can be located anywhere in the world. Consequently, users just have 
to contend with what the server sends them, which may not always be accurate or up to 
date. In database terminology these system are not capable of managing transactional 
activities. 

Database researchers, practitioners, and commercial organizations have a common 
vision of building an information management system on a mobile platform which 
is capable of providing full transaction management and database functionality from 
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anywhere and anytime. The recent advances in mobile discipline clearly indicate that 
reaching this ambitious goal is around the corner. 

Traditionally, database is processed by immobile processing units: servers or 
clients. The spatial coordinates of these processing units are fixed, and users go 
to them with their data processing requests. Under this information management 
model, both the processing units and their users are immobile at the time of data 
processing. This way of managing information has some inherent efficiency prob- 
lems leading to unacceptably low productivity, and it is not scalable because it is 
unable to grow with the present-day information processing needs. Recent changing 
social structure, necessity to have stronger connectivity among national and interna- 
tional communities, increasing spatial mobility, and fear of isolation have generated 
a very different class of information processing needs and demands. One of the 
important aspects of these demands is that a user must be free from temporal and 
spatial constraints in processing the desired information which can only be achieved 
by geographical mobility during data processing. The inherent immobility of pro- 
cessing units of legacy systems was a serious impediment in achieving the desired 
objective. A restricted type of mobility is possible to achieve in conventional sys- 
tems (TV, music systems, etc). For example, a remote control unit can be connected 
to the system with a longer cable to turn the system on and off from anywhere in 
the room. Such arrangement did work and was used in many audio systems. How- 
ever, such cable-assisted mobility was quite troublesome rather than a convenience 
and the kind of mobility which is free from visible connecting cables was urgently 
needed. 

The introduction of mobility actually happened through remote control units. A 
glance at the history of remote controllers reveals interesting facts [ I ,  21. The first 
remote control unit to activate remote machines was used in Germany, where the 
German navy used it to ram enemy ships in World War I. In World War I1 remote 
control units were used to detonate bombs and and activate weapons. In the United 
States, at the end of the wars, engineers experimented with household activities and 
in the late 1940’s introduced automatic garage door openers, which actually marks 
the beginning of wireless era in the United States. 

In 1952 Zenith developed a remote control called Lazy Bones, but it was not a 
mobile device. It was rather connected to the TV set with a long cable. In 1955 a 
unit called Flash-o-Matic was introduced, which activated units by throwing light on 
light-sensitive cells connected toTV sets. In 1957 Zenith introduced a wireless remote 
controller called Space Command, which used ultrasonic as an activation medium. 
The partial success achieved through ultrasonic motivated the use of infrared to ac- 
tivate TV sets through remote control unit, which is now an integral part of a large 
number of consumer electronics products such as VCRs, stereo systems, electronic 
toys, and computer keyboards, to name a few. 

On the communication arena, the history of mobility is equally interesting. The 
first mobile radio, capable of one-way communication, was developed by Detroit 
Police in 1928 [3]. Police passenger cars, referred to as cruisers, were equipped with 
radio receivers, which were used to carry detectives and patrol officers. In 1933 two- 
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way radio communications were introduced, which was first used by the Bayonne, 
N.J. police department. 

The use of mobile radio systems spread fast, and it became necessary to control 
the use of radio frequencies. In 1934 the United States Congress created the Fed- 
eral Communications Commissions (FCC), which, in addition to regulating land-line 
telephone systems, also managed the use of these frequencies. In 1935 Frequency 
modulation was invented and developed by a Columbia University professor Maj. 
Edwin H. Armstrong, which was used to improve the mobile radio communication. 
In 1940 new frequencies between 30 and 40 MHz were made available by the FCC, 
which provided the necessary resources to companies and individuals to operate their 
own mobile units. In the same year the Connecticut State Police at Hartford and the 
majority of police systems around the country converted to FM technology. This 
marked the birth of mobile telephony. 

On June 17, 1946 in St. Louis, AT&T together with Southwestern Bell made 
available the first commercial mobile radio-telephone service to private customers 
where mobile users were connected to a public switched telephone network (PSTN). 
Their system operated on six channels in the 150-MHz band with a 60-kHz channel 
spacing, but undesirable channel interference (e.g., cross-talk in a land-line phone) 
soon forced Bell to use only three channels. 

Cellular concept originated at Bell Laboratories in 1947 and AT&T began operat- 
ing a radio telephone that provided service referred to as Highway service between 
New York and Boston. This service operated in the 35- to 44-MHz band. This was a 
very basic mobile service where a subscriber was given one specific channel for com- 
munication. In the same year, the Bell company requested FCC for more frequencies, 
which was granted in 1949. However, the FCC distributed these frequencies among 
a number of companies, thus creating a competition among them for improving the 
quality of service. This helped to increase the number of mobile units significantly 
and set the need for automatic dialing capability. 

The first fully automatic radiotelephone service started in Richmond, Indiana, on 
March 1 ,  1948, which eliminated human operator intervention for placing calls. In the 
same year (July 1, 1948) the Bell System introduced transistors (a joint invention of 
Bell Laboratories scientists William Shockley, John Bardeen, and Walter Braqttain), 
which revolutionized every aspect of telephone and communication industries. 

By 1950s the Paging systems began to appear and the first phone-equipped car 
glided on the road in Stockholm, Sweden - the home of Ericsson’s corporate head- 
quarters. The first user of this system was a doctor-on-call and a bank-on-wheels. 
Tom Farley [3] narrates “The apparatus consisted of receiver, transmitter and logic 
unit mounted in the trunk of the car, with the dial and handset fixed to a board 
hanging over the back of the front seat. It was like driving around with a com- 
plete telephone station in the car. With all the functions of an ordinary telephone, 
the telephone was powered by the car battery. Rumor has it that the equipment 
devoured so much power that you were only able to make two calls - the second 
one to ask the garage to send a breakdown truck to tow away you, your car, and 
your flat battery. These first car phones were just too heavy and cumbersome - 
and too expensive to use for more than a handful of subscribers. It was not until 
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the mid-1 960’s that new equipment using transistors were brought into the mar- 
ket. Weighing a lot less and drawing not so much power, mobile phones now left 
plenty of room in the trunk-but you still needed a car to be able to move them 
around.“ 

In 1956 the Bell System began offering manual radio-telephone service at 450 
MHz, a new frequency band assigned to relieve overcrowding. In 1958 the Rich- 
mond Radiotelephone Company improved their automatic dialing system by adding 
new features to it, which included direct mobile to mobile communications. Other 
independent telephone companies and the Radio Common Carriers made similar ad- 
vances to mobile-telephony throughout the 1950s and 1960s. 

In 1964 the Bell System introduced Improved Mobile Telephone Service (IMTS), 
which consisted of a broadcast system equipped with a higher-power transmitter. 
IMTS succeeded by the badly aging Mobile Telephone System. It worked in full 
duplex so people didn’t have to press a button to talk. Talk went back and forth 
just like a regular telephone. It finally permitted direct dialing, automatic channel 
selection, and reduced bandwidth to 25-30 kHz. 

In 1970 the Federal Communication Commission (FCC) allocated spectrum space 
for cellular systems and by 1977 AT&T and Bell Laboratories together developed and 
began testing of a prototype cellular system. In 1978 public trials of the new system 
were started in Chicago with over 2000 trial customers, and in 1979 the first commer- 
cial cellular telephone system became operational in Tokyo. In 1981, Motorola and 
American Radio telephone started a second U.S. cellular radio-telephone system test 
in  the Washington/Baltimore area. By 1982, the slow-moving FCC finally authorized 
commercial cellular service for the USA. A year later, the first American commer- 
cial analog cellular service or AMPS (Advanced Mobile Phone Service) was made 
available in Chicago for public use (41. 

In 1985 Total Access Communication System (TACS) was introduced in the United 
Kingdom. It is the European version of AMPS and occupies the 900-MHz frequency 
band with an RF channel spacing of 25-kHz. ETACS was an extended version of 
TACS with more channels. TACS and ETACS are now obsolete and are replaced by 
the more scalable and all-digital Global System for Mobile communications (GSM). 
TACS was the first real vehicle-mounted mobile communications system, but later 
developed into mobile units. In the same year, CNETZ was introduced in Germany 
and Radiocom 2000 was deployed in France. 

Until now, all system were based on analog communication, which had a number of 
limitations. To eliminate some of these limitations in 1987 to 1995, new air interface 
protocols such as TDMA (Time-Division Multiple Access), CDMA (Code-Division 
Multiple Access), etc., were introduced. Today’s mobile systems are mainly based 
on digital technology, but analog systems are in use too. The Table 1.1 chronology 
lists important events in mobile communication. 

The mobile phones and communication managed to establish apartially connected 
informution space, which was free from spatial and temporal constraints. Thus, the 
“anytime and any place” connectivity paradigm for voice became very common. 
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Table 7.1 Important events in mobile communication 

__ 
late 

I867 

L 887 

I890 

I896 

1897 

1898 

1898 

1901 

I909 

I928 

1930 

1935 

1940 

1946 

1949 

1950 

1960 

1960 

1976 

1979 

1983 

1989 

1991 

1993 

1994 

1995 

1997 

2000 

__ __ 
Event 

Maxwell speculated the existence of electromagnetic waves. 

Hertz showed the existence of electromagnetic waves. 

Branly developed technique for detecting radio waves. 

Marconi demonstrated wireless telegraph. 

Marconi patented wireless telegraph. 

Marconi awarded patent for tuned communication. 

Wireless telegraphic connection between England and France estab- 
lished. 

Marconi successfully transmits radio signal from Cornwall to Newfound- 
land. 

Marconi received Nobel prize in physics for Voice over Radio system. 

Detroit police installed mobile receivers police patrol cars. 

Mobile transmitters were deployed in most cars. 

Armstrong demonstrated Frequency modulation (FM) scheme. 

Majority of police systems converted to FM. 

Mobile systems were connected to Public Switched Telephone Network 
(PSTN). 

FCC recognizes mobile radio as new class of service. 

Number of mobile users increased more than 500,000. 

Number of mobile users grew more than 1.4 million. 

Improved Mobile Telephone Service (IMTS) introduced. 

Bell Mobile used 12 channels to support 543 customers in New York. 

NTT/Japan deploys first cellular communication system. 

Advanced Mobile Phone System (AMPS) deployed in the United States. 

GSM appeared as European digital cellular standard. 

US Digital Cellular phone system introduced. 

IS-95 code-division multiple-access (CDMA) digital cellular system de- 
ployed in the United States. 

GSM Global System for Mobile Communications deployed in the United 
States. 

FCC auctioned band 1.8-GHz frequencies for Personal Communications 
System (PCS). 

Number of cellular telephone users in the United States increased to 50 
million. 

Third-generation cellular system standards'? Bluetooth standards? 
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1.1.1 Fully Connected Information Space 

Figure 1.1 introduces the concept of a fully connected information space that people 
envision today. Each object of this real world with some functionality is connected 
to other object through wireless link. For example, a bank or a person is connected to 
conference, bus, submarine, shark, and so on, with bidirectional wireless link. Thus 
at any moment a person or a bank or a scuba diver can have complete information 
about all other objects. Such wireless link has become essential for this highly mo- 
bile and dynamic society. Consider the case of a working parents. Their children 
are in different schools, and each parent works at a different place. Each member 
of the family would like to have instant access to the situation of their children to 
reach them at the time of need. Similarly, the president of a company would like 
to have complete information about all activities of his company to manage it effi- 
ciently. 

Fig, 7.7 A fully connected information space 
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However, this paradigm could not allow “anytime and any place” data processing 
capability, which is an outstanding demand from users and industries alike. Users 
desire that a mobile unit (cell phone, PDA, etc.) should have transaction management 
capability, which will allow a user to perform everyday activities such as fund transfer, 
seat reservation, stock trading, etc., and in addition to this they should be able to access 
any information form anywhere in any state: mobile or static. Thus, a user should be 
able to access his or her account information, be able to pay bills, be able to buy and 
sell shares, etc., and allow a CEO to access his company’s database and offer salary 
raises to its employees while traveling on a car or on a plane. 

These demands and creative thinking laid down the foundation of “Ubiquitous 
Information Management System” or “Mobile Database System (MDS)” which in  
essence is a distributed clientherver database system where the entire processing 
environment is mobile. The actual database may be static and stored at multiple sites 
but the data processing nodes, such as laptop, PDA, cell phones, etc., may be mobile 
and can access desired data to process transactions from anywhere and at any time. 

The fully connected information space, in addition to wireless communication, 
needs transactional services. Today each individual likes to have facility to inanage 
information related to him. For example, a user would like to change his personal 
profile for adding new call option on his cell phone service. The user would prefer 
to have editing capability to edit his profile to incorporate new option himself instead 
of reaching to the service provider. A customer would prefer to have facility to ex- 
ecute a fund transfer transaction himself from anywhere to pay for his purchases or 
to transfer money among his multiple accounts instead of requesting his bank to do 

The mobile discipline defines two types of mobility: (a) terminal mobility and (b) 
personal mobility. Each mobility type addresses a different set of mobility problems. 

so. 

1.2 TYPES OF MOBILITY 

A mobile framework is composed of wired and wireless components and human users. 
Its wireless part implements terminal mobility and personal mobility to eliminate some 
of the spatial and temporal constraints from data processing activities. 

Terminal Mobility: It allows a mobile unit (laptop, cell phone, PDA, etc.) to access 
desired services from any location while in motion or stationary, irrespective of who 
is carrying the unit. For example a cell phone can be used by its owner and it can also 
be borrowed by Tome one else for use. In terminal mobility, it is the responsibility of 
the wireless network to identify the communication device. Figure 1.2 illustrates the 
notion of terminal mobility. A person at location C (IongitudeAatitude = C) uses the 
mobile unit to communicate with the car driver at location A. He can still establish 
communication with the driver from a new location D irrespective of the movement 
of the car from A to B. The use of a phone card works on this principle. It can be used 
from different locations and from different machines such as pay phones, residential 
phones, etc. 
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Fig. 1.2 Terminal mobility 

In terminal mobility, from a telecommunication viewpoint, the network connection 
point (referred to as a network access/termination point) is identified as not the called 
party. Thus, the connection is established between two points and not between the 
two persons calling each other. This type of connection in a session allows the use of 
communication devices to be shared among anybody. 

fig, 1.3 Personal mobility. 

Personal Mobility.' In terminal mobility the mobility of a terminal is supported; 
that is, the same terminal can be used to connect to the other party from anywhere 
by any user. In personal mobility this capability is provided to a human being. 
Thus, a user does not have to carry any communication equipment with him; he 
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can use any communication device for establishing communication with the other 
party. This facility requires an identification scheme to verify the person wishing 
to communicate. Figure 1.3 illustrates the notion of personal mobility. A person at 
location C communicates with the car at location A using his PDA, and from location 
D also he  can communicate with the car at location A using his laptop. At present, 
personal mobility is available through the web. A user can log on to the web from 
different machines located at different places and access his e-mail. The mobile 
system extends this facility so that the user can use any mobile device for reaching 
the internet. In personal mobility each person has to be uniquely identified, and one 
way to do this is via a unique identification number. 

There is no dependency relationship between terminal and personal mobility; each 
can exist without the other. In personal mobility the party is free to move, and in 
terminal mobility the communication unit is free to move. 

Voice or data communication can be supported by either types of mobility. How- 
ever, to visualize a complete mobile database management system both types of 
mobility are essential. 

1.3 SUMMARY 

This chapter covered historical facts and the emergence of mobile and wireless dis- 
ciplines and wireless gadgets starting from remote control units. It discussed the 
types of mobility necessary to visualize mobile infrastructure and envisioned the 
development of a fully connected information space where all functional units are 
fully connected with each other through wireless links. It presented the rationale for 
the development of a mobile database system necessary to manage all information 
management tasks in the information space. 

The entire development can be looked at in terms of analog and digital transmission 
and data transmission aspects also. The first-generation wireless technology which 
was basically analog is usually referred to as First Generation (1 G). 1G systems were 
deployed only in the business world in the 1980’s. Mobile and cordless phones were 
introduced and analog standards were defined. A number of wireless communication 
companies such as Nokia (Finland), Motorola (USA), and Ericsson (Sweden), to 
name a few, established their firm hold in the communication market. 

The popularity of analog wireless technology motivated users to present new de- 
mands on the system and soon the limitations of 1G infrastructure became known. 
In early 1990’s, therefore, the second generation (2G) wireless technology was intro- 
duced which was based on digital transmission. Digital technology provided higher 
communication capacity and better accessibility. This marked the introduction of 
Global System for Mobile Communication - Groupe SpecialMobile (GSM). Initially 
GSM was confined to Europe gradually its standard spread to most other countries 
of the world. The 2G mobile units could send not only voice but limited amount of 
data as well. 

The limited amount of data comniunication capability became one of its serious 
limitations of2G system. A number of more powerful mobile phones were introduced 



10 MOBILE DATABASE SYSTEM 

in early 2000’s, which allowed higher voice and data transmission rates and improved 
connectivity. This was only a partial enhancement to 2G systems, so it was referred 
to as “2.SG” technologies. This allowed e-mails to be received and sent through 
2.SG mobile phones which could be connected to laptop or PDA (Personal Digital 
Assistant). 

2 3 3  technology and system was not quite capable of handling multimedia data 
transfer, unrestricted internet access, video streaming, etc. These kind of transfers 
became very important for M-commerce community. The Third-Generation (3G) 
technology made it possible to achieve these capabilities. 3G made it possible to 
provide variety of services through internet and the emphasis moved from voice- 
centric to data-centric environment. It also helped to establish a seamless integration 
of business and user domains for the benefit of the entire society. Thus, 3G technology 
made it possible to visualize f u l l y  connected injormation space. 

The next chapter further discuses mobility and wireless communication technology 
necessary to build the desired mobile database system. 

Exercises 

1. What is the difference between wireless communication and mobile communi- 
cation? Explain your answer and give some real-life example to illustrate the 
differences. 

2.  Explain the differences between personal mobility and terminal mobility. How 
do they affect the scope of wireless communication? 
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Location and Handof 

Management 

3.1 INTRODUCTION 

The handoff process in mobile communication system was briefly introduced in Chap- 
ter 2. In this chapter, further details of the handoff process is provided and the topic 
of location management is introduced. It first explains how these processes work 
and then discusses their relevance to transaction management in mobile database 
systems. Quite a few location management schemes have been proposed recently, 
but none of them have been implemented in any commercial system, so they are not 
discussed. The working of existing handoff and location mechanisms given in IS-41 
is explained 171. 

3.1.1 Location Management 

In cellular systems a mobile unit is free to move around within the entire area of cover- 
age. Its movement is random and therefore its geographical location is unpredictable. 
This situation makes it necessary to locate the mobile unit and record its location to 
HLR and VLR when a call has to be delivered to it. Thus, the entire process of the 
mobility management component of the cellular system is responsible for two tasks: 
(a) location management- that is, identification of the current geographical location 
or current point of attachment of a mobile unit which is required by the MSC (Mobile 
Switching Center) to route the call- and (b) handoff- that is, transferring (handing off) 
the current (active) communication session to the next base station, which seamlessly 
resumes the session using its own set of channels. The entire process of location 

45 
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management is a kind of directory management problem where locations are current 
locations are maintained continuously. 

One of the main objectives of efficient location management schemes is to mini- 
mize the communication overhead due to database updates (mainly HLR) [6,9, 151. 
The other related issue is the distribution of HLR to shorten the access path, which 
is similar to data distribution problem in distributed database systems. Motivated 
by these issues, recently a number of innovative location management schemes have 
appeared in the research world [ 141. 

The current point of attachment or location of a subscriber (mobile unit) is ex- 
pressed in terms of the cell or the base station to which it is presently connected. The 
mobile units (called and calling subscribers) can continue to talk and move around in 
their respective cells; but as soon as both or any one of the units moves to a different 
cell, the location management procedure is invoked to identify the new location. 

The unrestricted mobility of mobile units presents a complex dynamic environ- 
ment, and the location management component must be able to identify the correct 
location of a unit without any noticeable delay. The location management performs 
three fundamental tasks: (a) location update, (b) location lookup, and (c) paging. 
In location update, which is initiated by the mobile unit, the current location of the 
unit is recorded in HLR and VLR databases. Location lookup is basically a database 
search to obtain the current location of the mobile unit and through paging the system 
informs the caller the location of the called unit in terms of its current base station. 
These two tasks are initiated by the MSC. 

The cost of update and paging increases as cell size decreases, which becomes 
quite significant for finer granularity cells such as micro- or picocell clusters. The 
presence of frequent cell crossing, which is a common scenario in highly commuting 
zones, further adds to the cost. The system creates location areas and paging areas 
to minimize the cost. A number of neighboring cells are grouped together to form a 
location area, and the paging area is constructed in a similar way. In some situations, 
remote cells may be included in these areas. It is useful to keep the same set of 
cells for creating location and paging areas, and in most commercial systems they 
are usually identical. This arrangement reduces location update frequency because 
location updates are not necessary when a mobile unit moves in the cells of a location 
area. A large number of schemes to achieve low cost and infrequent update have been 
proposed, and new schemes continue to emerge as cellular technology advances. 

A mobile unit can freely move around in (a) active mode, (b) doze mode, or (c) 
power down mode. In active mode the mobile actively communicates with other 
subscriber, and it may continue to move within the cell or may encounter a handoff 
which may interrupt the communication. It is the task of the location manager to 
find the new location and resume the communication. In doze mode a mobile unit 
does not actively communicate with other subscribers but continues to listen to the 
base station and monitors the signal levels around it, and in power down mode the 
unit is not functional at all. When it moves to a different cell in doze or power down 
modes, then it is neither possible nor necessary for the location manager to find the 
location. 
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The location management module uses a two-tier scheme for location-related tasks. 
The first tier provides a quick location lookup, and the second tier 4earch is initiated 
only when the first tier search fails. 

Location Lookup 

A location lookup finds the location of the called party to establish the communication 
session. It involves searching VLR and possibly HLR. Figure 3.1 illustrates the entire 
lookup process IS], which is described in the following steps. 

Fig. 3.1 Location search steps. 

Step 1: The caller dials a number. To find the location of the called number (desti- 
nation), the caller unit sends a location query to its base station source base 
station. 

Step 2: The source base station sends the query to the S-LS (source location server) 
for location discovery. 

Step 3: S-LS first looks up the VLR to find the location. If the called number is a visitor 
to the source base station, then the location is known and the connection is set 
U P .  

Step 4: If VLK search fails, then the location query is sent to the HLR. 

Step 5 :  HLR finds the location of D-LS (destination location server). 

Step 6: The search goes to D-LS. 
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Step 7: D-LS finds the address of D-BS (destination base station). 

Step 8: Address of D-BS is sent to he HLR. 

Step 9: HLR sends the address of D-BS to S-LS (source location server). 

Step 10: The address of D-BS is sent to the source base station, which sets up the 
communication session. 

Location Update 

The location update is performed when a mobile unit enters a new registration area. A 
location update is relatively expensive, especially if the HLR is distributed. The fre- 
quency of updates depends on the intercell movement pattern of the mobile unit such 
as highly commuting subscribers. One of the tasks of a good location management 
scheme is to keep such updates to a minimum. 

In the new registration area the mobile unit first registers with the base station, and 
the process of location update begins. Figure 3.2 illustrates the basic steps of location 
update. 

Fig. 3.2 Location update steps. 
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Step 1: The mobile unit moves to a new registration area which is serviced by a new 
location server (New LS). The mobile unit informs the new base station about 
its arrival. ' 

Step 2: The new base station sends the update query to New LS. 

Step 3: The New LS searches the address of the HLR in its local database. 

Step 4: The new location of the mobile unit is sent to HLR. 

Step 5: The old location of the mobile unit is replaced by the new location. 

Step 6: The HLR sends user profile and other information to New LS 

Step 7: The New LS stores the information it received from HLR. 

Step 8: The New LS informs the new base station that location update has been com- 
pleted. 

Step 9: The HLR also sends a message about this location update to the Old LS. The 
Old LS deletes the old location information of the mobile unit stored in its 
database. 

Step 10: The Old LS sends a confirmation message to the HLR. 

Fig. 3.3 Transient loop in forward pointer scheme. 

The current location management scheme has very high search and update costs, 
which increase significantly in the presence of frequent cell crossing because every 

'This is a part of registration process. 
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registration area crossing updates HLR. These issues motivated researchers to find 
efficient and cost effective schemes. A number of new location management schemes 
have been proposed recently, and a partial list is given here [ 1,2,3,4,5,10, 1 1, 131. A 
good survey of some these schemes can also be found in [8,12]. Instead of presenting 
a particular scheme a general description of forwarding pointer approach is discussed 
here to present the main idea [5 ,  81. 

Forwarding Pointer Location Management Scheme 

The objective of the forwarding pointer scheme is to minimize network overhead due 
to HLR updates. Unlike conventional scheme, this scheme uses a pointer to the next 
location of the mobile user. Thus instead of updating HLR, the scheme just sets a 
pointer at the previous location of the mobile unit which points to its current location. 
The pointer is a descriptor which stores mobile unit identity and its current location. 
A mobile unit movement is unpredictable, and it is possible that the unit may visit 
a registration area multiple times during a live communication session. If forward 
pointers are continuously created and maintained, then a revisit to a registration area 
creates a transient loop. Figure 3.3 illustrates the formation of transient loop in 
forward pointer strategy. Initially, mobile units MU 1 and MU2 were communicating 
in registration area R1. Unit MU2 makes its first move to R2, and then it moves back 
to RI through R3 and R4. This type of movement creates a transient loop where the 
communication path is R1 --+ R2 ---f R3 4 R4 + R 1 .  However, even in the worst-case 
scenario the transient loop does last for long. 

Updates Using Forward Pointers: When MU2 leaves registration area R1 and 
moves to R2 then (a) the user profile (MU2 profile) and the number of forward 
pointers created so far by MU2 is transferred from R1 to R2 and (b) a forward pointer 
is created at R1 which points to R2. This forward pointer can be stored in any BS 
data structure. 

At some point the current location of the MU needs to be updated in HLR. Usually, 
heuristic based update approach is used. One scheme could be based on the number 
of pointers created [S]. In this scheme an upper limit of pointers can be predefined; 
and once this threshold is reached HLK is updated. Another scheme can be based 
on the number of search requests, yet another can be based on constant update time. 
Thus the HLR is updated after so many hours or minutes have elapsed since the last 
update. The performance of these update schemes will very much depend on the user 
mobility. 

Location Search Using Forward Pointers: The search scheme is illustrated in 
Figure 3.4. A user in "Source" registration area wants to communicate with a user in 
"Destination" area. The following steps describes the location discovery. 

Step I : The caller dials the number of destination user. To find the location of the called 
number (destination), the caller unit sends a location query to its base station 
source base station. 
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Fig. 3.4 Location search using forward pointer. 

Step 2: The source base station sends the query to the Source LS (source location 
server) for location discovery. 

Step 3: Source LS first looks up the VLR to find the location. If the called number is a 
visitor to the source base station, then the location is known and the connection 
is set up. 

Step 4: If VLR search fails, then the location query is sent to the HLR. 

Step 5: The Destination HLR finds the location of destination location server (Dest- 
LS). 

Step 6: The Destination HLR sends the location of destination location server (Dest- 
LS) to the Source LS. 

Step 7: The Source LS finds the first forward pointer (8) and traverses the chain of 
forward pointers (9, 10, 11, . . .) and reaches the Destination location server 
(Current LS). 

Step i: The location of current base station is forward to the Source LS. 

e p  i + 1: Source LS transfers the address of current base station to the source base station 
and the call is set up. 

Forward Pointer Maintenance: Pointer maintenance is necessary to (a) remove 
pointers which have not been used for some time and (b) delete dangling pointers. 
During movement a mobile unit may create a number of pointers including transient 
loops. In Figure 3.3 when the MU2 returns to R1, the forward pointers R2 + R3, 
R3 --+ R4, and R4 i R2 will not be referenced to locate MU2, so they can be 
safely removed from the search path. The identification of candidates for removal 
can be achieved in a number of ways. One way is to associate a timestamp with each 
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forward pointer and define a purge time slots. At a purge slot ifpurge slot > apointer 
timestamp then this pointer can be a candidate for removal. The another way is to 
keep a directed graph of pointers. If a loop is found in the graph, then all edges except 
the last one can be removed. It is possible that in a long path there may be a small 
loop. For example, in path R2 -t R3, R3 + R4, R4 --f R3, and R3 + R5, the small 
loop R3 + R4 and R4 -+ R3 can be replaced by R3 --f R5. In further refinement, 
path R3 --j R5, with R5 being the current location, can be replaced by R2 --f R5. 

Dangling pointers occur if redundant pointers are not removed in a correct order. 
In the above removal process, if the path R2 + R3 is removed first, then the path 
R2 + R5 cannot be set and paths R3 --f R4, R4 + R3, and R3 + R5 will create 
dangling pointers. This is classical pointer management problem with a different 
effect in mobile scenario. 

The entire pointer management process must be synchronized with HLR update. 
Note that HLR may have been updated many times during the creation of forward 
pointers. Any reorganization must maintain the location consistency in HLR. Further 
information about the performance of pointer maintenance schemes can be found in 
Ref. [S]. 

3.1.2 Handoff Management 

The process of handoff was briefly discussed in Chapter 2. This section discuses 
how a handoff is managed to provide continuous connectivity. Figure 3.5 illustrates 
the presence of an overlap region between Cell 1 and Cell 2. A mobile unit may 
spends some time in this overlap area and the value of this duration depends upon the 
movement speed of the mobile unit. The duration a mobile unit stays in this area is 
called the degradation interval [ 101. The objective is to complete a handoff process 
while the mobile unit is still in the overlap area. This implies that the handoff must not 
take more than the degradation interval to complete he process. If for some reason 
the process fails to complete in this area or within degradation interval, then the call 
is dropped. 

Fig. 3.5 Cell overlap region. 
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A handoff may happen within or outside a registration area. If it happens within a 
registration area, then it is referred to as intra-system handoff where the same MSC 
manages the entire process. An intersystem handoff occurs between two separate 
registration areas where two MSCs are involved in handoff processing. In each of 
these cases the handoff processing is completed in three steps: 

0 Handoff detection: The system detects when a handoff process needs to be 
initiated. 

0 Assignment of channels: During handoff processing the system identifies new 
channels to be assigned for continuous connectivity. 

0 Transfer of radio link: The identified channels are allocated to the mobile 
unit. 

Handoff Detection 

Handoff processing is expensive, so the detection process must correctly detect a 
genuine and False Handoff (see Chapter 2) which also occurs because of signal 
fading. There are three approaches for detecting handoff effectively and accurately. 
A brief description of these approaches, which are applied on GSM system but also 
used in PCS, is presented here and further details can be found in Ref. [lo]. They 
are called: 

0 Mobile-Assisted Handoff (MAHO) 

0 Mobile-Controlled Handoff (MCHO) 

0 Network-Controlled Handoff (NCHO) 

Mobile-Assisted Handoff (MAHO): This scheme is implemented in second-generation 
systems where TDMA technology is used. In this approach, every mobile unit con- 
tinuously measures the signal strength from surrounding base stations and notifies the 
strength data to the serving base station. The strength of these signals are analyzed, 
and a handoff is initiated when the strength of a neighboring base station exceeds the 
strength of the serving base station. The handoff decision is made jointly by base 
station and Mobile Switching Center (MSC) or base station controller (BSC). In case 
the Mobile Unit (MU) moves to a different registration area, an intersystem handoff 
is initiated. 

Mobile-Controlled Handoff (MCHO): In this scheme the Mobile Unit (MU) is 
responsible for detecting a handoff. The MU continuously monitors the signal strength 
from neighboring base stations and identifies if a handoff is necessary. If it finds the 
situation for more than one handoff, then it selects the base station with strongest 
signal for initiating a handoff. 
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Network-Controlled Handoff (NCHO): In this scheme, Mobile Unit (MU) does 
not play any role in handoff detection. The BS monitors the signal strength used by 
MUs and if it falls below a threshold value, the BS initiates a handoff. In this scheme 
also BS and MSC are involved in handoff detection. In fact the MSC instructs BSs to 
monitor the signal strength occasionally, and in collaboration with BSs the handoff 
situation is detected. The MAHO scheme shares some detection steps of NCHO. 

Necessary resources for setting up a call or to process a handoff request may not 
always be available. For example, during a handoff the destination BS may not have 
any free channel, the MU is highly mobile and has requested too many handoffs, 
the system is taking too long to process a handoff, the link transfer suffered some 
problem, and so on. In any of these cases the handoff is terminated and the mobile 
unit loses the connection. 

Assignment of Channels 

One of the objectives of this task is to achieve a high degree of channel utilization 
and minimize chances of dropping connection due to unavailability of channel. Such 
failure is always possible in a high traffic area. If a channel is not available, then the 
call may be blocked (blocked calls); and if a channel could not be assigned, then call 
is terminated (forced termination). The objective of a channel allocation scheme is 
to minimize forced termination. A few schemes are presented here [ 101. 

Channel assigned Ongoing call + [ C c a r d  __. 

Fig. 3.6 Nonprioritized scheme steps. (Reproduced from Wireless and Mobile Network 
Architectures under written permission of John Wiley & Sons.) 

Nonprioritized Scheme: In this scheme the base station does not make any distinc- 
tion between the channel request from a new call or from a handoff process. If a free 
channel is not available then the call is blocked and may subsequently be terminated. 
Figure 3.6 shows the entire channel assignment process. 

Reserved Channel Scheme: In this scheme a set of channels are reserved for 
allocating to handoff request. If a normal channel is available, then the system assigns 
it to a handoff request; otherwise the reserved channel is looked for. If no channels 
are available in either set, the call is blocked and could be dropped. Figure 3.7shows 
the entire channel assignment process. 
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Fig. 3.7 Reserved channel scheme steps. (Reproduced from Wireless and Mobile Network 
Architectures under written permission of John Wiley & Sons.) 

Queuing Priority Scheme: In this scheme a channel is assigned based on some 
priority. If a channel is available, then the handoff request is process immediately; 
otherwise the request is rejected and the call is dropped. There is a waiting queue 
where requests are queued. When a channel becomes available, then one of the 
requests from the waiting queue is selected for proccssing. The queuing policy may 
be First in First Out (FIFO) or it may be rneasured-based or some other scheme. In 
the measured-based approach the request which is close to the end of its degradation 
interval is asGgned a channel first. In the absence of any free channel the call is 
terminated. Figure 3.8 shows the entire channel assignment process. 
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Fig. 3.8 Queuing priority scheme steps. (Reproduced from Wireless and Mobile Network 
Architectures under written permission of John Wiley & Sons.) 
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Subrating Scheme: In this scheme a channel in use by another call is subrated, 
that is, the channel is temporarily divided into two channels with a reduced rate. One 
channel is used to serve the existing call and the other channel is allocated to a handoff 
request. Figure 3.9 shows the channel assignment process. 

" 
Each channel of 

upgraded to full- " " of the subrated pair 
the subrated pair is No 

Handoff call Channel assigned Yes 4 

Call blocked The channel is idle 
~~ 

rate channel 

Fig. 3.9 Subrating scheme steps. (Reproduced from Wireless and Mobile Network Archi- 
tectures under written permission of John Wiley & Sons.) 

Radio LinkTransfer 

The last phase of handoff is the transfer of the radio link. The hierarchical structure 
of cellular system (PCS and GSM) presents the following five-link transfer cases for 
which handoff has to be processed. 

0 Intracell handoff Link or channel transfer occurs for only one BS. In this 
handoff a MU only switches channel. Figure 3.10 illustrates the scenario. 

0 Intercell or Inter-BS handoff The link transfer takes place between two BSs 
which are connected to the same BSC. Figure 3.1 1 illustrates the scenario. 

0 Inter-BSC handoff: The link transfer takes place between two BSs which are 
connected to two different BSCs and the BSC is connected to one MSC. Figure 
3.12 illustrates the scenario. 

0 Intersystem or Inter-MSC handoff The link transfer takes place between 
two BSs which are connected to two different BSCs. These two BSCs are 
connected to two different MSCs. Figure 3.13 illustrates the situation. 

As discussed in Ref. [ 101, typical call holding time is around 60 seconds. Some 
real-life data indicates that there could be around 0.5 inter-BS handoff, 0.1 inter-BSC 
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Fig. 3.10 Channel transfer in intracell handoff. 

Fig. 3.11 Channel transfer between two BSs with one BSC. 

handoff, and 0.05 inter-MSC handoff. The data also indicate that the failure rate of 
inter-MSC handoff is about five times more than inter-BS handoff. It is quite obvious 
that efficient processing of handoff is quite important for minimizing the call waiting 
time. 

There are two ways to achieve link transfer. One way is referred to as Hard 
Handofland the other as Soft Handoff. 
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Fig. 3.72 Channel transfer between two BSs connected to two BSCs. 

/-/ad Handoff: In this handoff process the user experiences a brief silence or dis- 
continuity in communication which occurs because at any time the MU is attached 
to only one BS and when the link is transfer the connection is broken temporarily 
resulting in a silence. The steps of the handoff for MCHO link transfer is described 
below. Further detail is given in Ref. [lo]. 

1. MS sends a “link suspend” message to the old BS which temporarily suspends 
the conversation (occurrence of silence). 

2. The MS sends a “handoff request message“ to the network through the new BS. 
The new BS then sends a “handoff acknowledgement“ message and marks the 
slot busy. This message indicates the initiation of the handoff process. 

3 .  This acknowledgment message indicates to MU that the handoff process has 
started, and so MU returns to the old channel it was using and resumes voice 
communication while network process the handoff. 

4. When the new BS receives the handoff request message, then two cases arise: 
(a) It is an intra-BS handoff or (b) it is an inter-BS handoff. In the former case 
the BS sends a handoff acknowledgment message and proceeds with handoff. 
In the later case, since it is between two different BSCs, the BS must complete 
some security check. It gets the cypher key from the old BS and associates it 
with the new channel. 

5. The MSC bridges the conversation path and the new BS. 
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Fig. 3.13 Channel transfer between two BSs with two BSCs connected to two MSCs. 

6. On the command of the network, the MS processes the handoff where it releases 
the old channel by sending an “access release” message to the old BS. In this 
process the voice communication is briefly interrupted again. 

7. The MU sends a “handoff complete” message through the new channel and 
resumes the voice communication. 

A detailed discussion on hard handoff for other kinds of link transfer and soft 
handoff can be found in Ref. [lo]. 

3.1.3 Roaming 

In the presence of multiple wireless service providers the continuous connectivity is 
provided through Roaming. Thus when a mobile moves from one GSM to another 
system PCS or GSP or some other, the location of MU must be informed by the new 
service provider to the old service provider. This facility is called roaming facility. 
These two service providers communicates with each other to complete the location 
management and the registration process as described earlier. 

The other important aspect of roaming is the administrative issues related to billing. 
Multiple service providers have to come to some agreement about the charges and 
pri vi I eges. 
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EXAMPLE6.4 

In electronic commerce applications, such as auctions, it is expected that a 
typical auction might bring together millions of interested parties. Updates 
based on bids made must be disseminated promptly and consistently. A mobile 
system may use broadcast facility to transmit the current state of the auction 
while allowing the client to communicate their updates using low bandwidth 
uplink channels. Broadcast based data dissemination is likely to be a major 
mode of information transfer in mobile computing and wireless environments. 

6.2 EFFECT OF MOBILITY ON THE MANAGEMENT OF DATA 

The above set of examples illustrates the importance of mobile database systems to 
manage real-life information processing activities. Mobile systems, however, cannot 
function without the support of conventional systems. It is, therefore, important to 
investigate how mobile discipline affects conventional data processing approaches 
for understanding their seamless integration 131. 

In conventional database systems there is one common characteristic: All com- 
ponents, especially the processing units, are stationary. A user must go to a fixed 
location to use the system. In distributed systems, depending upon the type of data, 
distribution data may migrate from one node to another, but this migration is deter- 
ministic; that is, data move from one fixed source to another fixed destination. Such 
data migration does not satisfy any mobility criteria. 

The integration of geographical mobility is an excellent way to efficiently salvage 
time wasted in traveling. However, it gives rise to a number of problems related to the 
maintenance of ACID properties in the presence of personal and terminal mobility. 
A number of these problems are addressed in the following sections. 

The ACID properties of a transaction must be maintained in all data manage- 
ment activities. Concurrency control mechanisms and database recovery schemes 
make sure that ACID is maintained. In mobile and wireless platform the nature of 
data processing remains the same, but the situations under which data are processed 
may change. It is, therefore, important to understand the effect of mobility on data 
distribution and ACID properties of transactions. 

6.2.1 Data Categorization 

The data distribution in conventional distributed database systems can be done in three 
ways: (a) partitioned, (b) partial replication, and (c) full replication. The presence 
of processor mobility adds another dimension to conventional data distribution. It 
introduces the concept of Location-Dependent Data (LDD). 
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Location-Dependent Data (LDD): It is a class of data where datavalues are tightly 
linked to specific geographical location. There is 1 : 1 mapping between the data value 
set and the region it serves. For example, City Tax data value is functionally dependent 
on the city’s tax policy. It is possible that all cities may use the same city tax schema, 
but each city will map to a unique instance of the schema. Some other example 
of LDD are zip code, telephone area code, etc. In contrast, some classes of data 
have no association with any location-for example, Social Security Number (SSN), 
street names, rain fall, snow fall, etc. The value of SSN does not identify any specific 
location such as a street name. The same street name may exist in Boston or in Seattle 
or in Kansas City. These are called Location-Independent Data, and the conventional 
data processing approach interprets all data as location-independent data. 

Location Dependent Query: LDD gives rise to Location-Dependent Query and 
Location-Aware Query. A location-dependent query needs LDD for computing the 
result. For example, What is the distance from the airport to here? is a location- 
dependent query because the value of the distance depends on the geographical lo- 
cation of the mobile unit which initiated the query. If the coordinates of the location 
“here“ is not known, then the query cannot be processed. Consider the situation when 
a person is driving to the airport to catch his flight. He is running late, and so after 
every 5 minutes he repeats the query How far is the airport now? Each answer to 
this identical query will be different but correct because the geographical location of 
“here“ is continuously changing. A similar situation arises in processing the query 
Where am I? I will continuously ask this query after driving randomly to some loca- 
tion and will have different correct answers. (I may get completely lost but that is a 
different matter altogether!). This kind of situation exists only when the geographical 
coordinates of the origin of query continuously change with time. This is a common 
situation in every day life. If a traveler initiates a query What is the sales tax of this 
city? while passing through a city, then the answer must be related to the current city 
and not to the next city where he arrives soon after initiating the query. A similar sit- 
uation arises in listening to a radio station while traveling. When the traveler crosses 
the broadcast boundary, the same frequency tunes to a different radio station and the 
broadcast program changes completely, 

In processing a location-dependent query, the necessary LDD and the geographical 
location of the origin of the query must be known. This requires that the system must 
map the location with the data to obtain correct LDD. A number of service providers 
have location discovery facility which can be used to access LDD. 

Location-Aware Query: This type of query includes reference to a particular lo- 
cation either by name or by suitable geographical coordinates. For example, What is 
the distance between Dallas and Kansas City? is a location-aware query because it 
refers to locations Kansas City and Dallas. The answer to this query or any location 
aware query does not depend on the geographical location of the query; as a result, 
the mobility does not affect its processing. 
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6.2.2 Location Dependent Data Distribution 

The I : 1 mapping between data and its geographical location restricts the three data 
distribution approaches. The horizontal fragmentation and vertical fragmentation of 
a relational database must include the location information implicitly or explicitly. 
The partition of database, however, becomes easier because the decision is solely 
based on the location parameter. The concept of data region is helpful to understand 
the distribution of database partitions in mobile databases. 

Definition 6.1 A data region is a geographical region or a geographical cell, and 
every geographical point of this region satisfies 1: I mapping with data. 

-------- ---/  - 
Pi - A partition of Kansas City database A Cell - c - > 

Fig. 6.1 Database partition for LDD. 

Figure 6.1 illustrates data distribution for data partition scheme. It assumes Kansas 
City as a data region for city sales tax. The entire data region is enclosed in a cell. 
Every location of Kansas City satisfies 1 : 1 mapping between city tax value and the 
location. The entire Kansas City database is partitioned into subdivisions identified 
by PI through Pg. All subdivisions map to the same city sales tax; as a result, all 
subdivisions charge the same city tax. If every subdivision maintains its own database, 
then at each subdivision a database partition can be stored. A mobile unit which moves 
among subdivisions will see the same one consistent value of a data item. 
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EXAMPLE6.5 

A hotel chain or franchise can be used to demonstrate the problem of data 
replication and its consistency for mobile databases. A particular hotel has a 
number of branches across the nation. Each branch offers identical services; 
however, its room rent, policy, facilities, etc., would depend on the branch 
location. Thus, the same-size suite may cost more in Dallas than in Kansas 
City. The data consistency constraints in Kansas City might be different from 
those in Dallas, because of local taxes and environment policies. Each branch 
may share the same schema but their instantiations (values for the data) may 
differ. 

In a partial replication approach the same partition can be replicated at more than 
one subdivision. For example, at subdivision 1 and subdivision 2, PI and P.L can 
be replicated without affecting the consistency. In a full replication, also the entire 
database can be replicated and used at all subdivisions in a consistent manner. 

Data region 1 
- - _ _  

Fig. 6.2 Database replication restriction. 

The situation does not change if the data region is covered by multiple cells. A 
mobile unit can move from one subdivision to another and use the same data item in 
both subdivisions. However, the situation changes when a cell covers two or more 
data regions as shown in Figure 6.2.  Data of one region cannot be replicated at another 
region. For example, the sales tax rate of Kansas City (region 1) cannot be replicated 
at Springfield (region 2). This constraint requires that a location-dependent query 
in Springfield must be processed in Springfield before the client enters Kansas City. 
This restriction also affects mobile data caching. A mobile unit must clear its cache 
before entering to another data region for maintaining global consistency. 

Since the distribution of LDD is dependent on geographical locations, its distri- 
bution is defined as spatial distribution to distinguish it from the conventional distri- 
bution which is called a temporal distribution. In spatial distribution and in temporal 
distribution spatial replication and temporal replication, respectively; are used. 
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Definition 6.2 Spatial Replication refers to copies of data objects which may have 
different correct data values at any point in time. Each value is correct within a given 
location area. One of these copies is called a Spatial Replica. 

Definition 6.3 Temporal Replication refers to copies of data objectsall of which have 
only one consistent data value at any point in time. One of these copies is called a 
Temporal Replica. 

The temporal distribution mainly considers local availability of data and the cost 
of communication, but for spatial distribution the geographical location must also be 
included. The identification of data as spatial and temporal affects the definition of 
consistency. 

Effect of Mobility on Atomicity: The property of atomicity guarantees that partial 
results of a transaction do not exist in the database. If a transaction fails to commit, then 
all its effects are removedfrom the database. The mobility does not alter the definition 
of atomicity but makes its enforcement quite difficult. Transaction execution log is 
required for implementing atomicity. In a conventional system the log is stored at 
the server and is easily available. In a mobile system, conventional logging approach 
does not work satisfactorily because a mobile unit gets connected and disconnected to 
several servers when it is mobile. There are a number of ways to manage a transaction 
log in mobile systems; this is discussed in the recovery section. 

Effect of Mobility on Consistency: In a centralized or distributed environment 
there is only one correct value for each data object. The term mutual consistency is 
used to indicate that all values of the same data item converge to this one correct value 
[2] .  A replicated database is said to be in a mutually consistent state if all copies have 
the exact same value [2] .  In addition, a database is said to be in a consistent state if 
all integrity constraints identified for the database are followed [2].  

In a mobile database system the presence of location-dependent data defines two 
types of consistency: Spatial Consistency and Temporal Consistency. 

Definition 6.4 Spatial consistency indicates that all data item values of a spatial 
replication are associated with one and only one data region, and they satisfi consis- 
tency constraints as defined by the region. Thus there is I :  1 mapping between data 
vdue and the region it serves. 

Every mobile unit that initiates transactions in a region must get a consistent view 
of the region and the database must guarantee that the effect of the execution of the 
transactions is durable in that region. To achieve this state, the region must satisfy 
temporal consistency as well. 

Definition 6.5 Temporal consistency indicates that all data item values must satisJL a 
given set of integrity constraints. A database is temporally consistent if all temporal 
replicas (replication of data items at multiple sites) of a data item have the mme 
value. 
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Effect of Mobility on Isolation: Transaction isolation ensures that a transaction 
does not interfere with the execution of another transaction. Isolation is normally 
enforced by some concurrency control mechanism. As with atomicity, isolation is 
needed to ensure that consistency is preserved. 

In mobile database systems a mobile unit may visit multiple data regions and 
process location-dependent data. The important thing is to ensure that execution 
fragments satisfy isolation at the execution fragment level. It will do so under some 
concurrency control mechanism which must recognize the relationship between a data 
item. The mechanism must enforce isolation in each region separately but achieve 
isolation for the entire transaction. This is quite different from a conventional dis- 
tributed database system which, does not recognize spatial replication and thus does 
not enforce regional isolation. 

Effect of Mobility on Durability: Durability guarantees the persistence of commit- 
ted data items in the database. In mobile database systems the durability is regional 
as well as global. For spatial replicas and temporal replicas; regional durability and 
global durability, respectively are enforced. 

Effect of Mobility on Commit: Transaction commitment is not affected by mobil- 
ity; however, because of the presence of location-dependent data, a location commit 
is defined. A location commit binds a transaction commit to a region. For exam- 
ple, a department manager initiates the following transaction on his mobile unit: 
Reserve 5 seats in a vegetarian restaurant located I mile from here. . This is a 
location-dependent update transaction, and it must be processed in the region where 
the restaurant is located. The confirmation must be sent back as fast as possible to 
the manager, which becomes necessary if the manager is waiting for the confirma- 
tion. The database server responsible for processing this transaction must first map 
the location of the query and the location of the restaurant and then access the cor- 
rect database for making the reservation. The entire execution remains confined to 
the region until the transaction commits. Thus the process of commit is identical 
to the conventional notion of transaction commit; however, the requirements for the 
commit are different. It is called location-dependent commit to differentiate it from 
conventional notion of commit. 

Definition 6.6 An execution,frugment, e t ,  satisfies a Location-Dependent Commit 
iff the fragment operations terminate with u commit operation and a location to dutu 
mupping exists. Thus all operutions in e ,  operate on spatial replicas dejned on the 
location identGed by locution mapping. The commit is thus associated with a unique 
location I,. 

Effect of Connectivity on Transaction Processing 

In a mobile environment an MU can process its workload in a continuoudy connected 
mode or in disconnected mode or in an intermittent connected mode. 
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Connectivity mode: In this mode an MU is continuously connected to the database 
server. It has the option of caching required data for improving performance or can 
request data from the server any time during transaction processing. If necessary, it 
can enter into doze mode to save power and becomes active again. However, this 
mode is expensive to maintain and is not necessary for processing users workload. 

Disconnected mode: In this mode an MU voluntarily disconnects from the server 
after refreshing the cache and continues to process workload locally. At a fixed 
time it connects and sends its entire cache to the server using wireless or wired link. 
The server install the contents of the cache such a way that global consistency is 
maintained. 

intermittent connected: This mode is similar to the disconnected mode, but here 
the MU can be disconnected any time by the system or voluntarily by the user. 
The disconnection by system may be due to lack of channel, low battery, security, 
etc. The user may disconnect the MU to save power or to process data locally, or 
no communication with the server is required for some time. Unlike disconnected 
mode, intermittent mode does not have any fixed time for connecting and disconnect- 
ing an MU. 

This type of connectivity is useful for agents dealing with customers-for example, 
insurance agents, UPS or FedEx, postal delivery, etc. For postal delivery, the entire 
day’s delivery can be defined as a long workflow. The agent delivers a packet to a 
house and locally updates the cached database on the mobile device. At the end of the 
day or at a prescribed time the agent connects and ships the entire cache to the server 
with through a wired or wireless channel. It is possible that the agent may connect 
to server to report the status of the high priority shipment. The stock evaluator in 
a supermarket also works in a similar manner. After recording the stock level the 
agent connects the server for updating the main database. Connection on demand 
is also a form of intermittent connectivity because a user’s need for data is usually 
unpredictable. 

The database consistency in disconnected or intermittently connected mode is 
hard to define and maintain. This becomes relatively difficult in an e-commerce or 
m-commerce environment, which can be explained with a simple example. Consider 
a company called Pani’ Inc., sells water purifier aggressively. Two agents Kumar 
and Prasad go house to house in a subdivision, demonstrate the water filter, and try 
to win household’s business. Suppose the company has 100 water purifier units in 
the warehouse and wants to sell them aggressively. Pani Inc. does not want to take a 
chance, so it asks each agent to download 100 units on their laptop and to sell them 
in a day. In this way if each agent sells 50 units, then the job is done. Now suppose 
with a bit of luck and with some persuasion, Kumar and Prasad both sell 100 units 
without being aware of each others success. This pushes the database into a real mess. 
Pani Inc. handles the situation using a “back order” scheme and reduction in the cost 

‘Pani is a Hindi word which means water 
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of water purifier. So in this situation, how can we define the consistent state of the 
database? One way could be “existing inventory +back order,“ but this is quite risky. 
If Pani Inc. could not supply all back orders within the promised time, then some 
orders may have to be rolled back; as a result, it may be difficult to maintain ACID 
constraints. 

Managing ACID transactions processing in the connected state is easy and can 
be handled in a conventional manner. However, their processing in the disconnected 
and intermittent connected modes requires new caching consistency approaches, new 
locking approaches, new commit protocol, new rollback and abort schemes, and most 
important a new transaction model or new way of processing ACID transactions. 

6.3 SUMMARY 

This chapter discussed the relationship between mobility and transaction processing. 
A clear understanding of this relationship is necessary for the development of mobile 
transaction model and its management. Three types of connectivity modes and their 
effect on database consistency and transaction processing were explained. In the next 
chapter, various ways of executing ACID transactions on mobile database system and 
mobile transaction models are presented. 

Exercises 

1. Define processor mobility from data management and transaction execution 
viewpoints. Identify the set of problems exclusive to each. 

2. In the presence of processor mobility, data and transactions acquire exclusive 
properties. Identify and explain these properties. How do they affect database 
query processing? 

3. Explain the difference between location-dependent, location-independent, and 
location-free queries. Give at least two real-life examples of each of them. 

4. Explain the problems of location-dependent data distribution. How do they 
affect database integrity and consistency. Are they similar to problems of data 
distribution in federated and multidatabase systems? Explain your answer. 

5. Give your own thoughts on the effect of mobility on database consistency, 
database integrity, database distribution, and transaction execution. 
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Fig. 7.4 Adjacent and nonadjacent cells. 

7.3 MOBILE TRANSACTION MODEL 

This section discusses the need for a new transaction model for mobile database 
systems. It was recognized in some of the earlier chapters that the conventional ACID 
transaction model was unable to satisfactorily manage mobile data processing tasks. 
Some of the important reasons were: the presence of hundoff, which is unpredictable; 
the presence of doze mode, disconnected mode, and forced disconnection; lack of 
necessary resources such as memory, and wireless channels; presence of location- 
dependent data; etc. To manage data processing in the presence of these new issues, a 
more powerful transaction model or ACID transaction execution model that can handle 
mobility during data processing was highly desirable. Two approaches to manage 
mobile databases were proposed, and the chapter discusses them in detail. Under 
each approach, a number of schemes were developed and each approach addressed 
some specific issues. 

The entire topic of mobile transaction modeling is highly research-oriented; and 
although significant number of schemes have been proposed, none has become a 
commonly accepted method. The chapter, therefore, identifies each execution model 
and presents the original scheme as described by the author(s) of the report. The 
discussion clearly indicates the incremental understanding of mobile data processing 
and how researchers addressed related issues with their execution models. 

In Chapter 6 the effect of new parameters such as mobility, location informa- 
tion, intermittent connectivity, etc., was investigated. It was illustrated that the basic 
ACID transaction model was unable to handle mobility aspect and location dependent 
processing, which are now quite common in transactional requests. 

There are basically two ways to handle transactional requests on MDS: (a) execu- 
tion model based on ACID transaction framework and (b) mobile transaction model 
and its execution. The first approach creates an execution model based on ACID 
transaction framework. In the second approach a user query is mapped to a mo- 



EXECUTION MODEL BASED ON ACID TRANSACTION FRAMEWORK 135 

bile transaction model and executed under mobile ACID constraints. The execution 
model approach managed to handle mobility and location information, but its scope 
was somewhat limited. This gave rise to the development of mobile transaction mod- 
els which captured and assimilated mobility and location property in its structure. 
These two approaches are discussed in detail in subsequent sections. 

7.4 EXECUTION MODEL BASED ON ACID TRANSACTION 
FRAMEWORK 

The concept of ACID transaction was introduced for consistency-preserving database 
processing. Informally, “A transaction is a collection of operations on the physical 
and abstract application state” [ 1 11. The conventional transaction model makes sure 
that the ACID properties of a transaction are maintained during database processing 
[ 1 11. The introduction of mobility significantly changed the database architecture 
and management paradigm, and it became clear that the strict enforcement of ACID 
properties was not necessary to maintain database consistency. As a matter of fact, 
mobility changed and in many cases had to relaxed the notion of consistency because 
in mobile database systems the notion of consistency is closely related to locations 
in the geographical domain, which is defined as follows: 

Definition 7.1 The Geographic Domain, G, is the total geographical area covered 
by all mobile units o f a  cellular system. Thus, G = (C, + C2 + . . . + Cn), where Ci 
represent the area of a cell. 

Definition 7.2 A Location is a precise point within the Geographic Domain. It rep- 
resents the smallest identiJiable position in the domain. Each location is identiJed by 
a spec& id, L. Also, G = UL, V L  and C;: = {Li, L2, ..., L,rrL}. 

In reality, a location of a mobile unit is identified with reference to the BS. If the 
geographic domain were on the Earth, then one can think of a location as a lati- 
tude/longitude pair. However, the granularity of the location used may be larger. For 
example, the location could be an address, city, county, state, or country. 

It is important to understand the complex relationship among the data, the op- 
erations to be performed on the data, and the termination of the execution for the 
development of an execution model. These issues were introduced in Chapter 6 and 
are further elaborated in this chapter. 

Location Dependent Query - LDQ: In legacy systems, the frequency of access 
of a data items and not their association with geographical locations is used in data 
distribution (partition and partial replication). In MDS this association plays an 
important role in their processing as well as in their distribution. Figure 7.5 identifies 
some important points. Suppose a person is traveling by car from Dallas to Kansas 
City and asks, Tax rate please? The answer to this query will depend on where 
actually the query originated. If the location is Dallas, then it will give the tax rate 
for Dallas; and if it is Kansas City, then the tax rate will be for Kansas City. Now 
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After Ti ends its execution, the pre-commit phase starts. In pre-commit if there 
is no conflict, thenpre-write lock mode is converted to write lock mode (Table 
7.2). 

The pre-commit of T, is announced where all read locks are released 

The final commit begins where the database is updated with pre-write values 
(final write). All write locks are released and commit is announced. 

Pre-write Execution in Mobile Database Systems 

The pre-write execution model tries to work within resource constraints of mobile 
database system. One of the important consideration is the speed of the CPU. For 
slow CPUs the execution model does not scale very well and MUs act as a simple 
client with no database processing capability. The following transaction execution 
example assumes a high speed CPU. 

MUs with high-speed CPUs store consistent data items in their local cache. When 
a transaction arrives at an MU, it uses cached data to process reads and returns the 
pre-write values. Those reads for which cache does not have data are sent to the server 
for processing. The server returns pre-write values or write values. The transaction 
pre-commits when all values are returned by the server and MU has also completed 
its processing. All locks are released and the pre-commit schedule is sent to the server 
for the final commit of the transaction. 

In some data processing situations, tolerable difference between apre-write version 
and a final write version may appear. Consider a transaction rl’, that executes a pre- 
read on data item IC which is the result of ape-write of Tj. Tj commits at the server. 
In some cases, Ti may have an old value of 2 ,  but it is tolerated-for example, draft 
and final version of a graphic object or some average salary data. A minor difference 
in this version is not likely to influence the decision outcome. 

7.6 MOBILE TRANSACTION MODEL 

In the last few sections, mobile execution models for ACID transactions were dis- 
cussed in detail. An execution model provides a scheme to execute ACID transactions 
in a resource-limited mobile platforms; however, they have some inherent limitations. 
Later mobile transaction models were developed to take care of these limitation. A 
number of such transaction models are discussed in this section. 

7.6.1 

This model was presented in Ref. [29]. Although it has been presented as a mobile 
tran5action model, in reality it is a mobile transaction execution model. The execu- 
tion model is mainly for processing aggregate data stored in a data warehouse which 
resides in mobile units. Since the data warehouse resides in mobile units, HiCoMo 

HiCoMo: High Commit Mobile Transaction Model 
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transactions are always initiated on mobile units where they are processed in a dis- 
connected mode. As a result, transaction commitments are quite fast. The results of 
these transactions are then installed in the database upon reconnection. 

The base database resides on the fixed network. It is manipulated by transac- 
tions called base or source transactions. These transactions are initiated at the fixed 
network. Transaction which are initiated and processed at mobile units are called 
HiCoMo. Since HiCoMo transactions do specialized processing, it is based on the 
following assumptions: 

The data warehouse stores aggregate data of the following types: average, sum, 
minimum, and maximum. 

Operations such as subtraction, addition, and multiplication are allowed with 
some constraints on their order of application. 

The model allows some margin of errors. This margin can be defined before 
allowed operations are initiated and their value can be varied between a lower 
and an upper bound. 

The structure of HiCuMo transaction is based on nested transaction model. The 
database consistency is satisfied through convergence criteria. It is satisfied when the 
states of the base database and the data warehouse in mobile units are identical. This 
transaction model ensures that convergence is always satisfied. 

As mentioned earlier, the base database at the server is updated by Jource trans- 
actions. This requires that to install updates of HiCoMo transactions, they must be 
converted to source transactions. This conversion is done by a Transaction Transfor- 
mation Function, which works as follows: 

Conflict detection: A conflict is identified among other HiCoMo transactions 
and between HiCoMo and bases transactions. If there is a conflict between 
HiCoMo transaction, then the transaction which is being considered for trans- 
formation is aborted, 

Base transaction generation: In the absence of a conflict, initial base transac- 
tions are generated and executed as subtransactions on the base database at the 
server. The type of base transaction depends upon the HiCoMo transactions. 

Alternate base transaction generation: It is possible that some of these sub- 
transactions may violate integrity constraints (may be outside the error margin) 
and, therefore, are aborted. These updates are tried again by redistribution of 
error margin. In the worst-case scenario the original HiCoMu transactions are 
aborted. If there is no integrity violation, then base transactions are committed. 

7.6.2 Moflex Transaction Model 

A mobile transaction model called Moflex, which is based on a flexible transaction 
model (131, is presented in Ref. [24]. The structure of a Moflex has 7 components 
andcanbedefinedas 
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Moflex transaction T = { M ,  S, D, H ,  .I, G) 

M = { t l ,  t z ,  . . ., t,,}, where t ,  are compensable on noncompensable subtransac- 
tions. Every compensable t ,  is associated with a corresponding compensating 
transaction. 

S = a  set of success-dependencies between ti and t,i (1: # j ) .  This defines the serial 
execution order of these subtransactions. Thus, t j  has a success-dependency 
on t ,  (i.e., ti <,s t j )  if t j  can be executed only after t i  commits successfully. 

F = a set of failure-dependencies which indicates that t j  can be executed only 
after t ,  has failed. This dependency is represented as (i.e., t ,  < f  t j ) .  

D = a set of external-dependencies which indicates that ti can be executed only if 
it satisfies predefined external predicates. These predicates are defined on time 
(p ) ,  cost (Q), and location (L).  

H = a set of handoff control rules which manages the execution of subtransactions 
in the presence of a handoff. In this event a subtransaction may continue its 
execution or restart or split-resume or split-restart. These execution states or 
modes are related to handoff and are explained later. 

J = a set of acceptablejoin rules which are used to determine he correct execution 
of a subtransaction. 

G = a set of all acceptable states of T (Mojex).  

A Mojlex transaction can be (a) not submitted for execution - N , (b) currently 
under execution - E, (c) successfully completed - S or (d) failed - F. An execution 
of T is regarded as being complete if its current state exists in set G. When this is 
satisfied, then T can commit. Otherwise, if no subtransaction of T is executing or 
can be scheduled for execution, then T is aborted. 

It is possible to process a location-dependent query with Mojex. The location- 
dependent predicate, along with other constraints, can be defined in terms of time 
such as from 8 AM to 5 PM. For example, a temporal dependency, which is a member 
of D ,  can be stated as follows: 

D = {8 Q, L }  
P = ( 8  < time ( t l )  < 17, 8 < time ( t z )  < 17} 
Q = {cost ( t z )  < $100, cost ( t 3 )  < $100) 
{tl, t 4 }  

When a handoff occurs during the execution of T ,  then the subtransaction can 
further split into finer subtransactions. If the parent subtransaction is compensable and 
processing location-dependent data, then the handoff rule forces the subtransaction 
to abort and restart in the new cell. A restart can be split-restart where the value of 
the partial execution of the subtransaction in the last cell is preserved. In the case of 
location-independent subtransaction, it further splits into finer subtransactions. One 
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of these subtransactions which represents the portion of execution occurring in the 
last cell is free to commit. 

An Example of a Moflex 

An emergency patient dispatch query can be stated as follows. The objective of this 
hypothetical transaction is to illustrate how the transaction fits into Mojex transaction 
structure. Find the right hospital or take the patient the defuult hospital, then dispatch 
patient status to the emergency doctor,for getting the correct treatment. This can be 
expressed in a Mojex as 

In this example in set G, S indicates a successful execution of Mopex and “-‘I 

means that the execution state of the subtransaction does not have to be one of the 
predefined states. Further details about Mojlex can be found in Ref. [24]. 

7.6.3 Kangaroo MobileTransaction Model 

In Ref. [7] a transaction model called Kangaroo is presented which captured both 
data and the movement of mobile units. The model is based on a split transaction 
model and enforces the majority of ACID properties. 

A global or parent Kangaroo transaction, K T ,  is composed ofa number of subtrans- 
actions. Each subtransaction is similar to an ACID transaction, which is composed of 
a set of reads and writes. These subtransactions are called Joey Transaction (JT) and 
are local to a base station. Upon initiation of a Kangaroo transaction, a base station 
creates a JT for its execution which may be executed at mobile units. When these 
mobile units migrate to another cell, the base station of this cell takes control of the 
execution of this transaction. 

KTs support transaction execution in Conzpensating or Split modes. When a fail- 
ure occurs in a compensating mode, the JT all execution (preceding or following) is 
undone and previously committed JTs are compensated. It is difficult for the system 
to identify a compensating mode, so users provide useful input for creating compen- 
sating JTs. The default execution mode is split mode. When a failure occurs (when 
a JT fails) in a default mode, then no new local or global transaction is created from 
KT and previously committed JTs are not compensated. As a result, in compensating 
mode, JTs are serializable but may not be in split mode. 
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Kangaroo transaction processing: A KT, when initiated by a mobile unit, is 
assigned a unique identity. The initial base station immediately creates a JT with a 
unique identity and becomes responsible for its execution. There is one JT per base 
station. When the mobile unit encounters a handoff (i.e., moves to a different cell), 
KT is split into two transactions - JT1 and JT2. Thus the mobility of a mobile unit is 
captured by splitting a KT into multiple JTs. These JTs are executed sequentially; that 
is, all subtransactions of JTl are executed and committed before all subtranactions of 
JT2. Further details on KT and be found in the original paper. 

Some other models have been reported in the literature which are mentioned briefly 
here. The semantics-based mobile transaction processing scheme [57] views mobile 
transaction processing as a concurrency and cache coherency problem. The model 
assumes a mobile transaction to be a long-lived, one characterized by long network 
delays and unpredictable disconnections. This approach utilizes thc object organi- 
zation to split large and complex objects into smaller, manageable fragments. A 
stationary database server dishes out the fragments of a object on a request from a 
mobile unit. On completion of the transaction the mobile hosts return the fragments 
to the server. These fragments are put together again by the merge operation at the 
server. If the fragments can be recombined in any order, then the objects are termed 
reorderable objects. Since a single database server is assumed, the ACID properties 
can be maintained. 

7.6.4 MDSTPM Transaction Execution Model 

An execution model called Multidatabuse Transaction Processing Munager (MD- 
STPM) is reported in Ref. 1.561 which supports transaction initiation from mobile 
units. The model uses message and queuing facilities to establish necessary commu- 
nication among mobile and stationary (base station) units. At each stationary unit a 
personal copy of MDSTPM exists which coordinates the connected and disconnected 
execution of transactions submitted at mobile units. 

The MDSTPM has the following components: 

0 Global Communication Manager (GCM): This module manages message 
communication among transaction processing units. It maintains a message 
queue for handling this task. 

0 Global Transaction Manager (GTM): This module coordinates the initiation 
of transactions and their subtransactions. It acts as a Global Scheduling Sub- 
manager (GSS) which schedules global transactions and subtranactions. It can 
also act as a Globul Concurrency Subnzanager (GCS), which is responsible for 
the execution of these transactions and subtranactions. 

0 Local Transaction Manager (LTM): This module is responsible local trans- 
action execution and database recovery. 

0 Global Recovery Manager (GRM): This module is responsible for managing 
global transaction commit and their recovery in the event of failure. 
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0 Global Interface Manager (GIM): This serves as a link between MDSTPM 
and local database managers. 

These transaction models did address most of the important issues of mobility, 
however, no single model captured or incorporated these issues at one place. In the 
Kangaroo model a transaction issued by a user at one mobile unit can be fragmented 
and executed at multiple mobile units. This is acceptable on the research level, but 
in reality this does not happen. A mobile unit is a resources dedicated to its own 
transactions and not open for execution sharing. The location-dependent, location- 
aware, location-independent, intermittent-execution, etc., are some of the important 
issues which are interrelated and need a unified processing by a single model. A model 
called Mobilaction has tried to capture these into one model which is discussed next. 

7.6.5 Mobilaction-A Mobile Transaction Model 

In this section a new mobile transaction model called Mobilaction is presented in Ref. 
1201. Mobilaction is capable of processing location-dependent data in the presence 
of spatial replication. It is composed of a set of subtransactions, which is also called 
Execution Fragments, and each fragment is a Mobilaction. 

Mobilaction is based on the framework of the ACID model. To manage location- 
based processing, a new fundamental property called “location (L)” is incorporated 
extending the ACID model to ACIDL. The “location (L)” property is managed by a 
location mapping function. 

Definition 7.8 Fragment Location Mapping FLM: Each executionfragment, e,7, of a 
mobile transaction, Ti, is associated with a unique location. Given a set of execution 
,fragments E, FLM is a mapping F L M  : E + L. 

The FLM identifies (a) the correct geographical location and (b) the correct spatial 
replica (LDD) for the execution of a fragment. In addition, it is used to ensure spatial 
consistency of fragments within a transaction. We first explain how Mobilaction 
satisfies ACID properties and then formally define Mobilaction. 

7.6.6 Atomicity for Mobilaction 

The purpose of atomicity is to ensure the consistency of the data. However, in a mobile 
environment we have two types of consistency. Certainly, atomicity at the execution 
fragment level is needed to ensure spatial consistency. However, transaction atomicity 
is not. We could have some fragments execute and others not. 

Definition 7.9 A mobile transaction, Tt, satisjies Spatial Atomicity iff each execution 
.fragment, el j ,  of T, is atomic. T, is said to be Spatially Atomic iff each execution 
.frugment, e 7 j ,  is atomic. 

7.6.7 Isolation for Mobilaction 

Transaction isolation ensures that a transaction does not interfere with the execution 
of another transaction. Isolation is normally enforced by some concurrency control 
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mechanism. As with atomicity, isolation is needed to ensure that consistency is 
preserved. Thus we need to reevaluate isolation when spatial consistency is present. 
As with consistency, isolation at the transaction level is too strict. The important thing 
is to ensure that execution fragments satisfy isolation at the execution fragment level. 

Definition 7.10 A mobile transaction, T,, satisjies Spatial Isolation iff each execu- 
tion,fragment, e t j ,  o jT ,  is isolated from all execution frugments of T, or any other 
tmnsuction. 

Note that Mobilaction will need to implement a concurrency control technique at 
the fragment level. Any concurrency control technique could be used. As a matter of 
fact, a different technique could be used for each fragment. 

7.6.8 Consistency and Durability for Mobilaction 

A conventional transaction commit satisfies the durability property. There is nor- 
mally only one commit operation per T,. However, to ensure spatial consistency, 
spatial isolation, and spatial atomicity, the mobility property requires that the commit 
of Mobilaction must also change. We introduce the concept of location-dependent 
commit. 

Definition 7.11 An execution fragment, e,j,  satisjies u Location-Dependent Commit 
iff the fragment operations terminate with a commit operation and a FLM exists. Thus 
all operations in e i j  operate on spatial replicas dejined b y  a data region mapping 
on the location ident$ed b y  the FLM. The commit is thus associated with a unique 
location, L. 

Definition 7.12 An Execution Fragment e z j  is a partial order e,j = {o,, < J } ,  
where 

0 oJ = OS, U {N,}, where OS, = UkO,ik, O,k E {read,write}, and NJ E 

{abortL, cornrmtL}. Here thehe are a location-dependent commit and abort. 

0 For any 0 , k  and 0 , l  where O,k = R(r )  and 0,I = W ( x )  for a data object 
x, then either 0, ik <, 0,I or 0,l <, 0, k.  

0 VO,k E OS,,O,k IJ N,. 

The only difference between an execution fragment and a transaction is that either 
a location dependent commit or abort is present instead of a traditional commit or 
abort. Every fragment is thus associated with a location. However, keep in mind 
that if the data object being updated is a temporal replica, then the fragment updates 
all replicas. Thus it is not subjected to location constraints and appears as a regular 
transaction. 

Definition 7.13 A Mobilaction (T,) = <F,,L,,FLM7>, where F, = {el l ,  ..., p , n }  

is a set ojexecution fragments, L ,  = { 1, 1 , . . . , I ,  n }  is u set of locations, and FLMt  = 



156 TRANSACTION MANAGEMENT IN MOBILE DATABASE SYSTEMS 

Model 

{ f l * rn i l ,  ..., flmin} is a set offragment location mappings, where V j ,  f l m L j ( e i j )  = 

lt:j. In addition, V j ?  I ; ,  l z j  <> lik. 

A 

In traditional database systems, ACID transaction is assumed to be a unit of con- 
sistency. Even with spatial atomicity, this is still the case with a Mobilaction. A 
Mobilaction is a unit of consistency. That is, given a database state which is both 
temporally and spatially consistent, a Mobilaction T, converts this state into another 
temporally and spatially consistent state. 

Request 

MU 

NIA 

NIA 

MU 

MU 

MU 

Table 7.3 Summary of previous mobile transaction models and ACID adherence 

Execute 

Fixed Network 

NIA 

NIA 

MU or Fixed Network 

Restricted Server/MU 

MU or Fixed Network 

I I 

Clustering 

Semantics 
I I 

I MDSTPM I No 
I I 

CII]D- 

No No 

Yes Yes Yes 

No No 
I I I I I 

Table 7.3 compares the various mobile transaction models based on ACID prop- 
erty compliance and processing location. Due to the fact that the Kangaroo model 
assumes the autonomy of the underlying DBMS systems, subtransactions are allowed 
to commitlabort independently. Atomicity may be achieved if compensating transac- 
tions are provided. While the Semantics approach allows processing anywhere in the 
mobile platform, it is a restricted type of processing in that only one server is assumed 
and all fragments processed at the MU must be returned to the server prior to commit. 
All but the Semantics-based approach may violate durability. This is because local 
transactions which have committed may later be "undone" by a compensating trans- 
action. It is certainly debatable as to whether this really violates durability, since the 
compensating transaction is a completely separate transaction. The request column 
indicates where the transaction is assumed to be requested. All but the Reporting 
assume it is requested at the Mobile Unit. Since this model is a more general than the 
others and not limited to a mobile computing environment, it does not assume that 
the initial request is made from any particular site. The Execute column indicates 
at what sites the kangaroo is assumed to execute. Again this really does not apply 
to the Reporting approach. The Kangaroo limits processing to nodes on the fixed 
network, while the Semantics approach assumes that the execution at a server on the 
fixed network is limited to the creation and then update of the fragments. 
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7.7 DATA CONSISTENCY IN INTERMITTENT CONNECTIVITY 

Mobile clients encounter wide variations in connectivity ranging from high-bandwidth, 
low-latency communications through wired networks to total lack of connectivity 
[8, 15, 391. Between these two extremes, connectivity is frequently provided by 
wireless networks characterized by low bandwidth, excessive latency, or high cost. 
To overcome availability and latency barriers and reduce cost and power consump- 
tion, mobile clients most often deliberately avoid use of the network and thus operate 
switching between connected and disconnected modes of operation. To support such 
behavior, disconnected operation-that is, the ability to operate in a disconnected 
mode-is essential for mobile clients [15, 16, 36, 471. In addition to disconnected 
operation, an operation that exploits weak connectivity; that is, connectivity provided 
by intermittent, low-bandwidth, or expensive networks), is also desirable [ 14, 321. 
Besides mobile computing, weak and intermittent connectivity also applies to com- 
puting using portable laptops. In this paradigm, clients operate disconnected most of 
the time, and occasionally connect through a wired telephone line or upon returning 
back to their working environment. 

In the proposed scheme, data located at strongly connected sites are grouped 
together to form clusters. Mutual consistency is required for copies located at the same 
cluster, while degrees of inconsistency are tolerated for copies at different clusters. 
The interface offered by the database management system is enhanced with operations 
providing weaker consistency guarantees. Such weak operations allow access to 
locally (i.e., in a cluster) available data. Weak reads access bounded inconsistent 
copies and weak writes make conditional updates. The usual operations, called strict 
in this chapter, are also supported. They offer access to consistent data and perform 
permanent updates. 

The scheme supports disconnected operation since users can operate even when 
disconnected by using only weak operations. In cases of weak connectivity, a bal- 
anced use of both weak and strict operations provides for better bandwidth utilization, 
latency, and cost. In cases of strong connectivity, using only strict operations makes 
the scheme reduce to the usual one-copy semantics. Additional support for adapt- 
ability is possible by tuning the degree of inconsistency among copies based on the 
networking conditions. 

In a sense, weak operations offer a form of upplication-aware adaptation [33].  
Application-aware adaptation characterizes the design space between two extreme 
ways of providing adaptability. At one extreme, adaptivity is entirely the responsi- 
bility of the application; that is, there is no system support or any standard way of 
providing adaptivity. At the other extreme, adaptivity is subsumed by the database 
management system. Since, in general, the system is not aware of the application 
semantics, it cannot provide a single adequate form of adaptation. Weak and strict 
operations lie in an intermediate point between these two extremes, serving as mid- 
dleware between a database system and an application. They are tools offered by 
the database system to applications. The application can at its discretion use weak 
or strict transactions based on its semantics. The implementation, consistency con- 
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are similar to weak read-only transactions with no consistency requirements. ESR 
bounds inconsistency directly by bounding the number of updates. In Ref. [SO] a 
generalization of ESR was proposed for high-level type specific operations on abstract 
data types. In contrast, our approach deals with low-level read and write operations. 

In an N-ignorant system, a transaction need not see the results of at most N prior 
transactions that it would have seen if the execution had been serial [ 181. Strict trans- 
actions are @ignorant and weak transactions are 0-ignorant of other weak transactions 
at the same cluster. Weak transactions are ignorant of strict and weak transactions at 
other clusters. The techniques of supporting N-ignorance can be incorporating in the 
proposed model to define d as the ignorance factor N of weak transactions. 

7.13 CONCURRENCY CONTROL MECHANISM 

Consistency-preserving execution is necessary for maintaining database consistency. 
In Chapter 5 a number of commonly known concurrency control mechanisms were 
discussed. This chapter investigates if any of them would work satisfactorily in mobile 
database systems. 

Any scheme or mechanism, such as sorting, searching, concurrency control mech- 
anism, system recovery, etc., has system overhead. In most cases a mechanism with 
least system overhead is preferred, even though it may not be efficient. This is espe- 
cially true for mobile database systems where system overhead can create a serious 
performance problem because of low-capacity and limited resources. This is one of 
the main reasons for not considering conventional currency control mechanisms for 
serializing concurrent transactions for mobile database systems. However, they do 
provide a highly useful base for modified CCMs or for developing new ones. Some 
of these conventional CCMs can analyzed as follows: 

7.13.1 Locking-Based CCMs 

Two-phase incremental locking and simultaneous release is the most commonly used 
concurrency control mechanism. This scheme can be implemented on distributed 
database systems in three different ways: (a) centralized two-phase locking (primary 
site approach), (b) primary copy locking, and (c) distributed two-phase locking. It is 
useful to analyze if they are suitable for mobile database systems 

Centralized Two-Phase Locking: In this scheme, one site (node) is responsible 
for managing all locking activities. Since the locking request traffic is likely to be very 
high, the central node should be almost always available. In a mobile database system, 
this requirement limits the choice of central node. A mobile unit cannot be a central 
node because (a) it is a kind of personal processing unit, (b) it is not powerful enough 
to manage locking requests, (c) it cannot maintain the status (locked or free) of data 
items, (d) it is not fully connected to other nodes in the network, and (e) its mobility 
is unpredictable. Base stations are the next choice, but they also have a number of 
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problems related mainly with functionality issues. A base station is a switch and 
is dedicated to providing services to mobile units. Adding transaction management 
functionality is likely to overload them, which would not be recommended by wireless 
service providers. Theoretically, this may be the best choice, and many researchers 
have selected base stations for incorporating database functions; however, in reality 
this is not an acceptable solution. A fixed host can be configured to act as a central 
node, but it is not equipped with a transceiver. As a result, it has to go through a base 
station to reach any mobile unit. No matter what component is identified as a central 
node, the problem of single-point failure cannot be avoided in this scheme. 

Primary Copy Two-Phase Locking: This scheme eliminates a single point of fail- 
ure and minimizes other problems of central node approach by distributing the locking 
responsibility among distributed to multiple sites. Each lock manager is now respon- 
sible for a subset of data items. The node executing a part of the transaction sends 
lock requests to appropriate lock manager. This approach does not solve the problem 
of identifying suitable sites for distributing locking responsibility. The choices are 
either base station or fixed hosts or both. 

Distributed Two-Phase Locking: This scheme simply maximizes the extent of 
lock distribution. Here all nodes can serve as a lock manager. In the case of database 
partition this algorithm degenerates to centralized two-phase scheme. It is obvious 
that this scheme does not suggest a better selection of node for lock manager. 

The other acceptable option for lock manager is to include separate database servers 
connected to base stations through wired network. One of the database servers can be 
identified as the central node for managing transactions under a centralized scheme, 
a subset of them for a primary copy scheme, and all for a distributed scheme. Out of 
all options, this seems to be a middle ground. 

The communication overhead for managing locking and unlocking requests is 
another important problem to investigate. If a mobile unit makes a lock request on 
behalf of a transaction, it is executing and then (a) it will send the request to lock 
manager site (wireless message), (b) the lock manager will decide to grant or to refuse 
the lock and send the result to the mobile unit (wireless message), and (c) the mobile 
unit makes the decision to continue with forward processing or block or rollback 
depending upon lock manager’s decision. Thus, each lock request will generate two 
wireless messages, which would become quite expensive with an increase in the 
workload. Furthermore, every rollback will generate an additional message overhead 
by restarting the transaction. 

The amount of overhead closely related to the degree of consistency the database is 
programmed to maintain. To maintain stronger degree of consistency requires more 
resources compared to maintaining weaker degree of consistency. Thus one way of 
reducing the cost is to maintain weaker consistency level, and in many data processing 
situations a weaker consistency is acceptable. This is especially true for mobile 
database systems because mobile users are not likely to issue CPU-intensive large 
update transactions through their mobile units. If such a transaction is issued from a 
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laptop, then it could be executed at database servers with the strongest consistency 
level. 

It would be hard to achieve maximum benefit only through a new CCM that 
maintains a weaker level of consistency. A new way of structuring and executing 
ACID transactions is also necessary. Very few CCMs for mobile database systems 
have been developed, and this section discuses a few of them. 

Distributed HP-PPL CCM 

In Ref. [28] a concurrency control mechanism called Distributed HP-2PL (DHP- 
2PL) is presented. This CCM is based on two phase locking and it is an extension 
of HP-2PL [ l ]  CCM. It uses conflict resolution scheme of Cautious Waiting [19] 
mechanism to reduce the degree of transaction roll-backs. 

In this scheme, each base station has a lock schedular which manages the locking 
requests for data items available locally. Each transaction, i.e., the holder of the 
data item (Th) and the requestor of the data item (T,.) is assigned a unique priority. 
Thus when a requestor and a holder conflicts then their associated priority and their 
execution status (committing, blocked, etc.) are used to resolve the conflict. The 
steps are as follows. 

On a conflict check the priority of the holder and the requestor. 

If Priority (T,) > Priority (TtJ then check the status of (Th). I f  (TfL) is not 
comtnitting (i.e., still active then check if it is a local transaction. 

If (TtL) is a local transaction then restart it locally. A local transaction accesses 
only those data items which are stored at the base station where the transaction 
originates. 

If ( T h )  is a global transaction then restart it globally. A global transaction ac- 
cesses data at more than one base stations. Roll-back of a global transaction 
requires communicating with all those base stations where the global transac- 
tion has performed some update operations. 

If (Th) is in committing process then it is not restarted rather the (Tr) is forced 
to wait until (Th) commits and releases all its lock. Adjust the priority of (TtL) 
as follows: 
Priority (TlJ := Priority (T, ) + someJixed priority level. 

if Priority (T,) 5 Priority (TI,) then block (T,) until (Th) commits and releases 
its locks. 

A Cautious waiting approach is incorporated in the above method to minimize the 
impact of disconnection and unnecessary blocking. The modified algorithm is given 
below: 
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If Priority (TT) > Priority (Th) and T h  is still active (not committing), then 

Else 
global or local restart (TtJ. 

IfTf, is a mobile client, then 
I f  the time T h  spent at mobile unit > threshold, then ping the mobile unit. 

(The ping is done by the base station to check f Tt, is active.) 
I f  there is no response, then restart TfL 
Else 

Endif 
Block T, . This check is repeated at the end of a threshold. 

Else block T,. This checking is pegormed again when the time spent at 

Endif 
the mobile unit is > threshold. 

Else Block T, 
Endf  

Endq 

The threshold is a function of average system performance which is used as a 
tuning parameter. This acts as a timeout value which helps to decide the status of a 
mobile unit. If the base station does not get a response from the mobile unit within 
the threshold value, then a disconnection is assumed. This may not be true but its 
effect is similar to a disconnection. The holder Th is restarted even though it has a 
higher priority. This may increase the chances of missing the deadline for T,. 

Two more CCMs are discussed below. One takes the approach of weaker consis- 
tency, and the other uses transaction restructuring for developing CCMs for MDS. 

7.1 3.2 CCM Based on Epsilon Serializability 

A CCM based on epsilon serializability (ESR) [45] is presented here, which tolerates 
a limited amount of inconsistency. The mechanism is based on a two-tier replication 
scheme [ 121 that produces an epsilon serializable schedule. The scheme provides 
availability, accommodates the disconnection problem, and is scalable. It reduces 
transactions commit time and number of transaction rejections. ESR approach keeps 
the amount of inconsistency within a limit specified by epsilon. When epsdori ---f 

0, ESR reduces to conventional serializability situation. For example, in banking 
database a report that prints total summary in units of millions of dollars can tolerate 
inconsistency of a few hundreds dollars. Divergence control methods guarantee ESR 
the same way as concurrency control guarantee serializability. The concurrency 
control method that is presented here is a divergence control method to maintain ESR, 
which can be applied to a database whose state space is metric, Database state space 
depends on database semantics. Many practical applications with different semantics 
such as bank accounts, seats in airline reservation, and so on, are examples of metric 
state space. Bank database contains client names, addresses, account numbers, and 
account amounts but updates happen only to amount. Metric space S is defined as a 
state space having the following properties: 
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0 A distance function dist (u, v) is defined over every u, v E S on real numbers; 
dist (u, v )  is the difference between u and v, which represent database states. 

0 Triangular inequality, i.e., disl (u, v) + dist (v, w) = dist (u, w). 

0 Symmetry, i.e., dist (u, I)) = dist (v, u). 

In the mechanism, ESR [45,52] is used to achieve acceptable reduction in consis- 
tency. ESR is an abstract framework, and an instance of ESR is defined by concrete 
specification of tolerated inconsistency. The CCM that is discussed here can also 
be applied on fragmentable, reorderable objects [57], which include aggregate item, 
such as sets, queues, and stacks. 

The two-tier replication does not use traditional mechanisms (like two-phase lock- 
ing or timestamping) and it provides availability and scalability, accommodates a 
disconnection problem, and achieves convergence. The basic idea of two-tier repli- 
cation is first to allow users to run tentative transactions on mobile units, which makes 
tentative updates on the replicated data locally. When the mobile node connects to the 
database server, then these transactions are transformed to corresponding base trans- 
actions and re-executed at the servers. The base transactions are serialized on the 
master copy of the data and mobile units are informed about any failed base transac- 
tions. But the problem with this approach is that the mobile unit executes transaction 
without the knowledge of what other transactions are doing. This situation can lead 
to a large number of rejected transactions [3]. Another drawback is that transaction 
commit at MU tends to be large because these transactions know their outcome (i.e., 
committed or rejected) only after base transactions have been executed and the results 
are reported back to the MU. The CCM discussed here the two-tier replication scheme 
[ 121 is modified to reduce the number of rejected transactions and to reduce commit 
time of transactions executed at the MU. The BS can broadcast information to all the 
MUs in its cell. 

A central server holds and manages the database D = { D z } ,  where i E N is set of 
natural numbers and Di E S where 5’ is a metric space. Let di be the current value 
of the data object Di. The data objects are replicated on the MU’S and let ni be the 
number of replicas of Di in MDS. A limit A on the amount of change can occur on 
the replica at each MU, thus Ai denotes the change allowed in each replica of data 
object Di on any MU. If the transaction changes the value of the data item by at most 
Ai in a MU, then they are free to commit; they do not have to wait for results of 
the execution of the base transaction on DBS. This reduces the commit time of the 
transactions and also the number of rejected transactions, which could happen due to 
the base transaction not being able to commit. To control the validity of Ai, a timeout 
parameter is defined whose value indicates a duration within which the value of A,; 
is valid. Timeout values of the data item should be some multiple I of broadcast 
cycle time T .  The value I depends on the frequency of the incoming updates for 
the data item, and also it should be sufficiently large so that the Mu’s can send their 
updates within duration 1 x T .  The server will not update the value of the data item 
until time I x T has elapsed. It is assumed that the MUs take into consideration the 
uplink time and send their updates before the timeout expires at the server. The client 
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can disconnect from MDS during the timeout period and can perform updates. If the 
client disconnects for a period longer than timeout, then when it reconnects it should 
read the new values of A. If the updates are within the new limit set by A, then the 
MU can send the updates to the server; otherwise the MU will have to block some 
transactions so that total updates are within A. The blocked transactions will have 
to wait until the new values of A arrive at the MU. The steps of the algorithm go as 
follows: 

At a DBS 

1. A, is calculated for each data object D,. A2 is calculated using the function 
A, = .f, (d,, nL). A function f,(d,, n,) is associated with each data object D,, 
and it depends on the application semantics. 

2. A timeout value T is linked with A, values of the data item. 

3 .  DBS broadcasts the values of ( d 2 ,  A,) for each data item and a timeout T for 
these values at the beginning of the broadcast cycle. 

4. The DBS either receives pre-committed transactions (transactions which have 
made updates to the replicas on the MU and committed) or can receive request 
transactions (transactions which are directly sent to the DBS by the MU). A 
transaction that violates the limit is not executed at an MU, because it could 
change the value of replica D, by more than A, at the MU. It is sent to the DBS 
as request transaction for execution on the master database. 

5 .  The DBS serializes the pre-committed transactions according to their order 
of arrival. After the timeout expires, the DBS executes a request transaction, 
reports to the MU whether the transaction was committed or aborted, and 
repeats the procedure from the first step. 

0 MU has the value of (&, A,) and timeout T for every data item Di it has cached. 

0 MU executes transaction t,. It changes the current value of D, by A,-tt. Let 
A,-ci be the current value of the total change in D, since its last broadcast of 
value A,). 

The value A7-tt is added The following cases are possible depending 
on the value of A,-tz and AZpc: 

1 .  If A7,-tt 5 Ai and Ai-c 5 Ai, then t ,  is committed at MU and it is sent 

2. If 5 Ai and Ai-c > A,L, then t ,  is blocked at MU until new set of 

to DBS for re-execution as a base transaction on the master copy. 

(Di ,  Ai) is broadcasted by the server. 
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3. If At-tc  > Ai then t ,  is blocked at MU and submitted to the server as a 
request transaction. 

7.13.3 Relationship with ESR 

The mechanism for maintaining ESR has two methods: (a) divergence control (DC) 
and (b) consistency restoration. This section discuses these methods and show their 
use in developing the concurrency control mechanism. 

A transaction imports inconsistency by reading uncommitted data of other tranc- 
actions. A transaction exports inconsistency by allowing other transaction to read 
its uncommitted data. Transactions have import and export counters. The following 
example shows how these counters are maintained. 

In the above execution, t z  reads from t l .  So it is counted as tl exporting one 
conflict to t 2  and tz importing one conflict from t l  . So an export counter of tl is 
incremented by 1, and an import counter of t 2  is incremented by 1. Transaction t:3 
does not import or export any conflicts. The divergence control (DC) method sets 
limit on conflicts by using import and export limits for each transaction. Thus, update 
transactions have export limit and query transactions (read-only) have import limit, 
which specify the maximum number of conflicts they can be involved in. When import 
limit > 0 and export limit > 0, then successive transactions may introduce unbounded 
inconsistency. For example, tl may change the value of a data item by a large amount 
and t 2  will read this value and operate on it as import and export counters are not 
violated. Later if tl aborts, t z  would have operated on a value that was deviated from 
consistent value by a large amount. This situation requires consistency restoration, 
which is done by consistency restoration algorithms. 

In this concurrency control mechanism, DC sets limits on the change allowed in 
each data item value at MU and does not allow transactions to violate this limit. If it 
does, then it is sent as a request transaction to DBS for execution. In this scheme a 
transaction at MU will see an inconsistent value of data item for a maximum period 
of T (the timeout period) after which it receives new consistent values of the data 
items. During T ,  the value of data item d i  may diverge from the consistent value 
by a maximum of N, x Ai, where Ni is the number of replicas of di .  In this way 
transactions are allowed to execute on inconsistent data item but the inconsistency 
in data value is bounded by Ni x Ai. So in this CCM the DC includes the function 
f i ( d i ;  ai), which calculates Ai for each d, and also for the algorithm executed at MU 
to execute transactions. Thus, the consistency restoration includes the execution of 
request and pre-committed transactions at DBS and broadcasting of the consistent 
value of the data item to the MU. 
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EXAMPLE 7.7 

This example explains the working of the CCM discussed in this section. Fig- 
ure 7.12 illustrates the execution of concurrent transaction under this CCM. 
Suppose a data item X represents total number of movie tickets. X belongs to 
metric state space. Let N,  be the number of replicas of X .  Initially suppose 
A' = 180 and N,  = and X is replicated at MU1, MU2 and MU3. The functions 
f x ( X ,  N,) that calculates A, is A, = f z ( X ,  N z )  = ( X / 2 ) / N ,  = X / 2 N z  = 
30. Here X is divided by 2 to keep some tickets for the request transaction, 
which cannot be executed at the MU. This function depends on the application 
semantics and the policy the application developer wants to follow. Each data 
item will have different function depending on the semantics of that data item. 
(Ax, X ,  T ) ,  where 7 is timeout within which the MU should send committed 
transaction for re-execution at the server, is broadcasted by the DBS server to 
MU'S. The following three cases arise: 

Case 7: Transactions t l ,  f2, and f 3  arrive at MU1, MU2, and MU3, respec- 
tively. Consider the case where t~ books 20 ticket3, t 2  books 30 tickets, and 
t 3  books 40 tickets. Figure 7.13 shows the state of the system at this instant. 
Suppose A, repreqents change in value of data item X .  Each MU that has a 
replica of X will maintain the value As-c. 

At MUl: Initially = 0. 

tl books 20 tickets, so AT -t,  = 20 and AT-< = + A,-,, = 20. As A, -c 

< A,, t l  is committed at MU1 and so X is updated to 160 and tl is sent to 
DBS for re-execution on the master copy. 

At MU2: Initially Az-c = 0 

t 2  books 30 tickets, so A,-,, = 30 and = AxPC + & - t 2  = 30. As AL-c 
< A,, t2  is committed at MU2 and X is updated to 150 and t a  is sent to DBS 
for re-execution. 
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At MU3: Initially = 0. 

t 3  books 40 tickets and makes Ax--ts = 30 and Ax-c = AxPC + = 40. 
Since Axcc > A,, t 3  is not executed at MU3 and is sent as request transaction 
to DBS for execution. 

DBS receives t n ,  t 2 ,  and tl in this order. Since t 3  is a request transaction, 
it is executed after timeout 'T has expired and after the execution of t 2  and 
t l  on the master copy. So the execution at DBS is X = 180, t 2 ,  X = 150, 21, 
X = 130, t 3 ,  X = 90; and after the execution, A is recomputed using the function 
.fx;(X, N,). Thus, A, = f z ( X ,  N,) = X / 2 N ,  = 15. The DBS broadcasts (X = 
90, A, = 1 5 , ~ )  and each MU now can update the value of X by not more that 
15 and sends the transaction for re-execution within T .  Figure 7.13 illustrates 
case 1. 

X = 180 x = 90 

X = 160 X = 150 x = 180 
A x  =30 A X  =30 A X  =30 

(a) Transactions are sent to the server (b) New values of A and X are broadasted 

Fig, 7.13 Intermediate state in CCM. 

Transactions on MU see an inconsistent value of the number of tickets only 
for period T ;  after that, DBS sends their consistent value. The transactions 
that want to know number of tickets available will get an approximate value 
of number of tickets. Inconsistency in the value of data objects is bounded by 
refreshing the data object value at a regular interval of 7 and setting a limit on 
A on the maximum update that can be made during that period. 

Case 2: MU3 receives the values ( X  = 90, A, = 15, T ) from the DBS. For 
every new timeout value, Ax-C is reset to zero. Transactions t 4  and t 5  arrive at 
MU3. t 4  books 10 tickets and t ,5 books 8 tickets. Suppose the execution order 
is t 4 ,  t 5 .  After the execution of t 4 ,  &-t4 = 10 and Ax-c = Ax-c + A,-t4 = 10. 
As As-c < A,, t 4  is executed at MU3 and is sent to the DBS for re-execution. 
Before 7 expires, transaction t 5  arrives at MU3 where A,I:-,, = 10 and A:,;-c = 
8. This makes AZcc = Ax-c + Ax-ts = 18. As Ax-C > A,, t 5  is not executed 
at MU3 and sent to DBS for execution as a request transaction. 

Case 3: MUs receive values ( X  = 80, A, = 0, 'T) from DBS. t 6  arrives at 
MU2 and books 2 tickets. At MU2 initially, Axcc = 0. t 6  books 2 tickets and 
makes Arc--ta = 2. At this point, = Axpc + Ax-t6 = 2. As Axpc > A,, 
tB is not executed at MU2 but is sent as a request transaction to the DBS. 
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All update transactions that arrive at MU will be sent to DBS as request 
transaction because no change is allowed to the replica at MU since A, = 0. 
Only read transactions at MU can access data item X .  

7.14 TRANSACTION COMMIT 

The distributed execution of a transaction requires collaboration among nodes to 
commit the transaction. The collaboration is initiated and managed by the coordinator, 
which makes sure that every subtransaction is executed successfully and ready to 
commit. If any of its subtransactions cannot commit, then the parent transaction is 
aborted by the coordinator. 

The entire process of commit has two phases: (a) checking the intention of each 
node participating in the execution of a transaction (participants) and (b) collecting 
the intensions of participants and committing the transaction. The entire process is 
atomic, and the commit protocol is referred to as Atomic Commitment Protocol (ACP). 

The most common ACP used in conventional distributed database systems is called 
a Two-Phase Commit (2PC) protocol. There is a Three-Phase Commit (3PC) protocol 
[4] which claims to be more efficient than 2PC but requires a higher number of 
messages compared to 2PC for making a commit decision. So far, no system has 
implemented 3PC, but it continues to be an interesting research topic. 

7.14.1 Two-Phase Commit Protocol - Centralized 2PC 

A distributed database system with multiple nodes is assumed to describe 2PC. A 
transaction T, originates at a node which assumes the role of coordinator for T,. 
The coordinator fragments T, and distributes them to a set of participants. The 
coordinator may or may not keep a fragment for itself. Thus a coordinator and a 
set of participants together executes T, leading either to a commit or to an abort as 
decided by the coordinator. The protocol makes sure of the following: 

0 Participants’ decision: All participants reach a decision for their fragments. 
All decision can be either Yes or No. 

0 Decision change: A participant cannot change its final decision. 

0 Coordinator’s decision: The coordinator can decide to commit Ti only if all 
participants and the coordinator agree to commit their subtransactions. It is not 
that in this situation the coordinator has no other option than to decide commit; 
it can still abort the transaction. 

When the failure scenario is included, then the following additional steps are 
required for making some decision. 

0 No failure: In the absence of any failure, if all processing nodes (participants 
and coordinator) agree to commit, then the coordinator will commit T,. 
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0 With failure: Failure of one or more participants or the coordinator may delay 
the decision. However, if all failures are repaired within acceptable time, 
then the coordinator will reach a decision. This identifies the non-blocking 
property of centralized 2PC. The non-blocking property is essential for any 
APC. However, it may not be strictly enforced; that is, a failure may generate 
infinite blocking situation. 

The working of centralized 2PC is described in the following steps [4]: 

I .  Transaction fragmentation and distribution: A transaction T, arrives to a 
node. This node servers as the coordinator for TI .  The coordinator fragments 
Ti into subtransactions and distributes these fragments to a set of participants. 
These nodes begin executing their subtransactions of Ti. 

First phase of centralized 2PC - Voting phase 

2. Voting: The coordinator multicasts a message (vote request - VR) to all par- 
ticipants, asking them to vote if they can commit their subtransaction of Ti, 

3. Participants’ vote: When a participant receives VR message from the coor- 
dinator, it composes its response (vote) and sends it to the coordinator. This 
response can be a Yes or a No. If the vote is Yes, then the participant enters into 
an “uncertainty” period after sending it to the coordinator. During this period 
a participant cannot proceed further (make any unilateral decision in behalf of 
its subtransaction of Ti) and just waits for an abort or commit message from 
the coordinator. If the vote of the participant is No, then it does not wait for 
coordinator’s response and aborts its subtransaction and stops. 

Second phase of centralized 2PC - Decision phase 

4. Commit decision and dispatch: When the coordinator receives votes from all 
participants and has its own vote, it performs an AND operation among these 
votes. If the result is aYES, then the coordinator decides to commit otherwise 
it decides to abort Ti. It multicasts the decision to all participants and stops. 

5.  Participants decision: All participants receives a coordinator’s decision and 
act accordingly. If the decision is to abort, all participants abort their fragments 
and then stop. 

7.14.2 Node Failure and Timeout Action 

In order to make sure that the non-blocking property of centralized 2PC is effectively 
implemented, the occurrences of infinite wait because of node failure must be dealt 
with. One of the schemes to enforce non-blocking property is to use timeout action. A 
timeout value identifies how long aparticipant should wait for the anticipated message 
before its takes some action. 

In the description of centralized 2PC participants wait for VR messages from the 
coordinator at the beginning of step 3, and the coordinator waits for participants’ Yes 
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or No decision at the end of step 3. Similarly, all participants either wait for the 
coordinator’s commit or abort message in step 5 .  If a participant times out at the 
beginning of step 3, then it can unilaterally decide to abort because it is not in its 
uncertainty period. At the end of step 3, the coordinator may time out waiting for Yes 
or No messages from some or all participants. It may decide to abort and send abort 
messages to those participants who did not send their vote and who send Yes votes. 

The timing out of participants at the beginning of step 4 is more involved because 
participants are in their uncertainty period and they cannot change their vote from 
Yes to No and abort their subtransactions. It is possible that the coordinator might 
have sent the commit message and it reached only to a subset of participants. If a 
participant times out in its uncertainty period and decides to abort, then it would be 
a wrong action. To take care of this immature abort by a timed-out participant, a 
cooperative termination protocol can be used. A cooperative termination protocol 
helps a participant to gather information about the last message from the coordinator 
which this participant missed and timed out. 

Cooperative Termination Protocol: When a participant in uncertainty period fails 
to receive a commit or abort message from the coordinator, then it has two options: (a) 
Ask the coordinator about its last message or (b) Ask one of is neighbor participants. 
In case (a) if the coordinator is available to respond, then it can get the desired 
information and decide accordingly. To use (b), every participant must know the 
identity of all other participants. This can be easily provided by the coordinator at 
the time of sending an VR message in step 2. The following three cases arise when 
(b) is used: 

1. Participant P1 asks P2 about the final outcome. If P2 has decided to commit 
or abort (it did receive coordinator’s decision message), then it can inform PI 
about its decision and P1 can act accordingly. 

2. P2 is not in uncertainty period and has not voted yet. It decided to abort and 
informs P1. P1 also aborts. 

3. P2 has votedyes but has not received a decision from the coordinator either. P2 
is in a similar situation, that is, it timed out in its uncertainty period as P1 and 
cannot help. P1 and P2 can continue to ask other participants, and hopefully at 
least one participant might have received the coordinator’s decision. It informs 
P1, and PI  acts accordingly and so does P2. If a11 participants are timed out 
and did not get coordinator’s decision, then possibly the coordinator has failed 
and they can abort and stop. 

The performance of a commit protocol largely depends on the number of messages 
it uses to terminate (abort of commit) a transaction. To evaluate the cost of commu- 
nication, two parameters are used: (a) time complexity and (b) message complexity. 

Time Complexity: This parameter evaluates the time to reach a decision. It includes 
the time to complete a number of other necessary activities such as logging messages, 
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preparing messages, etc. A smaller value is highly desirable. The decision time in the 
absence of any kind of failure (coordinator or participants of both) is obviously smaller 
compared to the time with failure. In the absence of failures, the protocol uses three 
message rounds. A message round is the total time the message takes to reach from 
its source to the destination. The first message round is the broadcast of VR messages 
to the participants from the coordinator; in the second round, all participants send 
their votes; and in the third round the coordinator broadcasts its decision (commit or 
abort). In the presence of failures, two additional rounds are required: (a) a timed-out 
participant enquires the coordinator’s decision and (b) a response from a participant 
who received coordinator’s decision (this participant is out of its uncertainty period). 
Thus with no failure of any kind, three message rounds-and with failure, five message 
rounds-are required to terminate a transaction. 

Message Complexity: Message complexity evaluates the number of message ex- 
changed between destinations and sources to reach a decision. In a centralized 2PC, 
message exchange takes place between one coordinator and n, participants when there 
is no failure. The total number of messages exchanged is 3n, in the three steps of the 
protocol: 

0 The coordinator sends VR message to 12 participants = n messages. 

0 Each participant sends one vote message (Yes or No) to coordinator = rr vote 
messages. 

0 The coordinator sends decision message to ‘II participants = 12 messages. 

In the presence of failure, each timed-out participant who voted Yes initiates 
cooperative termination protocol. In the worst-case scenario, all participated 
could be timed out and initiate the protocol. If there are m, such timed-out 
participants with Yes vote, then 711 5 n,. 

0 rr), participants will initiate the protocol and send n - 1 decision request mes- 
sages. The requestor participant rn,? will get a response from at least one of the 
‘rt, participants and would come out of its uncertainty period. This cycle will 
continue until m participants come out from their uncertainty period. The total 
number of messages used in this entire process will be 

‘rri 

m(n, - 1) + C(n - m, + i )  = 2 m ( n  - 1) ~ rnd2/2 + m / 2  
i=l 

To minimize the time or message complexity or both, two variations of 2PC 
exist: (a) decentralized 2PC and (b) linear or nested 2PC. 

7.14.3 Decentralized 2PC 

In this scheme the coordinator minimizes the message complexity by sending its vote 
along with VR message to participants. If the coordinator’s vote is No, then partici- 
pants know the decision and abort their subtransactions and stop. If the coordinator’s 
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vote is Yes, then each participant sends its vote to all other participants. After re- 
ceiving all votes, each participants decides. If all votes are Yes, then the transaction 
commits; otherwise it is aborted. 

Time Complexity: In a decentralized 2PC there are two message rounds: (a) The 
coordinator sends a VR message and its vote, and (b) the participant sends its Yes vote 
and transaction commits. When the coordinator sends its Yes vote to participants, it 
implies that “I am ready to commit and if you are also, then go ahead and commit” 
and, therefore, there is no need for the coordinator to send a Commit vote. Thi\ 
reduces one message round compared to centralized 2PC. 

Message complexity: The reduction in time complexity unfortunately increases 
the message complexity. In a centralized 2PC the coordinator makes the final decision 
but in distributed 2PC everybody participates in the decision process. This requires 
that each participant communicates with all other participants to know their votes. If 
there are n participants, this process requires nz messages. Thus the total number 
of messages to commit a transaction in failure as well as in no failure cases is n2 
(participant to n - 1 participants) + n (coordinator to n participants). In the case 
of n > 2, decentralized 2PC always takes a greater number of messages than a 
centralized 2PC. 

7.14.4 Linear or Nested 2PC 

In linear 2PC the message complexity is reduced by collecting votes serially. All 
participants and the coordinator are ordered linearly. Each participant has a left and 
a right neighbor and a coordinator has only one neighbor. Figure 7.14 illustrates the 
setup. 

Fig- 7.74 Linear ordering of participants and coordinator. 

The protocol works as follows: 

1. The coordinator sends its Yes or No vote to participant PI . 

2. PI performs Coordinator’s vote A PI’S vote = X .  X =Yes or No. 

3. PI sends X to 1’2 and the process continues until the result reaches to P, 

4. If the outcome of P, computation is Yes, it decides to commit and sends this 
message to P,,- 1 . 

5. The return message containing the commit decision finally reaches to the co- 
ordinator and completes the commit process. 



COMMITMENT O f  MOBILE TRANSACTIONS 189 

Protocols 

Centralized 

Time Complexity: There is no message broadcast in a linear 2PC, so it requires the 
same number of rounds as the number of messages to make the final decision. Thus 
with n participants it will require 2.n rounds, which is much larger than centralized 
and decentralized 2PC. 

Messages Rounds 

3n 3 

Message Complexity: With n participants, this protocol requires 2n messages: n 
forward messages and n return messages which is much smaller than the message 
complexity of decentralized and centralized 2PC. 

Table 7.6 compares the message and time complexity of centralized, decentralized, 
and linear 2PC with no failure. It is hard to identify the most efficient protocol for 
all systems because of the wide ranging values of parameters such as message size, 
communication speed, processing delay, etc., which are highly system-dependent. 
However, it can be seen that the centralized 2PC offers a good compromise. 

Distributed 

Linear 

Table 7.6 Message and time complexity in various 2PC 

n2 + 'n 2 

2n 2 n, 

I I I I 

I I I I 

7.1 5 
7.15.1 Commit Protocols for Mobilaction 

COMMITMENT OF MOBILE TRANSACTIONS 

The mobility and other characteristics of MUs affect Mobilaction processing espe- 
cially its commitment. Some of the common limitations are: (a) An MU may cease 
to communicate with its BS for a variety of reasons, (b) it may run out of its lim- 
ited battery power, (c) it may run out of its disk space, (d) it may be affected by 
airport security, (e) physical abuse and accident, (f) limited wireless channels for 
communication, and (8) unpredictable handofs. 

A mobile computing environment creates a complex distributed processing envi- 
ronment; therefore, it requires a distributed commit protocol. We have assumed the 
two-phase commit approach as the basis of developing our mobile commit protocol. 
One of the essential requirements of distributed processing is that all subtransactions 
of T, must be ready to commit. In MDS a complete knowledge of this state becomes 
relatively more complex because of mobility. It is crucial that the scheme to acquire 
this knowledge must use minimum message communication, and it is also important 
that this scheme should not be dependent on the mobility of the involved MUs.  

The different types of data (temporal and spatial) in mobile computing provide 
more freedom in designing commit protocols. Like conventional distributed database 
systcms, a transaction in MDS may be processed by a number of DBSs and MUs; 
therefore, some commit protocol is necessary for their termination. Legacy commit 
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protocols such as 2PC (two-phase commit), 3PC (three-phase commit) 141, etc., will 
not perform satisfactorily mainly because of limited resources, especially wireless 
channel availability. For example, the most commonly used 2PC uses three message 
rounds in the case of no failure and uses five in the case of failure for termination [4]. 
Note that it requires additional support (use of timeout) for termination in the presence 
of blocked or failed subtransactions. Thus, the time and message complexities are too 
high for MDS to handle and must be minimized to improve the utilization of scares 
resources. 

The mobility of MU adds another dimension to these complexities. It may force 
MDS to reconfigure the initial commit setup during the life of a transaction 1221. For 
example, a proper coordination among the subtransactions of a transaction under a 
participants-coordinator paradigm may be difficult to achieve with the available re- 
sources for its commitment. Mobile database systems, therefore, require commitment 
protocols which should use a minimum number of wireless messages, and MU and 
DBSs involved in T, processing should have independent decision-making capability 
and the protocol should be norz-blocking [4]. 

7.1 6 TRANSACTION COMMITMENT IN MOBILE DATABASE SYSTEMS 

The mobility and other characteristics of MUs affect transaction processing, especially 
its commitment. Some of the common limitations are: (a) An MU may cease to 
communicate with its BS for a variety of reasons, (b) it may run out of its limited 
battery power, (c) it may run out of its disk space, (d) it may be affected by airport 
security, (e) physical abuse and accident, (f) it has limited wireless channels for 
communication, and (g) unpredictable handofl. 

Like conventional distributed database systems, a transaction in MDS may be 
processed by a number of nodes such as DBSs and MUs; therefore, some commit 
protocol is necessary for their termination. Conventional commit protocols such as 
2PC, 3PC [4], etc., could be molded to work with MDS; however, they will not perform 
satisfactorily mainly because their resource requirements may not be satisfied by MDS 
on time. For example, the most commonly used centralized 2PC uses three message 
rounds in the case of no failure and uses five in the case of failure for termination 
[4]. It requires additional support (use of timeout) for termination in the presence of 
blocked or failed “subtransactions.” Thus, the time and message complexities are too 
high for MDS to handle and must be minimized to improve the utilization of scares 
resources (wireless channel, battery power, etc.) 

The mobility of MU adds another dimension to these complexities. It may force 
MDS to reconfigure the initial commit setup during the life of a transaction [2 1,22,23]. 
For example, a proper coordination among the subtransctions of a transaction under 
participants-coordinator paradigm may be difficult to achieve with the available re- 
sources for its commitment. For example, a mobile unit may not receive coordinator’s 
vote request and commit messages and it may not send its vote on time because of 
its random movement while processing a subtranaction. This may generate unneces- 
sary transaction aborts. These limitations suggests that MDS commit protocol must 
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support independent decision-making capability for coordinator and for participants 
to minimize cost of messages. A new commit protocol is required for MDS which 
should have the following desirable properties: 

0 It should use a minimum number of wireless messages 

0 MU and DBSs involved in T, processing should have independent decision- 
making capability, and the protocol should be non-blocking. 

An analysis of conventional commit protocols indicates that timeout parameter 
could be used to develop a commit protocol for MDS. In conventional protocols, 
timeout parameter is used to enforce non-blocking property. A timeout identifies 
the maximum time a node can wait before taking any decision. The expiration of 
timeout is always related to the occurrence of some kind of failure. For example, in 
conventional 2PC the expiration of timeout indicates a node failure and it allows a 
participant to take a unilateral decision. 

If a timeout parameter can identify a failure situation, then it can also be used to 
identify a success situation. Under this approach the end of timeout will indicate a 
success. The basic idea then is to define a timeout for the completion of an action and 
a sume  that at the end of this timeout the action will be completed successfully. For 
example, a participant defines a timeout within which it completes the execution of 
its subtransaction and sends its update through the coordinator to DBSs for installing 
it in the database. If the updates does not arrive within timeout, then it would indicate 
a failure scenario. The coordinator does not have to query the participant to learn 
about its status. 

Recently timeout parameter has been used in a nonconventional way for developing 
solutions to some of the mobile database problems. This section presents a commit 
protocol which is referred to as Transaction Commit on Timeout (TCOT) [21,22]. It 
uses timeout parameter to indicate a success rather than a failure. 

The TCOT protocol is discussed below in detail. A transaction T, is fragmented 
into several subtransactions, which are distributed for execution among a number of 
DBSs and the MU where T, originated. These nodes are defined as Commit Set of 
T,; the MU where T, originates is referred to as Home MU ( n / f U ~ ) ;  and the BS of 
ILIU~J is referred to as Home BS (BSH) .  

Definition 7.21 A commit set o f a  T, is dejined as the set of DBS and the M U H ,  
which take part in the processing and commit of T,. A DBS is identijied as a static 
rnembel; and the MU is a mobile member of a commit set. 

TCOT strives to limit the number of messages (especially uplink). It does so by 
assuming that all members of a commit set successfully commit their fragments within 
the timeout they define after analyzing their subtransactions leading to commit of T,. 
Unlike 2PC or 3PC, no further communications between the CO and participants take 
place for keeping track of the progress of fragments. However, the failure situation 
is immediately communicated to CO to make a final decision. 

It is well known that finding the most appropriate value of a timeout is not always 
easy because it depends on a number of system variables, which could be difficult to 
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quantify. However, it is usually possible to define a value for timeout, which performs 
well in all cases. An imprecise value of timeout does not affect the correctness but 
affects the performance of the algorithm. 

Every CO (new or existing) must know the identity of each member of a commit 
set. Every ~ I U H  stores the identity of it5 current CO for each transaction requested 
there. When M U H  moves to.another cell, then during registration it also informs the 
BS about its previous CO. As soon as M U F I  sends T, to BSR,  the latter assumes the 
role of CO for T,. In the dynamic approach also the transfer of CO does not require 
extra uplink or downlink messages because the notification process is a part of the 
registration. 

Types of Timeout 

TCOT protocol uses two types of timeout: Execution Timeout ( E t )  and Update Ship- 
ping Timeout (&). 

Execution Timeout (Et): This timeout defines a value within which a node of 
a commit set completes the execution (not commit) of its execution fragment or 
subtransaction e i .  It is an upper bound of the time a DBS or the ~ L ~ U I I  requires to 
complete the execution of ei. 

The CO assumes that the MUH or a DBS will complete the execution of its ei 
within Et. The value of Et may be node-specific. It may depend on the size of ei and 
the characteristics of the processing unit; thus, Et(MUi)  may or may not be equal 
to Et(APUj),  ( i  # j ) .  We identify M U H ’ s  timeout by & ( M U )  and identify DBS’s 
timeout by E,(DBS).  The relationship between these two timeouts is & ( M U )  
= Et(DBS) &A. The A accounts for the characteristics such as poor resources, 
disconnected state, availability of wireless channel, etc., compared to DBS. It is 
possible that a MU may take less time than its Et to execute its e i .  We also do not 
rule out the possibility that in some cases Et(DBS) may be larger than E t ( M U ~ ) .  
Et typically should be just long enough to allow a fragment to successfully finish its 
entire execution in a normal environment (i.e., no failure of any kind, no message 
delay, etc.) 

Shipping timeout (St): This timeout defines the upper bound of the data shipping 
time from MUH to DBS. 

In E t ,  the cached copy of the data is updated at the MU. To maintain global 
consistency, all data updates done by the M U H  must be shipped and installed at the 
database located at DBS. Thus, at the end of Et the CO expects the updates to be 
shipped to the DBS and logged there within St. 

7.1 6.1 TCOT Steps-No Failure 

In TCOT three components, M U H ,  CO, and DBSs, participate. The steps in the 
absence of any kind of failure are: 
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Activities o j b l U ~ :  

- A Ti originates at MUf1. The BSH is identified as the CO. AJUt, extracts 
its ei from T?,, computes its Et,  and sends Ti - ei to the CO along with 
the Et of c i .  MUH begins the processing of e i .  

- While processing e i ,  M U H  updates its cache copy of the database, com- 
poses update shipment, and appends it to the log. 

- During processing, if it is determined that e,  will execute longer than Et,  
then M U H  extends its value and sends it to CO. Note that this uses one 
extra uplink message. The frequency of such extension requests can be 
minimized with a careful calculation. 

- If the local fragment ei aborts for any reason, then M U f ,  sends an Abort 
message to CO (failure notification). 

- After execution of ei M U H  sends log of updates to the CO. The updates 
must reach to CO before St expires. It could be possible that updates may 
reach CO much earlier, in which case it may decide commit sooner. 

- In the case of read-only ei ,  M U H  sends a commit message to CO. This 
is not an extra message, it just replaces shipping update message. 

- Once the updates are dispatched to CO, M U H  declares commit of e,. 
Note that the underlying concurrency control may decide to release all 
the data items to other fragments. If for some reason Ti is aborted, then 
fragment compensation may be necessary. 

- If M U H  fails to send updates to CO within SL and it did not extend Et,  
then the CO aborts e,. 

0 Activities of CO: 

- Upon receipt of T, - e,  from M U H ,  the CO creates a token list for Ti, 
which contains one entry for each of its fragments. Figure 7.15 shows a 
token list entry for et of Ti. In the case of CO change, a token is used to 
inform the new CO the status of fragment and commit set members. The 
CO splits Ti - e, into e,7’s (i # j )  and sends them to the set of relevant 
DBSs. 

- ~~ 

~ e, ~ E, (MU,) or E, (DBS,) Coordinator Id Commit s A ,  - 
Fig. 7.75 An entry of a token list. 

- After receiving Et from a DBS, the CO constructs a token for that fragment 

- H a  new Et (extension) is received either from MUJ,  or from a DBS, then 

and keeps it for future use. 

the CO updates the token entry for that fragment. 
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- CO logs the updates from M U H .  

- If the CO has MUH’S shipment before St expires and commit messages 
from other DBSs of the commit set, then the CO commits T,. At this 
time the updates from the MUH are sent to the DBSs for update to the 
primary copy of the databases. Note that no further message is sent to 
any member of the commit set of T,. 

- If CO does not receive updates from MUH within the timeout or does 
not receive commit message from any of DBSs of the commit set, then 
it aborts T, and sends a Global Abort message (wired message to DBSs 
and wireless to MU) to those members of the commit set who committed 
their fragments. 

Activities of DBS: 

- Each DBS, upon receiving its fragment, computes Et and sends it to the 
CO. DBS begins processing its fragment and updates its own database. 

- If it is determined that the fragment will execute longer than Et, then this 
value is extended and the new value is sent to the CO. 

- At the end of e,, it sends a “commit message” to the CO. 

- If DBS cannot complete the execution of its e, for any reason and did not 
extend Et,  then it sends an Abort message to the CO. 

Discussion: One may argue that either Et or the “commit message” is sufficient 
for making a commit decision. This is not entirely correct. Et identifies when a 
fragment will finish its execution and will be ready to commit. Thus, at the end of 
Et,  CO will assume that the DBS has committed its fragment, which may not be true 
(fragment may not have been processed because of the failure of the DBS). Since 
a DBS does not ship updates, it must use a message for informing the status of the 
fragment. On the other hand, if there is only “commit message,” then the CO could 
never get this message from a DBS for some reason and wait for ever to make the 
final commit decision. Thus, for making the final decision and doing it efficiently, 
both Et and “commit message” are necessary. Note that a DBS communicates with 
the CO through wired channel and any extra message does not create any message 
overhead. 

TCOT, unlike 2PC, has only one phase commit operation. No vote-request or 
commit message is sent to commit set members. The task assignment message to 
these members provides necessary information and directives for completing com- 
mit. Only in the case of abort, one extra wireless message is used. In reality, not 
many transactions are aborted and this extra message not likely to generate noticeable 
overhead. 

In the case of a read-only fragment, M U I ~  does not send any update to the CO; 
but similar to a DBS, it sends only a “commit“ message. 
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7.1 6.2 Node Failure-Fragment Compensation 

The process of compensation is not related to commit; rather, it comes under recovery 
[ 171 but it becomes an issue for long running transaction. In TCOT a member of 
TL’s commit set may commit its fragment, and the underlying concurrency control 
(two-phase locking scheme is assumed) may decide to release its data items to other 
concurrent fragments before the CO declares the commit of T,. For example, if e,  (77%) 
is committed by MUIT but T, is aborted, then e,  must be compensated. When MUII  
receives a message to abort e,  from the CO, then, if possible [17], a compensating 
transaction for e7 is executed. At the end of compensation, MU11 informs CO and 
sends new updates if there is any. Figure 7.16 illustrates the relationship among Et , 
St, abort, and compensation. After St the M U H  can make data items available to t‘, 
(1 # 3) .  This means that after St an e, may be compensated. 

<- e, can be aborted -++ e, can be aborted 

Execution timeout (E,)- t--- Shipping timeout (S,) + 

Execution -> I 
Data available to ei e, may be compensated 

Fig. 7.16 Relationship between l3t and St, abort, and compensation. 

7.1 6.3 TCOT with Handoff 

Updates from MUH and dispatch of commit message from DBSs in the case of a 
handoff must be sent to the right CO if it changes. The change in CO is notified using 
a token. The following steps define the commit process in the presence of a handoff. 

MUH moves to a different cell and it registers with the new BS. 

If MDS employs dynamic selection of CO, then the M U H  sends the identity 
of its last CO in the registration process and accepts the new BS as its next 
CO. The new BS gets the token from the last CO, which provides necessary 
information. 

The new CO identifies other members of the commit set from the token and 
notifies them about the change of CO. Note that the communication between 
the new CO and DBSs is through wired channel. The processing of T, resumes 
normally. 

A doze mode of M U H  will mainly affect its Et. MUH may not be aware of its 
movement, but it knows when it enters into the doze mode. Therefore, before entering 
doze mode, MUH can always request for extension to its Et. If granted, then the 
fragment will not be aborted; otherwise a global abort will be initiated. 
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7.1 6.4 Special Cases 

A number of special cases may arise during commit, and TCOT manages them as 
follows: 

0 St expires before DBSs sends commit message: It is possible that M U H  
commits its ei and sends its updates to the CO, before DBSs send their commit 
messages to the CO. In this case the CO will wait for the commit messages. 

0 DBSs send commit messages before St expires: The CO will wait for St to 
expire before making any decision. 

0 SL expires but no updates or no commit message: The CO will send abort 
message to the members of the commit set. 

Note that the abort could be received at any time. If it is received prior to commit, 
then a local abort with corresponding undo is needed. If, however, it is received 
after the local commit, then a compensation is needed. Further, when a fragment 
is executed, the decision to commit or abort is made locally. However, the implicit 
assumption is that a global commit occurs. 

7.1 6.5 An Alternate TCOT Protocol 

In the first version of TCOT, M U H  is responsible for extracting ei from Ti, computing 
El, and sending Ti ~ ei to the CO. In this approach, every Ti is examined by M U H ,  
which is not necessary. This can be improved by sending the entire Ti to the CO and 
letting the CO do the fragmentation, estimate Et , and send the information back to 
MUH.  This will use one extra wireless downlink message but reduces the workload 
of M U ,  since many Ti’s may not be processed by MUH.  The other advantage of 
this is related to token passing. The CO can send the token to M U H ,  which in turn 
can send it to the new CO during registration. The steps, which differ from the first 
version of TCOT. are: 

0 M U H  forwards Ti to the CO. 

0 The CO fragments Ti, computes Els of all the fragments, creates tokens, and 
sends them to the members of the commit set. (This step uses one extra down- 
link message) 

0 M ~ J H  computes St  for its fragment. 

7.16.6 Correctness 

A commit decision by a CO is said to be “correct” if the decision to commit is 
unanimous. Suppose the CO decides to commit Ti when at least one member of the 
commit set is undecided. This is possible only if the CO declares commit before the 
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expiration of either S, or absence of commit message from at least one DBS. This, 
however, cannot happen. Further, suppose that the MUH failed and could not send 
updates to the CO within St or the "commit message" is not received by the CO. In 
this situation, the CO will abort T,. Since our algorithm is based on timeout, it is not 
possible that at any stage the CO will enter into an infinite wait. 

7.17 SUMMARY 

This chapter introduced a reference architecture of mobile database system and dis- 
cussed a number of transaction management issues. It identified a number of unique 
properties of mobile database system and discussed the effect of mobility on its func- 
tionality. 

It demonstrated that location of the database and the location of the origin of 
the query must be considered to enforce ACID properties of transactions. To handle 
these requirements, the concept of Location Dependent Data and Locution Dependent 
Commit were introduced. Thus in mobile database systems a user initiates (a) a 
location-dependent query, (b) location-aware query, or (c) a location-independent 
query. The concept of data region was introduced to accommodate cellular structure 
in mobile database processing and transaction commit. 

It identified unique system requirements for concurrency control mechanisms and 
transaction commitment. First it analyzed the relationship between mobility and 
transaction processing. A clear understanding of this relationship is necessary for the 
development of mobile transaction model and its management. 

It argued that conventional 2-phase or 3-phase commit protocols were not suitable 
for mobile database systems and illustrated that a commit protocol which uses least 
number of messages and offer independent commit decision capability was highly 
desirable. It introduced one-phase commit protocol with above properties. 

A data replication scheme for connected and disconnected operations was dis- 
cussed for mobile database \ystem. Under this scheme, data located at strongly 
connected sites are grouped in clusters. Bounded inconsistency was defined by re- 
quiring mutual consistency among copies located at the same cluster and controlled 
deviation among copies at different clusters. The database interface is extended with 
weak operations. 

This chapter provided necessary material for the development of mobile database 
system framework and mobile transaction model. 

Exercises 

1. Highlight the essential differences of mobile database system with conventional 
database systems. What are the problems in using mobile units or a base station 
or a fixed host as (a) a client, (b) a server, or (c) a peer? 
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2. Consider the architecture of a given mobile database system. What types of 
scenario a transaction may encounter during its execution? Explain your own 
ideas in managing these situations successfully. 

3. Develop your own mobile transaction model and a way of executing them on 
a mobile database system. 

4. Implement a strict two-phase locking mechanism in a mobile database system 
and count the total number of messages it requires to (a) commit a transaction, 
(b) roll-back a transaction, and (c) execution a transaction (not commit). 

5. Consider modifying TCOT to manage transaction failure more efficiently. 
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Mobile Database 
Recovery 

This chapter deals with recovery in a mobile database system, which is more complex 
compared to conventional database recovery. It first introduces fundamentals of 
database recovery and briefly describes conventional recovery protocols and uses them 
to focus on application recovery where information gathering and their processing 
for recovery is quite complex. The chapter first identifies those aspects of a mobile 
database system which affect recovery process. It then discusses recovery approaches 
which have appeared in the literature. Similar to other areas such as transaction 
modeling, concurrency control, etc., database recovery is also in the development 
stage, so the coverage here is mostly limited to state -of-the art research and little on 
commercial products. A number of recovery schemer have been developed [3,.5, 11, 
1.5, 17, 18, 19,20, 22, 23, 241, and this chapter discusses a few of them. 

8.1 INTRODUCTION 

Database recovery protocols recover a database from transaction or system failures, 
that is, they restore the database to a consistent state from where transaction processing 
resumes. These failures may occur due to a number of reasons such as addressing 
error, wrong input, RAM failure, etc. In a concurrent execution environment when a 
failure occurs then a transaction may be active or blocked or being rolled back or in the 
middle of a commit. The task of a recovery protocol is to identify the right operation 
for for recovery for each transaction. These operations are (a) Roll forward or Redo 
and (b) Roll backward or Undo. Depending upon the execution status of a transaction, 
one of these operations is selected. Thus, in a recovery process some transactions are 
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undone and some transactions are redone. To implement these operations, Transaction 
log is required, which is generated and maintained by the system. The log contains 
committed values of data items (Before Image - BFIM) and modified values of data 
items (After Image - AFIM). The log is a crucial document for recovery; therefore, 
it is generated and maintained by a protocol called Write Ahead Logging - WAL. The 
protocol guarantees that the contents of a log is reliable and can be used for Undo 
and Redo operations. 

After a failure the database system reboots and, by using log, applies Redo and 
Undo operations on transactions which were in the system when it failed. A Redo 
completes the commit operation for a transaction, and an Undo rolls back a transaction 
to maintain atomicity. These operations give us four different recovery protocols: (a) 
Undo-Redo, (b) Undo-No Redo, (c) No Undo - Redo, and (d) No Undo - No Redo [ X I .  

Undo-Redo: This protocol applies Redo and Undo to recover the database systems. 
This means that during transaction execution it can write to the database intermediate 
values of its data item. If the transaction was active when the system failed, then the 
transaction is Undone and it is Redone if the transaction was ready to commit. 

Undo - No Redo: This protocol does not support Redo and recovers the database 
by applying Undo operation only. This means that the system forces intermediate 
updates of transactions to he database immediately. 

NO Undo - Redo: This protocol makes sure that no intermediate results of a trans- 
action are installed in the database. Thus, if a transaction cannot be Redone at the 
time of recovery, then it is removed from the system. 

NO Undo - NO Redo: This protocol does not apply Redo and Undo and recovers 
the database by using the shadow copy of data items. Thus, during execution a 
transaction creates a show copy of data items it modifies. During recovery it uses 
actual and shadow copies of a data item to select the right version to install in the 
database. 

Recovery is a time-consuming and resource-intensive operation, and these proto- 
cols require plenty of them. The most expensive operation is managing the log. This 
operation is essential for recovery, so for a Mobile Database System an economical 
and efficient scheme of its management is necessary. 

A Mobile Database System (MDS) is a distributed system based on client server 
paradigm, but if functions differently than conventional centralized or distributed 
systems. It achieves such diverse functionalities by imposing comparatively more 
constraints and demands on MDS infrastructure. To manage system-level functions, 
MDS may require different transaction management schemes (concurrency control, 
database and application recovery, query processing, etc.), different logging schemes, 
different caching schemes, and so on. 

In any database management system, distributed or centralized, the database is 
recovered in a similar manner and the recovery module is as an integral part of the 
database system. Database recovery protocols, therefore, are not tampered with user 
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level applications. A system which executes applications, in addition to database 
recovery protocol, requires efficient schemes for Application recovery [ 12, 131. The 
application recovery, unlike database recovery, enhances application availability by 
recovering the execution state of applications. For example, in MDS or in any dis- 
tributed system a number of activities related to transactions' execution, such as 
transaction arrival at a client or at a server, transaction fragmentation and and the 
distribution of these fragments to relevant nodes for execution, dispatch of updates 
made at clients to the server, migration of a mobile unit to another cell (handoff), etc., 
have to be logged for recovering the last execution state. With the help of the log 
the application recovery module recreates the last execution state of application from 
where normal execution resumes. 

Application recovery is relatively more complex than database recovery because 
of (a) the a large numbers of applications required to manage database processing, (b) 
presence of multiple application states, and (c) the absence of the notion of the "last 
consistent state." This gets more complex in MDS because of (a) unique processing 
demands of mobile units, (b) the existence of random handoffs, (c) the presence of op- 
erations in connected, disconnected, and intermittent connected modes, (d) location- 
dependent logging, and (e) the presence of different types of failure. These failures 
can be categorized as Hardfailure and Soft failure [ 171. Hard failures includes loss of 
mobile unit (stolen, burnt, drowned, dropped, etc.), which cannot be easily repaired. 
Soft failures include system failure (program failure, addressing errors, battery ran 
out, processing unit switched off, etc.) and are recoverable. 

An application can be in any execution state (blocked, executing, receiving data 
slowly, and so on). In addition to this, the application may be under execution on 
stationary units (base station or database server) or on mobile units or on both. These 
processing units, especially the mobile unit, may be (a) going through a handoff, (b) 
disconnected, (c) in a doze mode, (d) turned off completely. The application may 
be processing a mobilaction or reading some data or committing a fragment, and so 
on. If a failure occurs during any of these tasks, the recovery system must bring the 
application execution back to the point of resumption. 

In application recovery, unlike data consistency, the question of application consis- 
tency does not arise because the application cannot execute correctly in the presence 
of any error. Thus, the most important task for facilitating application recovery is the 
management of log. The database recovery protocols provide a highly efficient and 
reliable logging scheme; unfortunately, even with modifications, the conventional 
logging scheme would impose unmanageable burden on resource constrained MDS. 
What is needed is an efficient logging scheme, which stores, retrieves, and unify 
fragments of application log for recovery within the constraints of MDS. 

8.2 LOG MANAGEMENT IN MOBILE DATABASE SYSTEMS 

Log is a sequential file where information necessary for recovery is recorded. Each 
log record represents a unit of information. The position of a record in the log 
identifies the relative order of the occurrence of the event the record represents. In 
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legacy systems (centraliLed or distributed) the log resides at fixed locations which 
survive system crashes. It is retrieved and processed to facilitate system recovery 
from any kind of failure. This persistence property of log is achieved through the 
protocol called Write Ahead Logging (WAL) [41. 

This static property of log ensures that no additional operation other than only its 
access is required to process it for recovery. The situation completely changes in the 
systems which support terminal and personal mobility by allowing the processing 
units to move around. As a result they get connected and disconnected many times 
during the entire execution life of transactions they process. The logging becomes 
complex because the system must follow the WAL protocol while logging records at 
various servers. 

An efficient applicaion recovery scheme for MDS requires that the log management 
must consume minimum system resources and must recreate the execution environ- 
ment as soon as possible after MU reboots. The mobile units and the servers must 
build a log of the events that change the execution states of mobilaction. Messages 
that change the log contents are called write events [22]. The exact write events de- 
pend on the application type. In general, the mobile unit records events like (a) the 
arrival of a mobilaction, (b) the fragmentation of mobilaction, (c) the assignment of 
a coordinator for mobilaction, (d) the mobility history of the mobile unit (handoffs, 
current status of the log, its storage location, etc.), and (e) dispatch of updates from 
mobilaction to DBS?. The DBSs may record similar events in addition to events 
relating to the commit of mobilaction. 

8.2.1 Where to Save the Log? 

Schemes that provide recovery in the PCS (Personal Communication System) system 
saves the log at the BS where the mobile unit currently resides [ 19,221. It is important 
to note that managing log for PCS failure is relatively easy because it does not support 
transaction processing. However, the concept can be used to develop efficient logging 
schemes for MDS. 

There are three places the log can be saved: (a) MSC (Mobile Switching Center), 
(b) Base Station (BS), and (c) Mobile Unit (MU). The reliability and availability 
of mobile units, however, make it a less desirable place to save the log. MSC and 
BS are suitable places; but from cost and management viewpoints, MSC is not a 
convenient location. An MSC may control a large number of BSs; in the event 
of a failure, accessing and processing the log for specific transaction may be time- 
consuming. An MSC is not directly connected to database servers (Figure 7.1), 
which provide necessary log management applications. BSs, on the other hand, are 
directly connected to DBSs and also to mobile units. Therefore, fromconnectivity and 
availability aspects, BSs are comparatively better candidates for saving an application 
log. Under this setup a mobile unit can save log at the current BS and the BS then 
can archive it on DBSs. 

Effect of Mobility on Logging: In conventional database systems, the log genera- 
tion and its manipulation are predefined and fixed. In a mobile environment, this may 
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not always be true because of the frequent movements and disconnections of mobile 
units. A mobiluction may be executed at a combination of mobile units, base stations 
and fixed hosts. Furthermore, if a fragment of mobilaction happens to visit more than 
one mobile unit, then its log may be scattered at more than one base stations. This 
implies that the recovery process may need a mechanism for log unification (logical 
linking of all log portions). The possible logging schemes can be categorized as 
follows: 

Centralized logging-Saving of log at a designated site: Under this scheme a 
base station is designated as logging site where all mobile units from all data regions 
save their log. Since the logging location is fixed and known in advance, and the 
entire log is stored at one place, its management (access, deletion, etc.) becomes 
easier. Under this scheme, each mobile unit generates the log locally and, at suitable 
intervals or when a predefined condition exists, copy its local log to the logging base 
station. If a fragment or mobiluction fails, then the local recovery manager acquires 
the log from the base station and recover the mobiluction. This scheme works, but it 
has the following limitations: 

0 It has very low reliability. If the logging base station fails, then it will stop 
the entire logging process; consequently, transaction processing will stop until 
the BS recovers. Adding another backup base station will not only increase 
resource cost but will increase log management cost as well. 

0 Logging may become a bottleneck. The logging traffic at logging base station 
may become unmanageably heavy, causing significant logging delays. 

For a lightly loaded system with little MU movement, however, this scheme provides 
a simple and efficient way of managing the log. 

Home logging: Every mobile unit stores its log at the base station it initially reg- 
isters. Although a mobile unit will roam around in the geographical domain freely 
and continue to access data from any sites, all logging will still be at its base station. 
This scheme has the following limitations: 

0 Under this scheme the entire log ofmobiluction may be scattered over a number 
of base stations if its fragments are processed by different mobile units with 
different base stations. To recover the mobiluction, all pieces of log will require 
linking (logically). 

0 It may not work for spatial replicas (location-dependent data). Consider a 
location-dependent query which comes to a mobile unit for processing but 
whose base station is not the one that stores the location dependent data. This 
may happen if a traveler from Kansas City issues a query on hisher mobile unit 
for Dallas Holiday Inn data. This scheme can cause excessive message traffic. 

0 Since the logging location is not distributed, it has poor availability and exces- 
sive message traffic during transaction execution. 
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At a designated base station 

Under this scheme a mobile unit locally composes the log and, at some predefined 
intervals, saves it at the designated base station. At the time of saving the log a mobile 
unit may be in the cell of the designated base station or at a remote base station, In 
the latter case, the log must travel through a chain of base stations, ending up at the 
designated base station. This will work as long as there is no communication failure 
anywhere in the chain of base stations. 

At all visited base stations 

In this scheme a mobile unit saves the log at the base station of the cell it is currently 
visiting. The entire application log is stored in multiple base stations, and at the time 
of recovery all log portions are unified to create the complete log. It is possible that 
two or more portions of the entire log may be stored at one base station if the mobile 
unit revisits the station. A number of logging schemes were developed under these 
two approaches, some of which are discussed below. 

Lazy scheme: In lazy scheme [22], logs are stored on the current base station and 
if the mobile unit moves to a new base station, a pointer to the old base station is 
stored in the new base station. These pointers are used to unify the log distributed 
over several base stations. This scheme has the advantage that it incurs relatively 
less network overhead during handoff as no log information needs to be transferred. 
Unfortunately, this scheme has a large recovery time because it requires unification 
of log portions. 

The log unification can be performed in two ways: (a) distance-based scheme and 
(b) frequency-based scheme. In a distance-based scheme [19] the log unification is 
initiated as soon as the mobile unit covers the predefined distance. This distance 
can be measured in terms of base station visited or in terms of cell site visited. In 
the frequency-based scheme [19], log unification is performed when the number of 
handoffs suffered by the MU increases above a predefined value. After unifying the 
log, the distance or handoff counter is reset. 

Pessimistic scheme: In the pessimistic scheme [22], the entire log is transferred at 
each handoff from old to new base station. This scheme, therefore, combines logging 
and log unification. Consequently, the recovery is fast, but each handoff requires 
large volumes of data transfer. 

The existing mobile network framework is not efficient for full-fledged database 
transactions running at DBSs and mobile units. In the above schemes the location 
change of MU has to be updated by DBSs, which would be a big disadvantage. 
To overcome this, mobile IP was introduced. In Ref. [25] log recovery based on 
the mobile IP architecture is described where base stations store the actual log and 
checkpoint information and the base station or the home agent as defined i n  Ref. 
12 11 maintains the recovery information as the mobile unit traverses. This scheme 
has the advantage that log management is easy and the database servers need not be 
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concerned with the mobile unit’s location update, but it suffers when the mobile unit 
is far away from home. Consequently, recovery is likely to be slow if the home agent 
is far from the mobile unit. The other problem with using mobile IP is triangular 
routing where all messages from the database server to the mobile unit have to be 
routed through the home agent. This invariably impedes application execution. The 
schemes discussed so far do not consider the case where a mobile unit recovers in a 
base station different from the one in which it crashed. In such a scenario, the new 
base station does not have the previous base station information in its VLR (Visitor 
Location Register), and it has to access the HLR (Home Location Register) to get this 
information [8], which is necessary to get the recovery log. HLR access may increase 
the recovery time significantly if it is stored far from the MU. A similar disadvantage 
can be observed in the mobile IP scheme of Ref. [2S], where the mobile unit needs 
to contact the home agent each time it needs recovery. 

8.3 MOBILE DATABASE RECOVERY SCHEMES 

In this section a number of recovery schemes have been discussed. These schemes 
take different approaches; however, they build their scheme on same mobile database 
platform. The platform contains a set of mobile unites and base stations. These 
units save logs and checkpoint necessary activities and make sure that necessary 
information is available for recovering from failure efficiently and economically. 

8.3.1 

A three-phase checkpointing and recovery scheme is discussed in Ref. [ 111 which 
combines coordinated and communication-induced checkpointing schemes. All base 
stations use coordinated checkpointing, and the communication-based checkpointing 
is used between mobile units and base stations. Following steps briefly describe the 
working of the algorithm. Further details can be found in Ref. [ 1 11. The algorithm 
uses mobile units MU,,  MU2, MU3, and MU4, as well as base stations MSS1. 
hfSS2, and MS&, for describing message traffic. 

A Three-Phase Hybrid Recovery Scheme 

0 Initially, a coordinator (base station) MSSl broadcasts a request message with 
a checkpoint index to MSS2 and MSS;<. 

0 Each MSS sets up a timer Tlazy. It uses a lazy coordination scheme to re- 
duce the number of messages, therefore, it is especially suitable for mobile 
database systems. In this approach, infrequent snapshots are taken which only 
occasionally impose high checkpoint overheads of coordinated snapshots on 
the low-bandwidth network connecting all mobile units. This approach also 
prevents the global snapshot from getting out of date; as a result, the amount 
of computation for recovery from failure is minimized. 

Mobile unit MU2 or MU3, whichever is active, takes a checkpoint before 
message i n 2  or m3 arrives from MSS2 or MSS3 during Tlnzy. 
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0 MU1 or MU4 takes a checkpoint when Tlazy has expired, and it receives a 
checkpoint request from MSSl  or MSSs .  

0 MSS2 and MSS, responds (send a response message) to MSS1. 

0 MSSl broadcasts a commit message to all M S S s  after receiving response 
messages from other base stations. 

0 MU:$ migrates from MSS3 to MSSz and sends a message to wake MU4 if it 
is in doze mode. 

0 MU2 takes a checkpoint before it disconnects itself from the network. If MU, 
is already in disconnected mode, then it does not take any checkpoint. 

0 In case MU1 fails, it stops executing and sends a recovery message to M S S l .  

0 MSSl broadcasts a recovery messages to all MSSs. 

0 Each M S S  sends recovery message to all its MUs.  These M U s  roll back to 
their last consistent state. 

Fig. 8.1 An example of snapshot generation. 

8.3.2 Low-Cost Checkpointing and Failure Recovery 

In Ref. [23] a low-cost synchronous snapshot collection scheme is presented in 
which allows minimum interference to the underlying computation. The working of 
the algorithm is explained with the following example. Figure 8. I illustrates the flow 
of messages which manage the snapshot process. The processing noes are represented 
as Po, PI ,  PL, and l'3, and ml, mz, 7713, m4, I T I S ,  and r n ~  represent the messages. 
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0 The node Pz first collects local snapshots at the point X time point. 

0 Assume that nodes PI, l'?, and Pz are dependent, so a snapshot request message 
is sent to PI and F'3 by P2. Node P3 sends message m.4 to node PI after taking 
its own snapshot. 

0 Their are two possibilities when message m q  reaches PI:  (a) PI has not pro- 
cessed any message since its last local snapshot or (b) PI has already processed 
a message from any node since its last snapshot. In this example, since PI has 
not processed any message, as a result it takes its tentative snapshot and records 
this event before processing message r n d .  It then propagates the snapshot. 

0 Node Po takes a local snapshot since it has not received any message from any 
node and sends a message m5 to PI.  When rri5 reaches PI,  it finds that m.5 is 
not a new message to force a snapshot so PI does not take a snapshot. 

When a node P, fails, then it rolls back to its latest checkpoint and sends rollback 
requests to a subset of nodes. When a node Pj receives its first rollback message, 
then (a) it rolls back to its latest checkpoint and (b) it sends a rollback request to a 
selective set of nodes. Node P3 may receive subsequent rollback messages as a result 
of PI 's failure, but it ignores all of them. In the case of mobile units, all their rollback 
requests are routed through their base stations. 

8.3.3 A Mobile Agent-Based Log Management Scheme 

Mobile agents have been successfully used in managing a number of application and 
system activities. It has also been used to develop a scheme to manage an application 
log in MDS (Mobile Database Systems). A mobile agent is an autonomous program 
that can move from machine to machine in a heterogeneous network under its own 
control. It can suspend its execution at any point, transport itself to a new machine, 
and resume execution from the point it stopped execution. An agent carries both the 
code and the application state. Actually a mobile agent paradigm is an extension of 
the cliendserver architecture with code mobility. Some of the advantages of mobile 
agents as described in Ref. [ 141 are: 

0 Protocol Encapsulation: Mobile agents can incorporate their own protocols 
in their code instead of depending on the legacy code provided by the hosts 

0 Robustness and fault-tolerance: When failures are detected, host systems 
can easily dispatch agents to other hosts. This ability makes the agents fault- 
tolerant. 

Asynchronous and autonomous execution: Once the agents are dispatched 
from a host, they can make decisions independently and autonomously. This is 
particularly useful to the wireless environment where maintaining a connection 
throughout an executing mohilaction may not be economical or necessary. In 
such cases, the agents can visit the destination, perform any required processing, 
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and bring the final data to the origin thereby removing the need for a continuous 
wireless connection. For example, an agent can take a mobiluction from a 
mobile unit, execute it at the most suitable node (could be remote), and bring 
the result back to the mobile unit. 

Agents do have disadvantages, and the one which is likely to affect the logging 
scheme is its high migration and machine load overhead [ 2 ] .  This overhead must 
be minimized for improving the performance. The present scheme uses agent ser- 
vices with the only when needed approach. It is not possible to develop a scheme, 
which optimizes the performance at all levels and in all different situations. For this 
reason, some recovery schemes improve the performance by targeting to minimize 
the communication overhead, some might concentrate on total recovery time, some 
may optimize storage space, and so on. Thus, each scheme involves certain trade- 
offs. When these issues are taken into consideration, it becomes necessary to build 
a framework that supports the implementation of the existing schemes and should 
also be able to support any new scheme. The framework should support the acti- 
vationldeactivation of a scheme, depending on the particular environment in which 
it offers best performance. Such a framework should abstract the core base station 
software (which handles the registration, handoff, etc., activities) from handling the 
recovery procedures, thus allowing for better recovery protocols to be implemented 
without the need for changing the core software. The framework may also support a 
rapid deployment of the recovery code without much human intervention. 

In MDS, the coordinator module resides in the base station. It splits mobilac- 
tion into fragments if necessary, and it sends some of them to a set of DBSs. This 
requirement asks for specific intelligence to be embedded in the base station code. 
Mobilactian initiated by mobile unit may use different kinds of commit protocols 
like 2-phase commit or 3-phase commit or TCOT (Transaction Commit on Timeout) 
[9]. The coordinator module needs to support all of these. If such a module at a 
base station does not support a particular protocol, then there should be an easy way 
to access such a code. An extension to this is that, when a new efficient protocol is 
introduced, all base stations should be able to upgrade to this as easily as possible 
and with little or no human intervention. From the perspective of mobile unit log 
recovery, an architecture is required which supports intelligent logging and is able to 
incorporate any future developments without any difficulty. 

Some recovery schemes specify that the logs move along with the mobile unit 
through a multitude of base stations. The new base stations should be able to handle 
the logs in the same way as the previous one did or log inconsistency might result. It 
is argued that the flexibility and constraints mentioned above could be successfully 
incorporated on a mobile-agent based architecture under which the code necessary for 
recovery and coordination can be embedded in the mobile agents. The coordinator can 
be modeled as a mobile agent and can be initiated by the mobile unit itself if necessary. 
If during a handoff the new base station does not support a specific logging scheme, 
then the agent in the previous base station which supports this can clone itself and the 
new replica can migrate to the current base station without any manual intervention. 
The same technique can be used in quickly populating the base stations with any new 
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protocols. The mobile agent with the new protocol embedded in it can be introduced 
in any base station and it can replicate and migrate to other base station. 

8.3.4 Architecture of Agent-Based Logging Scheme 

An architecture is presented where mobile agents are used to provide a platform for 
managing logging. The architecture supports the independent logging mechanisms. 
It is assumed that each base station supports the functionality of mobile agents. The 
main components of the architecture are: 

Bootstrap agent (BsAg): This agent handles a base station failure. Any agent that 
wishes to recover should register with the bootstrap agent. The base station initiates 
the bootstrap agent. Once loaded, this agent starts all the agents that have registered 
with it. These agents have the capability to read the log information they have created 
and act accordingly. The need for such an agent may be obviated if the mobile agent 
provides an automatic revival of the agents with their state intact. 

Base Agent (BaAg): This agent decides which logging scheme to use in the current 
environment. Such functionality can be decided by its own intelligence or can be given 
as an input. For every mobile unit, it creates an instance of an agent that handles the 
recovery of mobilactions based on the relevant logging scheme. 

Home Agent (HoAg): This agent handles rnohilactions for each mobile unit. It 
is responsible for maintaining log and recovery information on behalf of the mobile 
unit. The mobile unit sends log events to this agent, which is responsible for storing 
them on the stable storage of the base station. The HoAg is a base station interface 
to the mobile unit for Mobilactions 

Coordinator Agent (CoAg): This agent resides at base station and acts as the 
coordinator for all mobilactions. 

Event Agent (EvAg): In addition to the above framework, the base station provides 
mobile agents with an interface to the various events taking place like registration of 
a mobile unit, failure of a mobile unit, handoff of a mobile unit, etc. This approach 
abstracts away the core base station functions from application recovery support. 
When a mobile unit suffers handoff, its HoAg should know about it so that it can 
perform the required operations. The EvAg is the interface for the base station to the 
agent framework for dissemination of such information. 

Driver Agent (DrAg): The migration of a mobile agent during a handoff involves 
the movement of its code and the actual data. This might generate considerable 
overhead [2] even if the actual log transfer is not much. 
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8.3.5 Interaction Among Agents for Log Management 

These agents collaborate with each other to facilitate log management. 

Interaction of CoAg and HoAg: An MU sends Mobilaction to its HoAg, which 
forwards it to the corresponding CoAg. If the CoAg needs to contact the MU, it does 
so through the MU’S corresponding HoAg. When CoAg sends a write event to the 
HoAg, it stores it in its local store before sending it to the MU. Similarly if any events 
come to the MU through user input, MU sends the corresponding log messages to the 
HoAg. 

Action of agents when handoff occurs: The HoAg moves along with the mobile 
unit to the new base station in a handoff. Based on schemes like Lazy and Frequency- 
based, the agent may or may not take the stored logs along with it to the new base 
station. When a handoff occurs, a driver agent (DrAg) is sent along with the neces- 
sary log information to the new base station instead of the whole HoAg with all its 
intelligence for log unification. The DrAg has a very light code whose main function 
is to see whether the code for HoAg is present in the new base station. If so, it requests 
the resident BaAg in the new base station to create an instance of the HoAg for the 
mobile unit. If any compatible code is not present, then the DrAg sends a request to 
the previous base station’s BaAg, which clones the necessary HoAg and sends the 
copy to the new base station. When the mobile unit moves out of a base station, its 
log information is not deleted automatically but it is stored unless notified otherwise 
by the agent of the mobile unit. This facilitates the unification of logs when logs are 
distributed over a set of base stations. 

8.3.6 Forward Strategy 

All schemes reviewed earlier have assumed instant recovery of the mobile unit after a 
failure, but Ref. [8] acknowledges the possibility where the mobile unit might crash 
in one base station and recover in another base station. A time interval is defined 
between the mobile unit failing and its subsequent rebooting as Expected Failure 
Time (EFT). This scheme concentrates on such scenarios where the EFT is not so 
trivial that the recovery occurs instantaneously. Base station detects the failure of 
a mobile unit and agents do not play any part in such detection. For example, if 
the communication between two mobile units breaks down because of the failure of 
one of the mobile units, then the corresponding BS will immediately know about this 
event. Similarly, base station also knows which mobile unit has executed power-down 
registration, which mobile unit has undergone a handoff, and so on. 

A base station also continuously pages its mobile units.’ If the mobile unit suf- 
fers a handoff, then the communication with the last base station is not broken until 

’Sprint PCS system pages its mobile units after every 10 to 15 minutes without generating any overhead 
to learn their status, and a mobile unit also continuously scans the air by using its antenna to detect the 
strongest signal. 
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the connection with the new base station is established (soft handoff). These fea- 
tures of PCS allow MDS to detect mobile unit failure. Thus, while a mobile unit is 
executing its fragment, its status is continuously monitored by the base station and 
any change in mobile unit’s situation is immediately captured by the Event Agent 
interface. Since this detection is system-dependent, EFT (Expected Failure Time) 
tends to be an approximate value. The detection can be passed on to the HoAg in 
many ways. The MDS can provide an interface, which would allow the agents to 
wait for an event. Another approach would be to provide an agent readable sys- 
tem variable which would be set on any such event. The agent will periodically 
poll the variable to check if it is set. Both approaches are possible and easy to im- 
plement in languages such as Java in which many agent systems like IBM’s Aglets 
and General Magic’s Odyssey have been developed [(i]. Since handoff does not 
occur in the above case as pointed out in ref. [8], the new base station does not 
know the location of the old base station. This situation leads to the new base sta- 
tion contacting the Home Location Register (HLR) for the previous base station 
[8, 18, 19, 231. This might be a hindrance to fast recovery if the HLR happens to 
be far from the querying base station. Actually the Visitor Location Register (VLR) 
is first queried for the previous base station information, which is stored in VLR if 
both base stations happen to fall under the control of the same VLR. If base sta- 
tions are under different VLRs, then the HLR of the mobile unit has to be queried. 
Such information is stored in the HLR when a mobile unit first registers with a base 
station. 

In the lazy scheme [8], the base station starts building up the log immediately 
upon failure of mobile unit. In the schemes presented in Ref. [19], the mobile unit 
explicitly issues a recovery call to the base station and the base station begins the 
log unification. This raises certain questions in the event of the mobile unit crashing 
and recovering in a different base station. If the log is to be unified immediately 
upon a failure, then it might be necessary for the new base station to wait for the 
old base station to finish its unification and then present its log. If the failure time 
is large or the total log size is small, then unification will be over by the time the 
new base station queries the previous base station. In such a case, recovery can be 
fast. In the case of a relatively small EFT (Expected Failure Time) or a large log size 
(to be unified), the new base station must wait first for the unification and then for 
the actual log transfer. This results in increased recovery time and network cost. In 
such cases it might be preferable for the log unification to be done in the new base 
station if the list of base stations where the log is distributed is known. Such a list 
is transferred in schemes provided in Ref. [19] and not for those in Ref. [S]. In 
the approach where the log is unified after a recovery call, the recovery time might 
not be small enough if the log size to be unified is small. In this case the unifica- 
tion has to begin after getting the list of base stations involved from the previous 
base station. Also, if the mobile unit has not migrated to a new base station be- 
fore recovery, then the log has to be unified, which is likely to increase the recovery 
time. 
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Reducing Recovery Time 

The scheme of log unification is based on the number of handoffs occurred since 
the last log unification or the start of the transaction whichever is later. The log 
is unified periodically when the number of handoffs occurred crosses a predefined 
handoff-threshold. 

When a handoff occurs, the Truce information is transferred from the old base 
station to the new base station. This trace information is an ordered list of elements 
giving information about the base stations involved in storing mobile unit’s log. Each 
array element consists of two values: (a) the identify of this base station (BS-ID) and 
(b) the size of the log stored at BS-ID1 (Log-Sizei). When a handoff occurs, then 
BS-ID of the new base station and a Log-Size value of zero are added to the end of 
the trace. The Log-Size value is updated whenever mobile unit presents base station 
with some log information. Optional parameters can also be present in the trace 
information. Since the trace does not contain the actual log contents and is mostly an 
array of base stations identities and log sizes, it does not present a significant overhead 
during the handoff. The scheme also assumes the presence of EFT (expectedfuilure 
time) value which can be stored as an environment attribute accessible to HoAg of 
the mobile unit at the base station. If such support cannot be given by the system, 
then HoAg can also estimate EFTfrom mobile unit’s activities. If the agent estimates 
the EFT, then this value is also stored in the trace information. When the system 
detects mobile unit failure, it informs the agent framework through the Event Agent 
interface. This agent notifies the appropriate HoAg that starts the EFT clock. This 
clock is stopped to get the Recorded-EFTvalue, when the HoAg receives mobile unit 
recovery call, which can come from the mobile unit in the same base station or from 
a different base station in which the mobile unit has recovered. In either case, the 
agent residing in base station where the EFT clock is started. It estimates the new 
EFT as 

(K1 x Recorded-EFT ) + (K2 x EFT), where K1 + K2 = 1 

The new EFT is a weighted sum of the previous EFT and the Recorded-EFT. K 1 
indicates the reliance on the Recorded-EFT, while K 2  indicates the reliance on the 
previously calculated EFT. The values of K1 and K2 are functions of the environment. 
In a network where the failure time is relatively stable, K2 is given more weight; and 
in a network where the failure time varies frequently, K1 can be given more weight. 
To improve storage utilization, unnecessary records from the log is deleted. This 
garbage collection is optional and is done upon log unification. When a mobile unit 
log is unified at a base station, a garbage-collect message is sent to all the base stations 
hosting the mobile unit logs as specified in the trace BS-ID list. The previous base 
stations purge these logs on receiving this message. The BS-ID and the Log-Size 
lists are erased from the trace information at the current base station to reflect the 
unification, and a ringle entry is created in the trace with the current base station 
identity and the unified log size. 
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8.3.7 Forward Log Unification Scheme 

Since the trace information contains the size of the log stored at different base stations, 
the HoAg can estimate the time for log unification based on the network link speed 
and the total log size. This time is called the Estimated Log Unijication Time (ELUT), 
which can be measured as: Max (BSi-Log-Size/Network link Speed + Propagation 
Delay), for all base stations in the trace. The exact characterization of the ELUTvalue 
depends other factors such as whether base stations are located in the same VLR area or 
different areas, queuing delay, etc. The HoAg should take into consideration as many 
parameters available from the system as possible to estimate the ELUT accurately. 
Log unification is started if (6 * ELUT) 5 EFT or else it is deferred until a recovery 
call is heard from the mobile unit. 

The Unification factor “6” describes what fraction of the log unification will be 
done by the time the failure time of the mobile unit comes to an end. The default 
value can be kept as 1 ,  which indicates that the log unification starts only if it can be 
totally completed by the time the mobile unit is expected to complete its reboot. If 
the mobile unit reboots in a different base station while the log is being unified in the 
previous base station, it has to wait for the unification to complete. Variations of this 
scheme are possible if the HoAg can estimate the effective handoff time. Based on 
this value, if there is still a long time for the next handoff, then the log unification 
can start immediately upon a failure, as it is more probable that the failed mobile unit 
will recover in the base station where it failed rather than in any other base station. In 
the event the log unification is not performed because (6 x ELUT) 5 EFT, the HoAg 
waits for the mobile unit to recover. If the recovery happens in the same base station, 
then the log unification starts; but if the mobile unit reboots in a different base station, 
then the HoAg transfers the trace information and the log stored at this base station 
when requested. In this case, the new base station has to perform the log unification 
after getting the trace information from the previous base station. This trace contains 
the newly calculated EFT value. 

8.3.8 Forward Notification Scheme 

This scheme addresses the issue of time spent in getting the previous base station 
information from the HLR. To minimize this time, a scheme involving forward no- 
tifications is proposed. When a mobile unit fails in a particular base station and if 
the actual failure time (total duration before mobile unit is rebooted) is not too high, 
then there is a high probability that the mobile unit will recover in the same VLR or 
in a BS that is in adjacent VLRs. Thus a VLR and its adjacent VLRs cover a large 
area, and the situation where the mobile unit reboots in a nonadjacent VLR does not 
occur frequently. If the mobile unit happens to restart in a non-adjacent VLR, then it 
must have been extremely mobile and most of the recovery schemes are not designed 
for such unrealistic situation. The other implication is that the mobile unit had been 
in the failed state for a longer period and so it is likely that the coordinator could 
have decided to abort the rnohilaction. Each VLR also stores mobile unit’s status 
information (normal, failed, and forwarded). 



218 MOBILE DATABASE RECOVERY 

When a mobile unit fails, its corresponding HoAg informs the VLR about this 
failure. The VLR first changes the status of the mobile unit in its database from 
normal to failed. The VLR then issues a message containing its own identity (e.g., 
identity of theVLR that sends this message), the identity of the failed mobile unit, and 
the identity of the we propose in which the mobile unit crashed to its adjacent VLRs 
that the mobile unit has failed. The adjacent VLRs store these messages until explicit 
denotify messages are received. The mobile unit is recorded in these adjacent VLRs 
with the status as forwarded. The following scenarios may arise when the mobile unit 
reboots: 

Case 1-The mobile unit reboots in the same base station where it crashed: 
In this scenario, the HoAg informs the VLR that the mobile unit has recovered. The 
VLR then issues a denotify message to all the adjacent VLRs indicating that the 
forward notification information is no longer valid. The status of the mobile unit is 
changed back to normal from failed. 

Case 2-The mobile unit reboots in a different base station but in the same VL R: 
First the mobile unit registers with the base station and the registration message is 
logged on to the corresponding VLR. This VLR identifies the status of the mobile 
unit as failed, and then it proceeds as in case 1 and sends denotify messages to the 
adjacent VLRs. The status of the mobile unit is changed back to normal from failed. 
The new base station then proceeds to perform log unification from the previous base 
station. 

Case 3-The mobile unit reboots in a different base station and a different 
VLR: The mobile unit requests for registration. The corresponding VLR identifies 
the mobile unit as a forward notified mobile unit and returns the identity of the 
previous base station and the identity of the VLR to the HoAg of the mobile unit in  
the recovered base station. The base station then proceeds to perform log unification 
from the previous base station. Simultaneously, the new VLR sends a recovered 
message to the previous VLR regarding the recovered status of the mobile unit and 
also sends a registration message to the HLR regarding the registration of the mobile 
unit in the new location. The status of the mobile unit is changed to normal from 
forwarded in the new VLR. Upon receiving the recovered message, the previous 
VLR sends a denotify message to all adjacent VLRs except the one in which the 
mobile unit recovered and removes the registration of the mobile unit from itself as 
well. In the situation where the mobile unit recovers in a nonadjacent VLR that has 
not received the forward notifications, the new base station has to get the previous 
base station information from the HLR and then send the previous VLR a recovered 
message. Upon receiving this message, the previous VLR acts similar to the previous 
VLR of case 3 .  The forward notification scheme is unsuitable if the mobile unit 
suffers failures with a very small EFT. In that case the mobile unit recovers in the 
same base station where it failed. Hence, the forward notifications and subsequent 
denotifications generate communication overhead. To alleviate this, we might delay 
the sending of these notifications immediately on failure of the mobile unit. The 


