
LECTURE NOTES

 ON

CS1305 – VISUAL PROGRAMMING

MR.M.S.DURAIRAJAN, M.E

ASST PROFESSOR

DEPT OF INFORMATION TECHNOLOGY

NPRCET

CS1305 – VISUAL PROGRAMMING

SYLLABUS

UNIT I WINDOWS PROGRAMMING

Windows environment − A simple windows program − Windows and messages − Creating the window −

Displaying the window − Message loop − The Window procedure − Message processing − Text output − Painting

and repainting − Introduction to GDI − Device context − Basic drawing − Child window controls.

UNIT II VISUAL C++ PROGRAMMING FUNDAMENTALS

Application framework − MFC library − Visual C++ components − Event handling − Mapping modes − Colors −

Fonts − Modal and modeless dialog − Windows common controls – Bitmaps.

UNIT III THE DOCUMENT AND VIEW ARCHITECTURE

Menus − Keyboard accelerators − Rich edit control − Toolbars − Status bars − Reusable frame window base class

− Separating document from its view – Reading and writing SDI and MDI Documents − Splitter window and

multiple views − Creating DLLs − Dialog based applications.

UNIT IV ACTIVEX AND OBJECT LINKING AND EMBEDDING (OLE)

ActiveX Controls Vs Ordinary windows controls − Installing ActiveX Controls − Calendar Control − ActiveX

control container programming − Create ActiveX control at runtime − Component Object Model (COM) −

Containment and Aggregation Vs Inheritance − OLE Drag and Drop − OLE embedded component and containers

− Sample applications.

UNIT V ADVANCED CONCEPTS

Database management with microsoft ODBC − Structured query language – MFC ODBC Classes − Sample

database applications − Filter and Sort Strings – DAO Concepts − Displaying database records in scrolling view −

Threading − VC++ Networking issues − WinSock − WinInet − Building a web client – Internet Information server

− ISAPI server extension − Chat application − Playing and multimedia (sound and video) files.

TEXT BOOKS

1. Charles Petzold, ―Windows Programming‖, Microsoft Press, 1996.

2. David J. Kruglinski, George Shepherd and Scot Wingo, ―Programming Visual

C++‖, Microsoft press, 1999.

REFERENCES

1. Steve Holtzner, ―Visual C++ 6 Programming‖, Wiley Dreamtech India Pvt.

Ltd., 2003.

2. Mueller and John, ―Visual C++ from the Ground up‖, 2nd Edition, Tata

McGraw Hill, 1999.

3. Bates and Tompkins, ―Practical Visual C++‖, Prentice Hall of India, 2002

UNIT 1

WINDOWS PROGRAMMING

The Windows Environment

A History of Windows

 Windows was announced by Microsoft Corporation in November 1983 (post-Lisa but pre-

Macintosh) and was released two years later in November 1985

 Windows 2.0 was released in November 1987

 Windows 3.0 was introduced on May 22, 1990

 Microsoft Windows version 3.1 was released in April 1992

 Windows NT, introduced in July 1993

 Windows 95 was introduced in August 1995

 Windows 98 was released in June 1998

Aspects of Windows

 Both Windows 98 and Windows NT are 32-bit preemptive multitasking and multithreading

graphical operating systems. Windows possesses a graphical user interface (GUI), sometimes also

called a "visual interface" or "graphical windowing environment.―

 All GUIs make use of graphics on a bitmapped video display. Graphics provides better utilization

of screen real estate, a visually rich environment for conveying information, and the possibility of a

WYSIWYG (what you see is what you get) video display of graphics and formatted text prepared

for a printed document.

 In earlier days, the video display was used solely to echo text that the user typed using the

keyboard. In a graphical user interface, the video display itself becomes a source of user input. The

video display shows various graphical objects in the form of icons and input devices such as

buttons and scroll bars. Using the keyboard (or, more directly, a pointing device such as a mouse),

the user can directly manipulate these objects on the screen. Graphics objects can be dragged,

buttons can be pushed, and scroll bars can be scrolled

 The interaction between the user and a program thus becomes more intimate. Rather than the one-

way cycle of information from the keyboard to the program to the video display, the user directly

interacts with the objects on the display.

 Users no longer expect to spend long periods of time learning how to use the computer or

mastering a new program. Windows helps because all applications have the same fundamental look

and feel. The program occupies a window—usually a rectangular area on the screen.

 Each window is identified by a caption bar. Most program functions are initiated through the

program's menus. A user can view the display of information too large to fit on a single screen by

using scroll bars. Some menu items invoke dialog boxes, into which the user enters additional

information.

 One dialog box in particular, that used to open a file, can be found in almost every large Windows

program. This dialog box looks the same (or nearly the same) in all of these Windows programs,

and it is almost always invoked from the same menu option.

 From the programmer's perspective, the consistent user interface results from using the routines

built into Windows for constructing menus and dialog boxes. All menus have the same keyboard

and mouse interface because Windows—rather than the application program—handles this job.

 To facilitate the use of multiple programs, and the exchange of information among them, Windows

supports multitasking. Several Windows programs can be displayed and running at the same time.

Each program occupies a window on the screen. The user can move the windows around on the

screen, change their sizes, switch between different programs, and transfer data from one program

to another.

 Earlier versions of Windows used a system of multitasking called "nonpreemptive." This meant

that Windows did not use the system timer to slice processing time between the various programs

running under the system. The programs themselves had to voluntarily give up control so that other

programs could run. Under Windows NT and Windows 98, multitasking is preemptive and

programs themselves can split into multiple threads of execution that seem to run concurrently.

 Programs running in Windows can share routines that are located in other files called "dynamic-

link libraries." Windows includes a mechanism to link the program with the routines in the

dynamic-link libraries at run time. Windows itself is basically a set of dynamic-link libraries.

 Windows is a graphical interface, and Windows programs can make full use of graphics and

formatted text on both the video display and the printer. A graphical interface not only is more

attractive in appearance but also can impart a high level of information to the user

 Programs written for Windows do not directly access the hardware of graphics display devices

such as the screen and printer. Instead, Windows includes a graphics programming language

(called the Graphics Device Interface, or GDI) that allows the easy display of graphics and

formatted text. Windows virtualizes display hardware. A program written for Windows will run

with any video board or any printer for which a Windows device driver is available. The program

does not need to determine what type of device is attached to the system.

Dynamic Linking

 Windows provides a wealth of function calls that an application can take advantage of, mostly to

implement its user interface and display text and graphics on the video display. These functions are

implemented in dynamic-link libraries, or DLLs.

 When you run a Windows program, it interfaces to Windows through a process called "dynamic

linking." A Windows .EXE file contains references to the various dynamic-link libraries it uses and

the functions therein. When a Windows program is loaded into memory, the calls in the program

are resolved to point to the entries of the DLL functions, which are also loaded into memory if not

already there.

 When you link a Windows program to produce an executable file, you must link with special

"import libraries" provided with your programming environment. These import libraries contain

the dynamic-link library names and reference information for all the Windows function calls. The

linker uses this information to construct the table in the .EXE file that Windows uses to resolve

calls to Windows functions when loading the program.

Windows Programming Options

APIs and Memory Models

 To a programmer, an operating system is defined by its API. An API encompasses all the function

calls that an application program can make of an operating system, as well as definitions of

associated data types and structures.

 Windows NT and Windows 98 are both considered to support the Win32 API.

 Language Options

 Using C and the native APIs is not the only way to write programs for Windows 98. However, this

approach offers you the best performance, the most power, and the greatest versatility in exploiting

the features of Windows.

 Executables are relatively small and don't require external libraries to run (except for the Windows

DLLs themselves, of course).

 Visual Basic or Borland Delphi Microsoft

 Microsoft Visual C++ with the Microsoft Foundation Class Library (MFC) - MFC encapsulates

many of the messier aspects of Windows programming in a collection of C++ classes.

Your First Windows Program

/*---

HelloMsg.c -- Displays "Hello, Windows 98!" in a message box

--*/

#include <windows.h>

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,PSTR szCmdLine, int

iCmdShow)

{

MessageBox (NULL, TEXT ("Hello, Windows 98!"), TEXT ("HelloMsg"), 0) ;

return 0 ;

}

The Header Files

HELLOMSG.C begins with a preprocessor directive that you'll find at the top of virtually every

Windows program written in C:

#include <windows.h>

WINDOWS.H - master include file - includes other Windows header files,

some of which also include other header files.

The most important and most basic of these header files are:

WINDEF.H Basic type definitions.

WINNT.H Type definitions for Unicode support.

WINBASE.H Kernel functions.

WINUSER.H User interface functions.

WINGDI.H Graphics device interface functions.

These header files define all the Windows data types, function calls, data

structures, and constant identifiers.

Program Entry Point

Just as the entry point to a C program is the function main, the entry point to a Windows program is

WinMain, which always appears like this:

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance, PSTR

szCmdLine, int iCmdShow)

Hungarian Notation

Prefix Data Type

b BOOL

c or ch char

clr COLORREF

cx, cy Horizontal or vertical distance

dw DWORD

h Handle

l LONG

n int

p Pointer

sz Zero-terminated string

w WORD

wnd CWnd

str CString

m_ class member variable

 The WinMain function is declared as returning an int. The WINAPI identifier is defined in

WINDEF.H with the statement:

 #define WINAPI __stdcall

 This statement specifies a calling convention that involves how machine code is generated to place

function call arguments on the stack. Most Windows function calls are declared as WINAPI.

 The first parameter to WinMain is called an "instance handle." - simply a number that an

application uses to identify the program.

 The second parameter to WinMain is always NULL (defined as 0).

 The third parameter to WinMain is the command line used to run the program.

 The fourth parameter to WinMain indicates how the program should be initially displayed—either

normally or maximized to fill the window, or minimized to be displayed in the task list bar.

The MessageBox Function

 The MessageBox function is designed to display short messages. The little window that

MessageBox displays is actually considered to be a dialog box, although not one with a lot of

versatility.

 The first argument to MessageBox is normally a window handle.

 The second argument is the text string that appears in the body of the message box, and

 the third argument is the text string that appears in the caption bar of the message box.

 In HELLMSG.C, each of these text strings is enclosed in a TEXT macro.

 The fourth argument to MessageBox can be a combination of constants beginning with the prefix

MB_ that are defined in WINUSER.H.

 You can pick one constant from the first set to indicate what buttons you wish to appear in the

dialog box:

#define MB_OK 0x00000000L

#define MB_OKCANCEL 0x00000001L

#define MB_ABORTRETRYIGNORE 0x00000002L

#define MB_YESNOCANCEL 0x00000003L

#define MB_YESNO 0x00000004L

#define MB_RETRYCANCEL 0x00000005L

Windows Environment

Windows and Messages

Windows

 In Windows, the word "window" has a precise meaning. A window is a rectangular area on the

screen that receives user input and displays output in the form of text and graphics.

 The MessageBox function creates a window, but it is a special-purpose window of limited

flexibility. The message box window has a title bar with a close button, an optional icon, one or

more lines of text, and up to four buttons. However, the icons and buttons must be chosen from a

small collection that Windows provides for you.

 We can't display graphics in a message box, and we can't add a menu to a message box. For that we

need to create our own windows.

An Architectural Overview

 The user sees windows as objects on the screen and interacts directly with them using the keyboard

or the mouse. Interestingly enough, the programmer's perspective is analogous to the user's

perspective.

 The window receives the user input in the form of "messages" to the window. A window also uses

messages to communicate with other windows. Getting a good feel for messages is an important

part of learning how to write programs for Windows.

 Every window that a program creates has an associated window procedure. This window procedure

is a function that could be either in the program itself or in a dynamic-link library. Windows sends

a message to a window by calling the window procedure. The window procedure does some

processing based on the message and then returns control to Windows.

 More precisely, a window is always created based on a "window class." The window class

identifies the window procedure that processes messages to the window. The use of a window class

allows multiple windows to be based on the same window class and hence use the same window

procedure. For example, all buttons in all Windows programs are based on the same window class.

This window class is associated with a window procedure located in a Windows dynamic-link

library that processes messages to all the button windows.

Creating the Window

 The window class defines general characteristics of a window, thus allowing the same window

class to be used for creating many different windows.

 When you go ahead and create a window by calling CreateWindow, you specify more detailed

information about the window.

 Why all the characteristics of a window can't be specified in one shot.

 Actually, dividing the information in this way is quite convenient. For example, all push-button

windows are created based on the same window class. The window procedure associated with this

window class is located inside Windows itself, and it is responsible for processing keyboard and

mouse input to the push button and defining the button's visual appearance on the screen. All push

buttons work the same way in this respect.

 But not all push buttons are the same. They almost certainly have different sizes, different locations

on the screen, and different text strings. These latter characteristics are part of the window

definition rather than the window class definition.

Creating the Window

hwnd = CreateWindow (szAppName, // window class name TEXT ("The

Hello Program"), // window caption WS_OVERLAPPEDWINDOW, // window style

 CW_USEDEFAULT, // initial x position

CW_USEDEFAULT, // initial y position CW_USEDEFAULT,

 // initial x size CW_USEDEFAULT, // initial y size

 NULL, // parent window handle

NULL, // window menu handle hInstance,

// program instance handle

NULL) ; // creation parameters

 Creating the Window –Overlapped window

 It will have a title bar; a system menu button to the left of the title bar; a thick window-sizing

border; and minimize, maximize, and close buttons to the right of the title bar. - standard style for

windows,

 In WINUSER.H, this style is a combination of several bit flags:

#define WS_OVERLAPPEDWINDOW

(WS_OVERLAPPED | \

WS_CAPTION | \

WS_SYSMENU | \ WS_THICKFRAME | \

 WS_MINIMIZEBOX | \

 WS_MAXIMIZEBOX)

 By default, Windows positions successive newly created windows at stepped horizontal and

vertical offsets from the upper left corner of the display.

 The CreateWindow call returns a handle to the created window. This handle is saved in the variable

hwnd, which is defined to be of type HWND ("handle to a window").

 Every window in Windows has a handle. Your program uses the handle to refer to the window.

Many Windows functions require hwnd as an argument so that Windows knows which window the

function applies to. If a program creates many windows, each has a different handle. The handle to

a window is one of the most important handles that a Windows program handles.

Displaying the Window

 After the CreateWindow call returns, the window has been created internally in Windows.

 What this means basically is that Windows has allocated a block of memory to hold all the

information about the window that you specified in the CreateWindow call, plus some other

information, all of which Windows can find later based on the window handle.

 However, the window does not yet appear on the video display. Two more calls are needed.

ShowWindow (hwnd, iCmdShow) ;

 The first argument is the handle to the window just created by CreateWindow.

 The second argument is the iCmdShow value passed as a parameter to WinMain. This determines

how the window is to be initially displayed on the screen, whether it's normal, minimized, or

maximized.

 The user probably selected a preference when adding the program to the Start menu. The value you

receive from WinMain and pass to ShowWindow is SW_SHOWNORMAL if the window is

displayed normally, SW_SHOWMAXIMIZED if the window is to be maximized, and

SW_SHOWMINNOACTIVE if the window is just to be displayed in the taskbar.

 The ShowWindow function puts the window on the display. If the second argument to

ShowWindow is SW_SHOWNORMAL, the client area of the window is erased with the

background brush specified in the window class.

 UpdateWindow (hwnd) ;

 then causes the client area to be painted. It accomplishes this by sending the window procedure (

the WndProc function in HELLOWIN.C) a WM_PAINT message.

The Message Loop

 After the UpdateWindow call, the window is fully visible on the video display. The program must

now make itself ready to read keyboard and mouse input from the user.

 Windows maintains a "message queue" for each Windows program currently running under

Windows. When an input event occurs, Windows translates the event into a "message" that it

places in the program's message queue.

 A program retrieves these messages from the message queue by executing a block of code known

as the "message loop":

while (GetMessage (&msg, NULL, 0, 0))

{

TranslateMessage (&msg) ;

DispatchMessage (&msg) ;

}

The Message Loop (2)

The msg variable is a structure of type MSG, which is defined in the WINUSER.H header file like

this:

typedef struct tagMSG

{

HWND hwnd ;

UINT message ;

WPARAM wParam ;

LPARAM lParam ;

DWORD time ;

POINT pt ;

}

MSG, * PMSG ;

The POINT data type is yet another structure, defined in the WINDEF.H header file like this:

typedef struct tagPOINT

{

LONG x ;

LONG y ;

}

POINT, * PPOINT;

The Message Loop

TranslateMessage (&msg) ;

 Passes the msg structure back to Windows for some keyboard translation.

DispatchMessage (&msg) ;

 Again passes the msg structure back to Windows.

Windows then sends the message to the appropriate window procedure for processing

The Window Procedure

 The window class has been registered, the window has been created, the window has been

displayed on the screen, and the program has entered a message loop to retrieve messages from the

message queue.

 The real action occurs in the window procedure. The window procedure determines what the

window displays in its client area and how the window responds to user input.

The Window Procedure

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM

lParam)

The four parameters to the window procedure are identical to the first four fields of the MSG structure

Processing the Messages

 Every message that a window procedure receives is identified by a number, which is the message

parameter to the window procedure.

 The Windows header file WINUSER.H defines identifiers beginning with the prefix WM

("window message") for each type of message.

 Generally, Windows programmers use a switch and case construction to determine what message

the window procedure is receiving and how to process it accordingly.

 When a window procedure processes a message, it should return 0 from the window procedure.

 All messages that a window procedure chooses not to process must be passed to a Windows

function named DefWindowProc. The value returned from DefWindowProc must be returned from

the window procedure.

In HELLOWIN, WndProc chooses to process only three messages: WM_CREATE, WM_PAINT, and

WM_DESTROY. The window procedure is structured like this:

switch (iMsg)

{

case WM_CREATE :

[process WM_CREATE message]

return 0 ;

case WM_PAINT :

[process WM_PAINT message]

return 0 ;

case WM_DESTROY :

[process WM_DESTROY message]

return 0 ;

}

return DefWindowProc (hwnd, iMsg, wParam, lParam) ;

 It is important to call DefWindowProc for default processing of all messages that your window

procedure does not process. Otherwise behavior regarded as normal, such as being able to

terminate the program, will not work.

WINDOWS PROGRAMMING MODEL

Text Output

Introduction

 Client area is the part of the window on which a program is free to draw and deliver visual

information to the user.

 You can do almost anything you want with your program's client area—anything, that is, except

assume that it will be a particular size or that the size will remain constant while your program is

running.

 When a program displays text or graphics in its client area, it is often said to be "painting" its client

area.

 Windows programs can assume little about the size of their client areas or even the size of text

characters. Instead, they must use the facilities that Windows provides to obtain information about

the environment in which the program runs.

Painting and Repainting

 In Windows, you can draw text and graphics only in the client area of your window, and you

cannot be assured that what you put will remain there until your program specifically writes over it.

 For instance, the user may move another program's window on the screen so that it partially covers

your application's window. Windows will not attempt to save the area of your window that the

other program covers.When the program is moved away, Windows will request that your program

repaint this portion of your client area.

 Windows is a message-driven system. Windows informs applications of various events by posting

messages in the application's message queue or sending messages to the appropriate window

procedure.

 Windows informs a window procedure that part of the window's client area needs painting by

posting a WM_PAINT message.

The WM_PAINT Message

 Most Windows programs call the function UpdateWindow during initialization in WinMain shortly

before entering the message loop.

 Windows takes this opportunity to send the window procedure its first WM_PAINT message. This

message informs the window procedure that the client area must be painted.

 Thereafter, that window procedure should be ready at almost any time to process additional

WM_PAINT messages and even to repaint the entire client area of the window if necessary.

 A window procedure receives a WM_PAINT message whenever one of the following events

occurs:

 A previously hidden area of the window is brought into view when a user moves a window or

uncovers a window.

 The user resizes the window (if the window class style has the CS_HREDRAW and

CW_VREDRAW bits set).

 The program uses the ScrollWindow or ScrollDC function to scroll part of its client area.

 The program uses the InvalidateRect or InvalidateRgn function to explicitly generate a

WM_PAINT message.

 Windows may sometimes post a WM_PAINT message when:

 Windows removes a dialog box or message box that was overlaying part of the window.

 A menu is pulled down and then released.

 A tool tip is displayed.

 In a few cases, Windows always saves the area of the display it overwrites and then restores it. This

is the case whenever:

 The mouse cursor is moved across the client area.

 An icon is dragged across the client area.

 Your program should be structured so that it accumulates all the information necessary to paint the

client area but paints only "on demand"—when Windows sends the window procedure a

WM_PAINT message.

 If your program needs to update its client area at some other time, it can force Windows to generate

this WM_PAINT message.

Valid and Invalid Rectangles

 Although a window procedure should be prepared to update the entire client area whenever it

receives a WM_PAINT message, it often needs to update only a smaller area, most often a

rectangular area within the client area. This is most obvious when a dialog box overlies part of the

client area. Repainting is required only for the rectangular area uncovered when the dialog box is

removed.

 That area is known as an "invalid region" or "update region." The presence of an invalid region in a

client area is what prompts Windows to place a WM_PAINT message in the application's message

queue. Your window procedure receives a WM_PAINT message only if part of your client area is

invalid.

 Windows internally maintains a "paint information structure" for each window. This structure

contains, among other information, the coordinates of the smallest rectangle that encompasses the

invalid region. This is known as the "invalid rectangle.―

 If another region of the client area becomes invalid before the window procedure processes a

pending WM_PAINT message, Windows calculates a new invalid region (and a new invalid

rectangle) that encompasses both areas and stores this updated information in the paint information

structure.

 Windows does not place multiple WM_PAINT messages in the message queue.

 A window procedure can invalidate a rectangle in its own client area by calling InvalidateRect.

 If the message queue already contains a WM_PAINT message, Windows calculates a new invalid

rectangle. Otherwise, it places a WM_PAINT message in the message queue.

 A window procedure can obtain the coordinates of the invalid rectangle when it receives a

WM_PAINT message It can also obtain these coordinates at any other time by calling

GetUpdateRect.

 After the window procedure calls BeginPaint during the WM_PAINT message, the entire client

area is validated. A program can also validate any rectangular area within the client area by calling

the ValidateRect function. If this call has the effect of validating the entire invalid area, then any

WM_PAINT message currently in the queue is removed.

Introduction

 The subsystem of Microsoft Windows responsible for displaying graphics on video displays and

printers is known as the Graphics Device Interface (GDI).

 GDI is an extremely important part of Windows. Not only do the applications you write for

Windows use GDI for the display of visual information, but Windows itself uses GDI for the visual

display of user interface items such as menus, scroll bars, icons, and mouse cursors.

The Device Context

 When you want to draw on a graphics output device such as the screen or printer, you must first

obtain a handle to a device context (or DC).

 In giving your program this handle, Windows is giving you permission to use the device.

 You then include the handle as an argument to the GDI functions to identify to Windows the

device on which you wish to draw.

 The device context contains many "attributes" that determine how the GDI functions work on the

device.

 These attributes allow GDI functions to have just a few arguments, such as starting coordinates.

The GDI functions do not need arguments for everything else that Windows needs to display the

object on the device.

 For example, when you call TextOut, you need specify in the function only the device context

handle, the starting coordinates, the text, and the length of the text.

 You don't need to specify the font, the color of the text, the color of the background behind the text,

or the intercharacter spacing.

 These are all attributes that are part of the device context.

 When you want to change one of these attributes, you call a function that does so. Subsequent

TextOut calls to that device context use the new attribute.

Getting a Device Context Handle

 Windows provides several methods for obtaining a device context handle. If you obtain a video

display device context handle while processing a message, you should release it before exiting the

window procedure. After you release the handle, it is no longer valid.

 The most common method for obtaining a device context handle and then releasing it involves

using the BeginPaint and EndPaint calls when processing the WM_PAINT message:

hdc = BeginPaint (hwnd, &ps) ;

[other program lines]

EndPaint (hwnd, &ps) ;

Getting a Device Context Handle

Windows programs can also obtain a handle to a device context while processing messages other than

WM_PAINT:

hdc = GetDC (hwnd) ;

[other program lines]

ReleaseDC (hwnd, hdc) ;

Getting a Device Context Handle

The BeginPaint, GetDC, and GetWindowDC calls obtain a device context associated with a particular

window on the video display.

A much more general function for obtaining a handle to a device context is CreateDC:

hdc = CreateDC (pszDriver, pszDevice, pszOutput, pData) ;

[other program lines]

DeleteDC (hdc) ;

Getting Device Context Information

 A device context usually refers to a physical display device such as a video display or a printer.

 Often, you need to obtain information about this device, including the size of the display, in terms

of both pixels and physical dimensions, and its color capabilities.

 You can get this information by calling the GetDeviceCap ("get device capabilities") function:

 iValue = GetDeviceCaps (hdc, iIndex) ;

 The iIndex argument is one of 29 identifiers defined in the WINGDI.H header file.

 For example, the iIndex value of HORZRES causes GetDeviceCaps to return the width of the

device in pixels; a VERTRES argument returns the height of the device in pixels.

 If hdc is a handle to a screen device context, that's the same information you can get from

GetSystemMetrics.

 If hdc is a handle to a printer device context, GetDeviceCaps returns the height and width of the

printer display area in pixels.

 You can also use GetDeviceCaps to determine the device's capabilities of processing various types

of graphics.

 DEVCAPS1 display for a 256-color, 640-by-480 VGA.

The Size of the Device

 The GetDeviceCaps function helps you obtain information regarding the physical size of the output

device, be it the video display or printer.

 Within a Windows program you can use the GetDeviceCaps function to obtain the assumed

resolution in dots per inch that the user selected in the Display applet of the Control Panel

Finding Out About Color

 A video display capable of displaying only black pixels and white pixels requires only one bit of

memory per pixel. Color displays require multiple bits per pixels. The more bits, the more colors;

or more specifically, the number of unique simultaneous colors is equal to 2 to the number of bits

per pixel.

 iBitsPixel = GetDeviceCaps (hdc, BITSPIXEL) ;

 iColors = GetDeviceCaps (hdc, NUMCOLORS) ;

The Device Context Attributes

Saving Device Contexts

 Normally when you call GetDC or BeginPaint, Windows gives you a device context with default

values for all the attributes.

 Any changes you make to the attributes are lost when the device context is released with the

ReleaseDC or EndPaint call.

 If your program needs to use non-default device context attributes, you'll have to initialize the

device context every time you obtain a new device context handle:

Saving Device Contexts

 Although this approach is generally satisfactory, you might prefer that changes you make to the

attributes be saved when you release the device context so that they will be in effect the next time

you call GetDC or BeginPaint.

 You can accomplish this by including the CS_OWNDC flag as part of the window class style when

you register the window class:

 wndclass.style = CS_HREDRAW | CS_VREDRAW | CS_OWNDC ;

Saving Device Contexts

 Now each window that you create based on this window class will have its own private device

context that continues to exist when the window is destroyed.

 When you use the CS_OWNDC style, you need to initialize the device context attributes only

once, perhaps while processing the WM_CREATE message:

 case WM_CREATE: hdc = GetDC (hwnd) ;

 [initialize device context attributes]

 ReleaseDC (hwnd, hdc) ;

 The attributes continue to be valid until you change them.

Saving Device Contexts

 In some cases you might want to change certain device context attributes, do some painting using

the changed attributes, and then revert to the original device context. To simplify this process, you

save the state of a device context by calling

 idSaved = SaveDC (hdc) ;

 Now you can change some attributes. When you want to return to the device context as it existed

before the SaveDC call, you use

 RestoreDC (hdc, idSaved) ;

 You can call SaveDC any number of times before you call RestoreDC.

Child Window Controls

Introduction

 The child window processes mouse and keyboard messages and notifies the parent window when

the child window's state has changed.

 In this way, the child window becomes a high-level input device for the parent window.

 It encapsulates a specific functionality with regard to its graphical appearance on the screen, its

response to user input, and its method of notifying another window when an important input event

has occurred.

CChhiilldd WWiinnddooww CCoonnttrroollss

 PPuusshh BBuuttttoonnss

 CChheecckk BBooxxeess

 RRaaddiioo BBuuttttoonnss

 GGrroouupp BBooxxeess

 CCoonnttrroollss aanndd CCoolloorrss

 TThhee SSccrroollll BBaarr CCllaassss

 TThhee EEddiitt CCllaassss

 TThhee LLiissttbbooxx CCllaassss

Creating the Child Windows

Class name TEXT ("button")

Window text button[i].szText

Window style WS_CHILD ¦ WS_VISIBLE ¦ button[i].iStyle

x position cxChar

y position cyChar * (1 + 2 * i)

Width 20 * xChar

Height 7 * yChar / 4

Parent window hwnd

Child window ID(HMENU) I

Instance handle ((LPCREATESTRUCT) lParam) -> hInstance

Extra parameters NULL

Push Buttons

 A push button is a rectangle enclosing text specified in the window text parameter of the

CreateWindow call. The rectangle takes up the full height and width of the dimensions given in the

CreateWindow or MoveWindow call. The text is centered within the rectangle.

 Push-button controls are used mostly to trigger an immediate action without retaining any type of

on/off indication.

 The two types of push-button controls have window styles called BS_PUSHBUTTON and

BS_DEFPUSHBUTTON.

 When used to design dialog boxes, BS_PUSHBUTTON controls and BS_DEFPUSHBUTTON

controls function differently from one another. When used as child window controls, however, the

two types of push buttons function the same way, although BS_DEFPUSHBUTTON has a heavier

outline.

 A push button looks best when its height is 7/4 times the height of a text character, which is what

BTNLOOK uses. The push button's width must accommodate at least the width of the text, plus

two additional characters.

 When the mouse cursor is inside the push button, pressing the mouse button causes the button to

repaint itself using 3D-style shading to appear as if it's been depressed. Releasing the mouse button

restores the original appearance and sends a WM_COMMAND message to the parent window with

the notification code BN_CLICKED.

 As with the other button types, when a push button has the input focus, a dashed line surrounds the

text and pressing and releasing the Spacebar has the same effect as pressing and releasing the

mouse button.

 You can simulate a push-button flash by sending the window a BM_SETSTATE message.

 This causes the button to be depressed:

SendMessage (hwndButton, BM_SETSTATE, 1, 0) ;

This call causes the button to return to normal:

SendMessage (hwndButton, BM_SETSTATE, 0, 0) ;

Check Boxes

 A check box is a square box with text; the text usually appears to the right of the check box.

 If you include the BS_LEFTTEXT style when creating the button, the text appears to the left;

you'll probably want to combine this style with BS_RIGHT to right-justify the text.

 Check boxes are usually incorporated in an application to allow a user to select options.

 The check box commonly functions as a toggle switch: clicking the box once causes a check mark

to appear; clicking again toggles the check mark off.

 The two most common styles for a check box are BS_CHECKBOX and BS_AUTOCHECKBOX.

 When you use the BS_CHECKBOX style, you must set the check mark yourself by sending the

control a BM_SETCHECK message. The wParam parameter is set to 1 to create a check mark and

to 0 to remove it.

 You can obtain the current check state of the box by sending the control a BM_GETCHECK

message. You might use code like this to toggle the X mark when processing a WM_COMMAND

message from the control:

 SendMessage ((HWND) lParam, BM_SETCHECK, (WPARAM)

 !SendMessage ((HWND) lParam, BM_GETCHECK, 0, 0), 0) ;

 The other two check box styles are BS_3STATE and BS_AUTO3STATE. As their names indicate,

these styles can display a third state as well—a gray color within the check box—which occurs

when you send the control a WM_SETCHECK message with wParam equal to 2. The gray color

indicates to the user that the selection is indeterminate or irrelevant.

 The check box is aligned with the rectangle's left edge and is centered within the top and bottom

dimensions of the rectangle that were specified during the CreateWindow call. Clicking anywhere

within the rectangle causes a WM_COMMAND message to be sent to the parent. The minimum

height for a check box is one character height. The minimum width is the number of characters in

the text, plus two.

Radio Buttons

 A radio button is named after the row of buttons that were once quite common on car radios. Each

button on a car radio is set for a different radio station, and only one button can be pressed at a

time. In dialog boxes, groups of radio buttons are conventionally used to indicate mutually

exclusive options. Unlike check boxes, radio buttons do not work as toggles—that is, when you

click a radio button a second time, its state remains unchanged.

 The radio button looks very much like a check box except that it contains a little circle rather than a

box. A heavy dot within the circle indicates that the radio button has been checked. The radio

button has the window style BS_RADIOBUTTON or BS_AUTORADIOBUTTON, but the latter

is used only in dialog boxes.

Group Boxes

 The group box, which has the BS_GROUPBOX style, is an oddity in the button class.

 It neither processes mouse or keyboard input nor sends WM_COMMAND messages to its parent.

 The group box is a rectangular outline with its window text at the top. Group boxes are often used

to enclose other button controls.

The Scroll Bar Class

 You add window scroll bars to a window by including the identifier WS_VSCROLL or

WS_HSCROLL or both in the window style when creating the window.

 You create child window scroll bar controls by using the predefined window class "scrollbar" and

one of the two scroll bar styles SBS_VERT and SBS_HORZ.

 Unlike the button controls, scroll bar controls do not send WM_COMMAND messages to the

parent window.

 Instead, they send WM_VSCROLL and WM_HSCROLL messages, just like window scroll bars.

 When processing the scroll bar messages, you can differentiate between window scroll bars and

scroll bar controls by the lParam parameter. It will be 0 for window scroll bars and the scroll bar

window handle for scroll bar controls. The high and low words of the wParam parameter have the

same meaning for window scroll bars and scroll bar controls.

 Although window scroll bars have a fixed width, Windows uses the full rectangle dimensions

given in the CreateWindow call to size the scroll bar controls.

 You can make long, thin scroll bar controls or short, pudgy scroll bar controls.

 You can set the range and position of a scroll bar control with the same calls used for window

scroll bars:

 SetScrollRange (hwndScroll, SB_CTL, iMin, iMax, bRedraw) ;

 SetScrollPos (hwndScroll, SB_CTL, iPos, bRedraw) ;

 SetScrollInfo (hwndScroll, SB_CTL, &si, bRedraw) ;

 The difference is that window scroll bars use a handle to the main window as the first parameter

and SB_VERT or SB_HORZ as the second parameter.

The Edit Class

 When you create a child window using the class name "edit," you define a rectangle based on the x

position, y position, width, and height parameters of the CreateWindow call.

 This rectangle contains editable text. When the child window control has the input focus, you can

type text, move the cursor, select portions of text using either the mouse or the Shift key and a

cursor key, delete selected text to the clipboard by pressing Ctrl-X, copy text by pressing Ctrl-C,

and insert text from the clipboard by pressing Ctrl-V.

 One of the simplest uses of edit controls is for single-line entry fields. But edit controls are not

limited to single lines, to use menus, dialog boxes (to load and save files), and printing.

 Create an edit control using "edit" as the window class in the CreateWindow call. The window

style is WS_CHILD, plus several options. As in static child window controls, the text in edit

controls can be left-justified, right-justified, or centered. You specify this formatting with the

window styles ES_LEFT, ES_RIGHT, and ES_CENTER.

 By default, an edit control has a single line. You can create a multiline edit control with the

window style ES_MULTILINE.

 To create an edit control that automatically scrolls horizontally, you use the style

ES_AUTOHSCROLL. For a multiline edit control, text wordwraps unless you use the

ES_AUTOHSCROLL style, in which case you must press the Enter key to start a new line. You

can also include vertical scrolling in a multiline edit control by using the style

ES_AUTOVSCROLL.

 To add scroll bars to the edit control.-use the same window style identifiers as for nonchild

windows: WS_HSCROLL and WS_VSCROLL.

 By default, an edit control does not have a border. You can add one by using the style

WS_BORDER.

 When you select text in an edit control, Windows displays it in reverse video. When the edit

control loses the input focus, however, the selected text is no longer highlighted. If you want the

selection to be highlighted even when the edit control does not have the input focus, you can use

the style ES_NOHIDESEL.

 Style given in the CreateWindow call:

 WS_CHILD ¦ WS_VISIBLE ¦ WS_HSCROLL ¦ WS_VSCROLL ¦ WS_BORDER ¦ ES_LEFT ¦

ES_MULTILINE ¦ ES_AUTOHSCROLL ¦ ES_AUTOVSCROLL

The Listbox Class

 A list box is a collection of text strings displayed as a scrollable columnar list within a rectangle. A

program can add or remove strings in the list by sending messages to the list box window

procedure. The list box control sends WM_COMMAND messages to its parent window when an

item in the list is selected. The parent window can then determine which item has been selected.

 A list box can be either single selection or multiple selection. The latter allows the user to select

more than one item from the list box. When a list box has the input focus, it displays a dashed line

surrounding an item in the list box. This cursor does not indicate the selected item in the list box.

The selected item is indicated by highlighting, which displays the item in reverse video.

 In a single-selection list box, the user can select the item that the cursor is positioned on by

pressing the Spacebar. The arrow keys move both the cursor and the current selection and can

scroll the contents of the list box. The Page Up and Page Down keys also scroll the list box by

moving the cursor but not the selection. Pressing a letter key moves the cursor and the selection to

the first (or next) item that begins with that letter. An item can also be selected by clicking or

double-clicking the mouse on the item.

 In a multiple-selection list box, the Spacebar toggles the selection state of the item where the cursor

is positioned. (If the item is already selected, it is deselected.) The arrow keys deselect all

previously selected items and move the cursor and selection, just as in single-selection list boxes.

However, the Ctrl key and the arrow keys can move the cursor without moving the selection. The

Shift key and arrow keys can extend a selection.

 Clicking or double-clicking an item in a multiple-selection list box deselects all previously selected

items and selects the clicked item. However, clicking an item while pressing the Shift key toggles

the selection state of the item without changing the selection state of any other item.

WINDOWS PROGRAMMING Unit 1

PART – A (2 MARKS)

1. List out the aspects of Windows
2. Define Dynamic Link Libraries
3. List out the types of DLL which is implemented in Windows.
4. Define Window Procedure
5. Define Message Queue & Message Loop
6. Define handle
7. Define Hungarian Notation
8. What are the events used to generate a WM_PAINT message?
9. Define Invalid region
10. Define Invalid rectangle
11. Define Device Context
12. List out the aspects of GDI
13. Define System font
14. Define Dithering
15. List out the GDI Primitives
16. List out the pen styles
17. Define Mapping Modes
18. Define Viewport and window
19. Define Raster Operation
20. Define child window control

PART – B

1. Explain in detail about various versions of Windows Operating System(16)
2. Explain briefly about,
a. How to create a window (6)
b. Displaying the window (4)
c. Processing the message (6)
3. a. Describe the functions of Message Loop (8)
b. Explain in detail about the Windows Message Structure and Windows
Procedure. (8)
4. a. How does the WM_PAINT message is processed? (10)
b. What is WM_DESTROY message? How the program is terminated? (6)
5. a. Define DC. (2)
b. What are the methods available to get the DC and various types of DC
Handle? (14)
6. Explain Windows Graphics Device Interface in detail (16)
7. a. Write a note on Hungarian Notation in Windows Programming (6)
b. Write a program to display a message in the center of a window (10)
8. a. Explain the methods of getting device context handle (8).

UNIT II

MICROSOFT FOUNDATION CLASS

The Microsoft Foundation Class Library Application Framework

 Application framework

 ―An integrated collection of object-oriented software

 components that offers all that's needed for a generic application.―

 An Application Framework vs. a Class Library

 - An application framework is a superset of a class

 library.

 - An ordinary library is an isolated set of classes

 designed to be incorporated into any program, but an

 application framework defines the structure of the program

 itself.

Why Use the Application Framework?

 The MFC library is the C++ Microsoft Windows API.

 Application framework applications use a standard structure.

 Application framework applications are small and fast.

 The Visual C++ tools reduce coding drudgery

 The MFC library application framework is feature rich

 An Application Framework Example

source code for the header and implementation files for our

MYAPPapplication.

 MyApp.h header file for the MYAPP application:

// application class class

CMyApp : public CWinApp

 {

 public:

 virtual BOOL InitInstance();

 };
// frame window class class

CMyFrame : public CFrameWnd

{

 public:

 CMyFrame();

 protected:

 // "afx_msg" indicates that the next two functions are part

 // of the MFC library message dispatch system afx_msg void OnLButtonDown(UINT nFlags, CPoint

point);

 afx_msg void OnPaint();

 DECLARE_MESSAGE_MAP()

 };

MyApp.cpp - implementation file for the MYAPP application:
#include <afxwin.h> // MFC library header file declares base classes

#include "myapp.h"

CMyApp theApp; // the one and only CMyApp object

BOOL CMyApp::InitInstance()

{ m_pMainWnd = new CMyFrame();

 m_pMainWnd->ShowWindow(m_nCmdShow);

m_pMainWnd->UpdateWindow();

return TRUE;

 }

BEGIN_MESSAGE_MAP(CMyFrame, CFrameWnd) ON_WM_LBUTTONDOWN()

 ON_WM_PAINT()

END_MESSAGE_MAP()

CMyFrame::CMyFrame()

{

Create(NULL, "MYAPP Application");

}

void CMyFrame::OnLButtonDown(UINT nFlags, CPoint point)

{ TRACE("Entering CMyFrame::OnLButtonDown - %lx, %d, %d\n", (long) nFlags, point.x, point.y);

}

void CMyFrame::OnPaint()

{ CPaintDC dc(this);

dc.TextOut(0, 0, "Hello, world!");

}

The program elements:

The WinMain function
 Windows requires your application to have a WinMain function. You don't see WinMain here

because it's hidden inside the application framework.

The CMyApp class
 An object of class CMyApp represents an application. The program defines a single global

CMyApp object, theApp. The CWinApp base class determines most of theApp's behavior.

Application startup
 When the user starts the application, Windows calls the application framework's built-in WinMain

function, and WinMain looks for your globally constructed application object of a class derived from

CWinApp.

 In a C++ program global objects are constructed before the main program is executed.

The CMyApp::InitInstance member function
 When the WinMain function finds the application object, it calls the virtual InitInstance member

function, which makes the calls needed to construct and display the application's main frame window.

You must override InitInstance in your derived application class because the CWinApp base class doesn't

know what kind of main frame window you want.

The CWinApp::Run member function
 The Run function is hidden in the base class, but it dispatches the application's messages to its

windows, thus keeping the application running. WinMain calls Run after it calls InitInstance.

The CMyFrame class
 An object of class CMyFrame represents the application's main frame window. When the

constructor calls the Create member function of the base class CFrameWnd, Windows creates the actual

window structure and the application framework links it to the C++ object. The ShowWindow and

UpdateWindow functions, also member functions of the base class, must be called in order to display the

window.

 The program elements:

The CMyFrame::OnLButtonDown function
 MFC library's message-handling capability.

 The function invokes the MFC library TRACE macro to display a message in the debugging

window.

The CMyFrame::OnPaint function

 - The application framework calls this important mapped member function of

 class CMyFrame every time it's necessary to repaint the window: at the start of

 the program, when the user resizes the window, and when all or part of the

 window is newly exposed.

 - The CPaintDC statement relates to the Graphics Device Interface (GDI) and is

 explained in later chapters. The TextOut function displays "Hello, world!"

Application shutdown
 - The user shuts down the application by closing the main frame window.

 - This action initiates a sequence of events, which ends with the destruction of

 the CMyFrame object, the exit from Run, the exit from WinMain, and the

 destruction of the CMyApp object.

MFC Library Message Mapping
 The MFC library application framework doesn't use virtual functions for Windows messages.

Instead, it uses macros to "map" specified messages to derived class member functions

Why the rejection of virtual functions?

 What about message handlers for menu command messages and messages from button clicks?

 An MFC message handler requires a function prototype, a function body, and an entry (macro

invocation) in the message map.

BEGIN_MESSAGE_MAP(CMyFrame, CFrameWnd)

 ON_WM_LBUTTONDOWN()

 ON_WM_PAINT()

END_MESSAGE_MAP()

 Documents and Views

 Typically, MFC application will contain application and frame classes plus two other classes that

represent the "document" and the "view."

 This document-view architecture is the core of the application framework

 The document-view architecture separates data from the user's view of the data. One obvious

benefit is multiple views of the same data.

The Visual C++ Components
• Microsoft Visual C++ is two complete Windows application development systems in one product.

• You can develop C-language Windows programs using only the Win32 API.

• You can use many Visual C++ tools, including the resource editors, to make low-level Win32

programming easier.

• Components:

 The Project

 The Resource Editors—Workspace ResourceView

 The C/C++ Compiler

 The Source Code Editor

 The Resource Compiler

 The Linker

 The Debugger

 AppWizard

 Classwizard

What is a project?

• A project is a collection of interrelated source files that are compiled and linked to

make up an executable Windows-based program or a DLL.

• Source files for each project are generally stored in a separate subdirectory.

• A project depends on many files outside the project subdirectory too, such as include

files and library files.

A makefile stores compiler and linker options and expresses all the interrelationships among source files.

A make program reads the makefile and then invokes the compiler, assembler, resource compiler, and

linker to produce the final output, which is generally an executable file.

In a Visual C++ 6.0 project, there is no makefile (with an MAK extension) unless you tell the system to

export one.

• A text-format project file (with a DSP extension) serves the same purpose.

• A separate text-format workspace file (with a DSW extension) has an entry for each project in the

workspace.

• It's possible to have multiple projects in a workspace, but all the

 Examples in this book have just one project per workspace.

• To work on an existing project, you tell Visual C++ to open the DSW file and then you can edit

and build the project.

• VC++ Project Files

Visual C++ creates some intermediate files too

 File Extension Description
 APS Supports ResourceView

 BSC Browser information file

 CLW Supports ClassWizard

 DEP Dependency file

 DSP Project file

 *DSW Workspace file

 *MAK External makefile

 NCB Supports ClassView

 OPT Holds workspace configuration

 PLG Builds log file

* Do not delete or edit in a text editor.

The Resource Editors— Workspace ResourceView

• Each project usually has one text-format resource script (RC) file that describes the project's menu,

dialog, string, and accelerator resources.

• The RC file also has #include statements to bring in resources from other subdirectories.

• These resources include project-specific items, such as bitmap (BMP) and icon (ICO) files, and

resources common to all Visual C++ programs, such as error message strings.

• Editing the RC file outside the resource editors is not recommended.

• The resource editors can also process EXE and DLL files, so you can use the clipboard to "steal"

resources, such as bitmaps and icons, from other Windows applications.

• The C/C++ Compiler

• The Visual C++ compiler can process both C source code and C++ source code.

• It determines the language by looking at the source code's filename extension.

• A C extension indicates C source code, and CPP or CXX indicates C++ source code.

• The compiler is compliant with all ANSI standards, including the latest recommendations of a

working group on C++ libraries, and has additional Microsoft extensions.

• Templates, exceptions, and runtime type identification (RTTI) are fully supported in Visual C++

version 6.0.

• The C++ Standard Template Library (STL) is also included, although it is not integrated into the

MFC library.

The Other Components

• The Source Code Editor

 Visual C++ 6.0 includes a sophisticated source code editor that supports many features such as

dynamic syntax coloring, auto-tabbing, keyboard bindings

• The Resource Compiler

 The Visual C++ resource compiler reads an ASCII resource script (RC) file from the resource

editors and writes a binary RES file for the linker.

• The Linker

 The linker reads the OBJ and RES files produced by the C/C++ compiler and the resource

compiler, and it accesses LIB files for MFC code, runtime library code, and Windows code. It then writes

the project's EXE file.

 The Debugger

• The Visual C++ debugger has been steadily improving, but it doesn't actually fix the bugs yet. The

debugger works closely with Visual C++ to ensure that breakpoints are saved on disk.

AppWizard

 AppWizard is a code generator that creates a working skeleton of a Windows

application with features, class names, and source code filenames that you specify

through dialog boxes.

 AppWizard code is minimalist code; the functionality is inside the application

framework base classes.

 AppWizard gets you started quickly with a new application.

• ClassWizard

 ClassWizard is a program (implemented as a DLL) that's accessible from Visual

C++'s View menu.

 ClassWizard takes the drudgery out of maintaining Visual C++ class code.

 Need a new class, a new virtual function, or a new message-handler function?

 ClassWizard writes the prototypes, the function bodies, and (if necessary) the

code to link the Windows message to the function.

 ClassWizard can update class code that you write, so you avoid the maintenance

problems common to ordinary code generators.

Basic Event Handling, Mapping Modes, and a Scrolling View

The Message Handler:

 void CMyView::OnLButtonDown(UINT nFlags, CPoint point)

 {

 // event processing code here

 }

 The Message Map:

 BEGIN_MESSAGE_MAP(CMyView, CView)

 ON_WM_LBUTTONDOWN()

 // entry specifically for OnLButtonDown

 // other message map entries

 END_MESSAGE_MAP()

Finally, your class header file needs the statement

 DECLARE_MESSAGE_MAP()

Invalid Rectangle Theory
InvalidateRect triggers a Windows WM_PAINT message, which is mapped in the CView class to call to

the virtual OnDraw function.

If necessary, OnDraw can access the "invalid rectangle" parameter that was passed to InvalidateRect.

Your OnDraw function could call the CDC member function GetClipBox to determine the invalid

rectangle, and then it could avoid drawing objects outside it.

OnDraw is being called not only in response to your InvalidateRect call but also when the user resizes or

exposes the window.

Thus, OnDraw is responsible for all drawing in a window, and it has to adapt to whatever invalid

rectangle it gets.

The Window's Client Area

A window has a rectangular client area that excludes the border, caption bar, menu bar, and any toolbars.

The CWnd member function GetClientRect supplies you with the client-area dimensions.

Normally, you're not allowed to draw outside the client area, and most mouse messages are received only

when the mouse cursor is in the client area.

CRect, CPoint, and CSize Arithmetic
The CRect, CPoint, and CSize classes are derived from the Windows RECT, POINT, and SIZE structures,

and thus they inherit public integer data members as follows:

 CRect left, top, right, bottom

 CPoint x, y

 CSize cx, cy

 Dialog : Using Appwizard and Classwizard

 The Modal Dialog and Windows Common Controls

 The two kinds of dialogs are modal and modeless.

 The CDialog base class supports both modal and modeless dialogs

Modal Dialog Box:

 The user cannot work elsewhere in the same application (more correctly, in the same user interface

thread) until the dialog is closed. Example: Open File dialog

Modeless Dialog

 The user can work in another window in the application while the dialog remains on the screen

 Example: Microsoft Word's Find and Replace dialog is a good example of a modeless dialog; you

can edit your document while the dialog is open.

Controls.

 A dialog contains a number of elements called controls. Dialog controls include edit controls,

buttons, list boxes, combo boxes, static text, tree views, progress indicators, sliders, and so forth.

 Programming a Modal Dialog

1. Use the dialog editor to create a dialog resource that contains various controls.

2. -The dialog editor updates the project's resource script (RC) file to include your new dialog

resource, and it updates the project's resource.h file with corresponding #define constants.

3. Use ClassWizard to create a dialog class that is derived from CDialog and attached to the

resource created in step 1.

4. -ClassWizard adds the associated code and header file to the Microsoft Visual C++ project.

5. Use ClassWizard to add data members, exchange functions, and validation functions to the

dialog class.

6. Use ClassWizard to add message handlers for the dialog's buttons and other event-

generating controls.

7. Write the code for special control initialization (in OnInitDialog) and for the message

handlers. Be sure the CDialog virtual member function OnOK is called when the user closes

the dialog (unless the user cancels the dialog). (Note: OnOK is called by default.)

8. Write the code in your view class to activate the dialog. This code consists of a call to your

dialog class's constructor followed by a call to the DoModal dialog class member function.

DoModal returns only when the user exits the dialog window.

In the CPP file, the constructor implementation looks like this:

CMyDialog::CMyDialog(CWnd* pParent /*=NULL*/) : CDialog(CMyDialog::IDD, pParent)

{

// initialization code here

}

The use of enum IDD decouples the CPP file from the resource IDs that are defined in the project's

resource.h

 The Windows Common Dialogs

 Windows provides a group of standard user interface dialogs, and these are supported by the MFC

library classes.

 All the common dialog classes are derived from a common base class, CCommonDialog.

Class Purpose
CColorDialog Allows the user to select or create a color

CFileDialog Allows the user to open or save a file

CFindReplaceDialog Allows the user to substitute one string for another

CPageSetupDialog Allows the user to input page measurement parameters

CFontDialog Allows the user to select a font from a list of available fonts

CPrintDialog Allows the user to set up the printer and print a document

 Using the CFileDialog Class Directly

 The following code opens a file that the user has selected through the dialog:

CFileDialog dlg(TRUE, "bmp", "*.bmp");

if (dlg.DoModal() == IDOK) {

CFile file;

VERIFY(file.Open(dlg.GetPathName(), CFile::modeRead));

}

 The first constructor parameter (TRUE) specifies that this object is a "File Open" dialog instead of

a "File Save" dialog.

 The default file extension is bmp, and *.bmp appears first in the filename edit box. The

CFileDialog::GetPathName function returns a CString object that contains the full pathname of the

selected file.

• BITMAPS

• Windows bitmaps are arrays of bits mapped to display pixels.

• There are two kinds of Windows bitmaps: GDI bitmaps and DIBs.

• GDI bitmap objects are represented by the Microsoft Foundation Class (MFC) Library version

6.0

Color Bitmaps and Monochrome Bitmaps
• Many color bitmaps are 16-color. A standard VGA board has four contiguous color planes, with 1

corresponding bit from each plane combining to represent a pixel.

• The 4-bit color values are set when the bitmap is created. With a standard VGA board, bitmap

colors are limited to the standard 16 colors. Windows does not use dithered colors in bitmaps.

• A monochrome bitmap has only one plane. Each pixel is represented by a single bit that is either

off (0) or on (1). The CDC::SetTextColor function sets the "off" display color, and SetBkColor sets

the "on" color.

• You can specify these pure colors individually with the Windows RGB macro.

• Code to load a Bitmap

void OnPaint()

 {

 CBitmap mybm;

 CPaintDC d(this);

 mybm.LoadBitmap(IDB_BITMAP1);

 CBrush mybrush;

 mybrush.CreatePatternBrush(&mybm);

 d.SelectObject(&mybrush);

 d.Rectangle(100,100,300,300);

 }

• GDI Bitmaps and Device-Independent Bitmaps

GDI Bitmaps

• There are two kinds of Windows bitmaps: GDI bitmaps and DIBs.

• GDI bitmap objects are represented by the Microsoft Foundation Class (MFC) Library version 6.0

CBitmap class.

• The GDI bitmap object has an associated Windows data structure, maintained inside the Windows

GDI module, that is device-dependent.

• Your program can get a copy of the bitmap data, but the bit arrangement depends on the display

hardware.

• GDI bitmaps can be freely transferred among programs on a single computer, but because of their

device dependency, transferring bitmaps by disk or modem doesn't make sense.

• Device-Independent Bitmaps

Device-Independent Bitmaps

• DIBs offer many programming advantages over GDI bitmaps.

• Since a DIB carries its own color information, color palette management is easier.

• DIBs also make it easy to control gray shades when printing. Any computer running Windows can

process DIBs, which are usually stored in BMP disk files or as a resource in your program's EXE

or DLL file.

UNIT – II
VISUAL C++ PROGRAMMING – INTRODUCTION

PART – A (2 MARKS)

1. Define Application Framework
2. Define Appwizard
3. Define Classwizard
4. What are the diagnostic tools available in VC++?
5. What are the types of mapping modes?
6. Distinguish between model and modeless dialog controls
7. Define bitmap
8. Mention some of the window common control.
9. What are dialog controls?
10. Mention some of the GDI derived classes.

PART – B

1. Draw & Explain in detail about various components of VC++ (16)
2. Explain in briefly about
a. MM_TEXT Mapping Mode (5)
b. Fixed Scale Mapping Mode (4)
c. Variable Scale Mapping Mode (7)
3. a. Explain in detail about various types of video cards. (10)
b. How to compute Character height (6)
4. What is meant by Modal & Modeless dialog control? Explain Modal dialog
controls with a sample programs. (16)
5. a. Discuss about Window Common Controls (12)
b. What are different Mapping Modes available in VC++? (4)
6. a. Explain how to create an instance of color dialog & the functions
associated with it. (8)
b. Write a VC++ program to paint the background with a brush. Set the
color using the coordinates at which the mouse is clicked. (8)
7. a. Differentiate the modal & modeless dialog (4)
b. Write a VC++ program to create & display a modeless dialog (6)
c. Write a VC++ program to draw a rectangle as the mouse moves (6)

UNIT III
THE DOCUMENT AND VIEW ARCHITECTURE

Document –View Architecture

Global Application object

|

Execution begins- WinMain by MFC

|

AfxGetApp() – Gets ptr to Applocation object

|

InitInstance – Executed(Create Window &assigns

|

hInstance,nCmdshow –appln object)

|

RUN()- Implements Message Loop

|

Terminate if WM_QUIT Message occurs

|

ExitInstance()

Document –View Architecture

Need: Given set of data can have multiple representation- best to separate display from data.

Three Objects:

• Document - Store the data (responsible for

 reading and writing data)

• View - To display data

• Window - The canvas on which all display take place Menu , Keyboard

Accelerators

The Main Frame Window and Document Classes

Application framework- controls interaction between frame and view

MainFrm.h and MainFrm.cpp -application's main frame window class

ex13aDoc.h and ex13aDoc.cpp-application's document class

ex13aView.h and ex13aView.cpp-application‘s view class

Windows Menus
• A Microsoft Windows menu is a familiar application element that consists of a top-level horizontal

list of items with associated pop-up menus that appear when the user selects a top-level item.

• Menu items - grayed ,have check marks,separator bar.

• Multiple levels pop-up menus are possible.

• Each Menu item – ID which is defined in resource.h

• Entire resource definition - .rc file(resource script file)

• Command Processing

• WM_COMMAND message – menu selection, keyboard accelerators,toolbar and dialog button

clicks by windows.

• Message Map Entry:

 ON_COMMAND(ID, command handler)

Id of menu clicked item corresponding message handler

For example, Menu item is Line (ID is

 ID_LINE)

For handle it in the view class,

In view.cpp

BEGIN_MESSAGE_MAP(CMyView, CView) ON_COMMAND(ID_LINE, OnLine)

 END_MESSAGE_MAP()

 void CMyView::OnLine()

 { // command message processing code

 }

In MyView.h – Give the definition

 afx_msg void OnZoom();

before DECLARE_MESSAGE_MAP() macro

Command update handler function.

• Whenever a pop-up menu is first displayed or menu item is clicked ,MFC calls this

function.

• The handler function's argument is a CCmdUI object, which contains a pointer to

the corresponding menu item.

• this pointer to modify the menu item's appearance by its operations such as enable ,

setcheck etc.

In view.cpp

 BEGIN_MESSAGE_MAP(CMyView, CView) ON_UPDATE_COMMAND_UI(ID_LINE,

OnUpdateLine) END_MESSAGE_MAP()

 void CMyView::OnUpdateLine()

 { // command message processing code

 }

In MyView.h – Give the definition

 afx_msg void OnUpdateLine();

MFC Text Editing features

Edit Control and Rich Edit Control: CEditView and CRichEditView

CEditView Class:
– Maximum size is 64 KB, work in View and Edit classes

– can‘t mix font and cut copy paste is possible.

CRichEditView
- Supports mixed format and large quantities of text.

- can include embedded OLE objects

- CRichEditView maintains the text and formatting characteristic of text.

- CRichEditDoc maintains the list of OLE client items which are in the view.

- CRichEditCntrItem provides container-side access to the OLE client item

- Example

1. Add a CString data member to the CEx13aDoc class. In ex13aDoc.h

 public: CString m_strText;

2. Add a CRichEditCtrl data member to the CEx13aView class. In file ex13aView.h

 public: CRichEditCtrl m_rich;

In ex13aDoc.cpp

1. void CEx13aDoc::OnEditClearDocument()

 { m_strText.Empty(); }

2. void CEx13aDoc::OnUpdateEditClearDocument

 (CCmdUI* pCmdUI)

 {

 pCmdUI->Enable(!m_strText.IsEmpty());

 }

In CEx13View.cpp : Creation RichEdit Control

• int CEx13aView::OnCreate(LPCREATESTRUCT lpCreateStruct)

 { CRect rect(0, 0, 0, 0);

 if (CView::OnCreate(lpCreateStruct) == -1) return -1;

m_rich.Create(ES_AUTOVSCROLL | ES_MULTILINEES_WANTRETURN |

WS_CHILD | WS_VISIBLE | WS_VSCROLL, rect, this, 1);

 return 0;

 }

2. void CEx13aView::OnSize(UINT nType, int cx, int cy)

{

 CRect rect;

CView::OnSize(nType, cx, cy); GetClientRect(rect); m_rich.SetWindowPos(&wndTop, 0, 0,

rect.right - rect.left, rect.bottom - rect.top, SWP_SHOWWINDOW);

}

 position &structure

3. void CEx13aView::OnTransferGetData()

{

 CEx13aDoc* pDoc = GetDocument();

 m_rich.SetWindowText(pDoc- >m_strText);

 m_rich.SetModify(FALSE);

}

4. void CEx13aView::OnTransferStoreData()

 {

CEx13aDoc* pDoc = GetDocument(); m_rich.GetWindowText(pDoc->m_strText);

m_rich.SetModify(FALSE);

}

5. void CEx13aView::OnUpdateTransferStoreData

 (CCmdUI* pCmdUI)

{

pCmdUI->Enable(m_rich.GetModify());

}

6. Build and Run the application

Creating Floating Pop-Up Menus

void CMyView::OnContextMenu(CWnd *pWnd,

 CPoint point)

 {

CMenu menu; menu.LoadMenu(IDR_MYFLOATINGMENU); menu.GetSubMenu(0) -

>TrackPopupMenu

 (TPM_LEFTALIGN | TPM_RIGHTBUTTON,

 point.x, point.y, this);

}

• Extended Command Processing

• BEGIN_MESSAGE_MAP(CMyView, CView)

 ON_COMMAND_EX_RANGE(IDM_ZOOM_1,

 IDM_ZOOM_2, OnZoom)

 END_MESSAGE_MAP()

• ON_COMMAND_RANGE(id1, id2, Fxn)

• ON_COMMAND_EX_RANGE

• ON_UPDATE_COMMAND_UI_RANGE

 ToolBar & StatusBar

ToolBar

• A toolbar consists of a number of horizontally (or vertically) arranged graphical buttons that might

be clustered in groups

• Pressing a toolbar button is equivalent to choosing a menu item(WM_COMMAND messages).

• An update command UI message handler is used to update the button's state

• MFC toolbar can ―dock‖ to any side of its parent window or float in its own mini-frame window.

• you can change its size and drag it.

• A toolbar can also display tool tips as the user moves the mouse over the toolbar‘s buttons.

ToolBar Bitmap:

 -Each button on a toolbar appears to have its own bitmap,

 but actually a single bitmap serves the entire toolbar.

 -has tile, 15 pixels high and 16 pixels wide

 -The toolbar bitmap is stored in the file Toolbar.bmp

• Button State:

 0: Normal, unpressed state.

TBSTATE_CHECKED Checked (down) state.TBSTATE_ENABLED Available for use. Button is

grayed and unavailable if this state is not set.

TBSTATE_HIDDEN Not visible.

TBSTATE_INDETERMINATE Grayed.

TBSTATE_PRESSED Currently selected (pressed) with

 the mouse.

TBSTATE_WRAP Line break follows the button

Locating the Main FrameWindow

• The toolbar and status bar objects you'll be working with are attached to the application's main

frame window, not to the view window

• find the main frame window through the application object.

CMainFrame* pFrame = (CMainFrame*)

 AfxGetApp()->m_pMainWnd;

CToolBar* pToolBar = &pFrame->m_wndToolBar;

Example

• RunAppWizard to create an SDI application

& Use the resource editor to edit the application's main menu as follows

3. Use the resource editor to update the application's toolbar-Edit the IDR_MAINFRAME

toolbar resource

4. Give the ID to each Button

5. USE ClassWizard to add command and update command UI messages for

ID_CIRCLE,ID_SQUARE &ID_PATTERN

6. In the file ex14aView.h,

 private:

 CRect m_rect;

 BOOL m_bCircle;

 BOOL m_bPattern;

7. void CEx14aView::OnDrawCircle()

 {

 m_bCircle = TRUE;

 m_rect += CPoint(25, 25);
 InvalidateRect(m_rect); }

8. void CEx14aView::OnDrawSquare()

 { m_bCircle = FALSE;

 m_rect += CPoint(25, 25);

 InvalidateRect(m_rect);
 }

9. void CEx14aView::OnDrawPattern() //toggles

 { m_bPattern ^= 1; }

10. void CEx14aView::OnUpdateDrawCircle (CCmdUI* pCmdUI)

 { pCmdUI->Enable(!m_bCircle); }

11.voidCEx14aView::OnUpdateDrawSquare(CCmdUI* pCmdUI)

 { pCmdUI->Enable(m_bCircle); }

12. void CEx14aView::OnUpdateDrawPattern(CCmdUI* pCmdUI)

 { pCmdUI->SetCheck(m_bPattern); }

StatusBar

• neither accepts user input nor generates command messages

• to display text in panes under program control

• supports two types of text panes

o message line panes

o status indicator panes

• The Status Bar Definition

• The static indicators array that AppWizard generates in the MainFrm.cpp file defines the panes for

the application's status bar.

• The constant ID_SEPARATOR identifies a message line pane;

• the other constants are string resource IDs that identify indicator panes

Get access to the status bar object

CMainFrame* pFrame = (CMainFrame*) AfxGetApp()->

 m_pMainWnd;

CStatusBar* pStatus = &pFrame->m_wndStatusBar;

Display String in Massage Line-SetPaneText
pStatus->SetPaneText(0, "message line for first pane");

 Pane No.:

 0-leftmost pane

 1-next pane to the right and so forth.

The Status Indicator
• status indicator pane is linked to a single resource-supplied string that is displayed or hidden by

logic in an associated update command UI message handler function.

• –Contains Indicators .

• An indicator is identified by a string resource ID.

• same ID is used to route update command UI messages.

• For example Caps Lock indication by status bar

In Mainframe.cpp

• ON_UPDATE_COMMAND_UI(ID_INDICATOR_CAPS,

 OnUpdateKeyCapsLock)

• void MainFrame::OnUpdateKeyCapsLock(CCmdUI* pCmdUI)

 { pCmdUI->Enable(::GetKeyState(VK_CAPITAL) & 1); }

For Left Button Status
• ON_UPDATE_COMMAND_UI(ID_LEFT, OnLeft)

• void MainFrame::OnLeft(CCmdUI* pCmdUI)

 { pCmdUI->Enable(::GetKeyState(VK_LBUTTON) & 1); }

• InMainframe.h

 void Onleft(CCmdUI* j);

• Taking Control of the Status Bar

Avoid Default status bar and have your own status bar

• To assign your own ID, you must replace this call

 m_wndStatusBar.Create(this); with this call

• m_wndStatusBar.Create(this, WS_CHILD | WS_VISIBLE | CBRS_BOTTOM,

ID_MY_STATUS_BAR);

Example

1. Use the string editor to edit the application's string table resource.

ID Caption

ID_INDICATOR_LEFT -LEFT

ID_INDICATOR_RIGHT -RIGHT

2. Choose Resource Symbols from the View menu. Add the new status bar identifier,

 ID_MY_STATUS_BAR,

and accept the default value.

3. In MainFrame.cpp

void CMainFrame::OnUpdateLeft(CCmdUI* pCmdUI)

 { pCmdUI->Enable(::GetKeyState(VK_LBUTTON) < 0); }

4. void CMainFrame::OnUpdateRight(CCmdUI* pCmdUI)

{ pmdUI->Enable(::GetKeyState(VK_RBUTTON) < 0); }

5. In MainFrame.cpp MessageMap Entry

ON_UPDATE_COMMAND_UI(ID_INDICATOR_LEFT,

OnUpdateLeft) ON_UPDATE_COMMAND_UI(ID_INDICATOR_RIGHT,

OnUpdateRight)

6. In MainFrm.h.

 afx_msg void OnUpdateLeft(CCmdUI* pCmdUI);

 afx_msg void OnUpdateRight(CCmdUI*pCmdUI);

7. Edit the MainFrm.cpp file.

 Replace the original indicators array with the following boldface code:

 static UINT indicators[] =

 {ID_SEPARATOR, // first message line pane ID_SEPARATOR, // second message

 line pane ID_INDICATOR_LEFT,

 ID_INDICATOR_RIGHT };
8. Use ClassWizard to add View menu command handlers in the class CMainFrame.

1. ID_VIEW_STATUS_BAR - COMMAND

 -OnViewStatusBar

2. ID_VIEW_STATUS_BAR--

 UPDATE_COMMAND_UI

 -OnUpdateViewStatusBar
void CMainFrame::OnViewStatusBar()

 { m_wndStatusBar.ShowWindow((m_wndStatusBar.GetStyle() & WS_VISIBLE) == 0);

RecalcLayout();
 }

void CMainFrame::OnUpdateViewStatusBar(CCmdUI* pCmdUI)

{ pCmdUI- >SetCheck((m_wndStatusBar.GetStyle() & WS_VISIBLE) != 0); }

9.In OnCreate member function

Replace

if (!m_wndStatusBar.Create(this) || !m_wndStatusBar.SetIndicators(indicators,

sizeof(indicators)/sizeof(UINT)))

 { TRACE0("Failed to create status bar\n");

 return -1; // fail to create }

with the statement shown here:

• if (!m_wndStatusBar.Create(this, WS_CHILD | WS_VISIBLE | CBRS_BOTTOM,

ID_MY_STATUS_BAR) || !m_wndStatusBar.SetIndicators(indicators,

sizeof(indicators)/sizeof(UINT))) { TRACE0("Failed to create status bar\n"); return -1; // fail to

create }

10. InView.cpp

 void CEx14bView::OnDraw(CDC* pDC)

 { pDC->TextOut(0, 0, "Watch the status bar while you move and click the mouse."); }

11. void CEx14bView::OnMouseMove(UINT nFlags, Cpoint

 point)

{ CString str; CMainFrame* pFrame = (CMainFrame*) AfxGetApp()->m_pMainWnd;

 CStatusBar* pStatus = &pFrame->m_wndStatusBar;

if (pStatus)

 { str.Format("x = %d", point.x);

 pStatus->SetPaneText(0, str);

 str.Format("y = %d", point.y);

 pStatus->SetPaneText(1, str); }}

12 #include "MainFrm.h"

• A Reusable Frame Window Base Class

• CString class.

• Build your own reusable base class .

• Access to the Windows Registry.

• PreCreateWindow & ActiveFrame function.

CString class

• dynamic memory allocation-const char*.

• CString strFirstName("Elvis");

• CString strLastName("Presley");

• CString strTruth = strFirstName + " " +

 strLastName;

• strTruth += " is alive";

int nError = 23;

CString strMessageText;

strMessageText.Format("Error number %d", nError);

AfxMessageBox(strMessageText);

• CString strTest("test");

• strncpy(strTest, "T", 1);

CString::GetBuffer - "locks down" the buffer with a specified size and returns a char*.

ReleaseBuffer - to make the string dynamic again.

 CString strTest("test"); strncpy(strTest.GetBuffer(5), "T", 1); strTest.ReleaseBuffer();

• Build your own reusable base class

• CPersistentFrame - derived from the CFrameWnd

 - supports a persistent SDI (Single Document Interface) frame window that remembers the following

characteristics.

– Window size ,Window position

– Maximized status ,Minimized status

– Toolbar and Status bar enablement and position

• When you terminate an application that's built with the CPersistentFrame class, the above

information is saved on disk in the Windows Registry.

• When the application starts again, it reads the Registry and restores the frame to its state at the

previous exit.

• The Windows Registry

• is a set of system files, managed by Windows, in which Windows and individual applications can

store and access permanent information.

• is organized as a kind of hierarchical database in which string and integer data is accessed by a

multipart key.

• TEXTPROC

 Text formatting

 Font = Times Roman

 Points = 10

• The SetRegistryKey function's string parameter establishes the top of the hierarchy,

 SetRegistryKey(" TEXTPROC ");

Following Registry functions(CWinApp) define the bottom two levels: called heading name and entry

name.

• GetProfileInt

• WriteProfileInt

• GetProfileString

• WriteProfileString

AfxGetApp()->WriteProfileString("Text formatting", "Font",

 "Times Roman");

AfxGetApp()->WriteProfileInt("Text formatting", "Points", 10);

• ActivateFrame Member Function CFrameWnd

• The key to controlling the frame's size

• The application framework calls this virtual function (declared in CFrameWnd) during the SDI

main frame window creation process (and in response to the File New and File Open commands).

• The framework's job is to call the CWnd::ShowWindow function with the parameter nCmdShow.

The nCmdShow parameter determines whether the window is maximized or minimized or both.

• Override ActivateFrame in your derived frame class, to change the value of nCmdShow before

passing to it .

• CWnd::SetWindowPlacement function, which sets the size and position of the frame window, and

you can set the visible status of the control bars.

• First time call ie CPersistentFrame::ActivateFrame function operates only when the application

starts.

• The PreCreateWindow Member Function-CWnd

• to change the characteristics of your window before it is displayed

• calls this function before it calls ActivateFrame.

• a CREATESTRUCT structure as a parameter, and two of the data members in this structure are style

and dwExStyle.

• CREATESTRUCT member lpszClass is also useful to change the window's background brush,

cursor, or icon.

BOOL MyView::PreCreateWindow(CREATESTRUCT& c)

{ …..

 ….

 c.lpszClass =AfxRegisterWndClass(CS_DBLCLKS | CS_HREDRAW | CS_VREDRAW, AfxGetApp()-

> LoadCursor(IDC_MYCURSOR), ::CreateSolidBrush (RGB(255, 0, 0)));

if (cs.lpszClass != NULL) { return TRUE; }

 else { return FALSE; }

}

Style flag -determines whether the window has a border,

 scroll bars, a minimize box, and so on.

Extended style – double border, left aligned border etc

• Document View Architecture

• Menu, Keyboard Accelerators

• Status Bar, ToolBar

• Reusable Frame Window Class

• Global Application object

• Execution begins- WinMain by MFC

• AfxGetApp() – Gets ptr to Applocation object

• InitInstance – Executed(Create Window &assigns

• hInstance,nCmdshow –appln object)

• RUN()- Implements Message Loop

• Terminate if WM_QUIT Message occurs

• ExitInstance()

• Separating Document from its View

• Need: Given set of data can have multiple

 representation- best to separate display

 from data.

• Three Objects:

• Document - Store the data (responsible for

 reading and writing data)

• View - To display data(each view –one document)

• Window - The canvas on which all display

 take place

• Document-View Interaction Functions

• The CView::GetDocument Function-provides the

 document pointer that can be used to access document

 class member functions or public data embers.

 CEx13aDoc* pDoc = GetDocument();

 m_rich.SetWindowText(pDoc- >m_strText);

• The CDocument::GetNextView -navigates from the

 document to the view, but because a document can have

 more than one view, it's necessary to call this member

 function once for each view, inside a loop

• CDocument::UpdateAllViews

 -If the document data changes for any reason, all views must be notified so that they can update

their representations of that data.

 -GetDocument()->UpdateAllViews(NULL): Update all

 associated view .

 -GetDocument()->UpdateAllViews(this): - Update all

 associated view except current.

Syntax: void UpdateAllViews(CView* pSender, LPARAM lHint = 0L,

 CObject* pHint = NULL);

Parameters

pSender-Points to the view that modified the document, or NULL if all views

 are to be updated.

lHint - Contains information about the modification.

pHint -Points to an object storing information about the modification.

CView::OnUpdate:
 - virtual function is called by the application framework in response to your application's call to the

 CDocument::UpdateAllViews function.

 - view class's OnUpdate function accesses the document, gets the document's data, and then updates the

view's data members or controls to reflect the changes.

- OnUpdate can invalidate a portion of the view, causing the view's OnDraw function to use

document data to draw in the window.

- Same parameters as UpdateAllViews.

CView::OnInitialUpdate

 -virtual CView function is called when the application starts, when the user chooses New from the

File menu, and when the user chooses Open from the File menu.

 -calls OnUpdate.

 -use your derived class's OnInitialUpdate function to initialize your view object

 -When the application starts, the application framework calls OnInitialUpdate immediately after

OnCreate

CDocument::OnNewDocument

 -The framework calls this virtual function after a document object is first constructed and when

the user chooses New from the File menu in an SDI application.

 -to set the initial values of your document's data members.

Application starts

• CMyDocument object constructed

• CMyView object constructed

• View window created

• CMyView::OnCreate called (if mapped)

• CMyDocument::OnNewDocument called

• CMyView::OnInitialUpdate called

• View object initialized

• View window invalidated

• CMyView::OnDraw called

User edits data

 CMyView functions update CMyDocument data members

User exits application

 CMyView object destroyed

Frame Window - Definition

 An application or some parts of an application when framed by Windows are called Frame

Windows

 Frame windows act as containers for other windows such as control bars or child controls.

Basic types of Frame Windows

 Single Document Interface (SDI) frame windows

 Multiple Document Interface (MDI) frame windows.

 MDI frame windows can contain MDI child windows

Serialization

 Serialization is an important concept in MFC programming because it is the basis for MFC's ability

to open and save documents in document/view applications.

Serialization Process

 when someone using a document/view application selects Open or Save from the application's File

menu, MFC opens the file for reading or writing and passes the application a reference to a

CArchive object.

 The application, in turn, serializes its persistent data to or from the archive and, by so doing, saves

a complete document to disk or reads it back again. A document whose persistent data consists

entirely of primitive data types or serializable objects can often be serialized with just a few lines

of code.

Serialization - Write

 Assume that a CFile object named file represents an open file, that the file was opened with write

access, and that you want to write a pair of integers named a and b to that file. One way to

accomplish this is to call CFile::Write once for each integer:

 file.Write (&a, sizeof (a));

 file.Write (&b, sizeof (b));

 An alternative method is to create a CArchive object, associate it with the CFile object, and use the

<< operator to serialize the integers into the archive:

 CArchive ar (&file, CArchive::store);

 ar << a << b;

Serialization – Read (deserialize)

 Assuming file once again represents an open file and that the file is open with read access, the

following code snippet attaches a CArchive object to the file and reads, or deserializes, the integers

from the file:

 CArchive ar (&file, CArchive::load);

 ar >> a >> b;

 MFC allows a wide variety of primitive data types to be serialized this way, including BYTEs,

WORDs, LONGs, DWORDs, floats, doubles, ints, unsigned ints, shorts, and chars.

 SDI and MDI

 MFC supports two types of document/view applications. Single document interface (SDI)

applications support just one open document at a time. Multiple document interface (MDI)

applications permit two or more documents to be open concurrently and also support multiple

views of a given document. The WordPad applet is an SDI application; Microsoft Word is an MDI

application.

SDI

 SDI application frame windows are derived from the class CFrameWnd.

 The MFC library supports two distinct application types: Single Document Interface (SDI) and

Multiple Document Interface (MDI). An SDI application has, only one window. If the application

depends on disk-file "documents," only one document can be loaded at a time. The original

Windows Notepad is an example of an SDI application.

The standard SDI frame menus

 The child windows within an SDI main frame window

 SDI Document View Architecture

 SDI Application

Startup steps in a Microsoft Windows MFC library application:

 Windows loads your program into memory.

 The global object theApp is constructed. (All globally declared objects are constructed immediately

when the program is loaded.)

 Windows calls the global function WinMain, which is part of the MFC library. (WinMain is

equivalent to the non-Windows main function—each is a main program entry point.)

 Steps…

 WinMain searches for the one and only instance of a class derived from CWinApp.

 WinMain calls the InitInstance member function for theApp, which is overridden in your derived

application class.

 Your overridden InitInstance function starts the process of loading a document and displaying the

main frame and view windows.

 WinMain calls the Run member function for theApp, which starts the processes of dispatching

window messages and command messages.

Object Relationship

 Steps for processing SDI InitInstance

 Create an SDI document template from MFC's CSingleDocTemplate class.

 Adding to list of document templates

 Initializing command line info values

1. Processing command line parameters

2. Displaying applications frame window

InitInstance function for an SDI application generated by AppWizard

CSingleDocTemplate* pDocTemplate;

pDocTemplate = new CSingleDocTemplate

 (IDR_MAINFRAME,

 RUNTIME_CLASS (CMyDoc),

 RUNTIME_CLASS (CMainFrame),

 RUNTIME_CLASS (CMyView)

);

 AddDocTemplate (pDocTemplate);

 ……..

 ……..

 CCommandLineInfo cmdInfo;

 ParseCommandLine (cmdInfo);

 if (!ProcessShellCommand (cmdInfo)) return FALSE;

m_pMainWnd->ShowWindow (SW_SHOW);

m_pMainWnd->UpdateWindow ();

1. create an SDI document template from CSingleDocTemplate class

 CSingleDocTemplate* pDocTemplate;

 pDocTemplate = new CSingleDocTemplate

 (IDR_MAINFRAME,

 RUNTIME_CLASS (CMyDoc),

 RUNTIME_CLASS (CMainFrame),

 RUNTIME_CLASS (CMyView)

);

1. The template's constructor was passed four parameters: an integer value equal to

IDR_MAINFRAME and three RUNTIME_CLASS pointers.

2. AppWizard uses the resource ID IDR_MAINFRAME in the code that it generates. The

RUNTIME_CLASS macro surrounding the class names returns a pointer to a CRuntimeClass

structure for the specified class, which enables the framework to create objects of that class at

run time.

3. Adding to list of document templates

4. After the document template is created, the statement

5. AddDocTemplate (pDocTemplate);

6. adds it to the list of document templates maintained by the application object. Each template

registered in this way defines one document type the application supports. SDI applications

register just one document type

7. Initialize command line info values

8. The statements

9. CCommandLineInfo cmdInfo; Par

10. seCommandLine (cmdInfo);

11. use CWinApp::ParseCommandLine to initialize a CCommandLineInfo object with values

reflecting the parameters entered on the command line, which often include a document file

name.

12. Process command line parameters

13. The statements

14. if (!ProcessShellCommand (cmdInfo)) return FALSE;

15. "process" the command line parameters. Among other things, ProcessShellCommand calls

CWinApp::OnFileNew to start the application with an empty document if no file name was

entered on the command line, or CWinApp::OpenDocumentFile to load a document if a

document name was specified. It's during this phase of the program's execution that the

framework creates the document, frame window, and view objects using the information stored

in the document template. ProcessShellCommand returns TRUE if the initialization succeeds

and FALSE if it doesn't.

16. Display applications frame window

17. If initialization is successful, the statements

18. m_pMainWnd->ShowWindow (SW_SHOW); m_pMainWnd->UpdateWindow ();

19. display the application's frame window (and by extension, the view) on the screen.

20. Routing of command messages sent to an SDI frame window.

Example Program - The SdiSquares Application

The program shown in Figure is an SDI document/view application that displays a grid of squares

four rows deep and four columns wide. Initially, each square is colored white. However, you can

change a square's color by clicking it with the left mouse button. By default, clicking changes a

square's color to red. You can select alternate colors from the Color menu and thereby create a

multicolored grid containing squares of up to six different colors.

The SdiSquares Application…
 Use AppWizard to create a new project named SdiSquares. In AppWizard's Step 1 dialog box, choose

Single Document as the application type and check the Document/View Architecture Support box, as

shown in Figure

The SdiSquares Application…
In the Step 3 dialog box, uncheck the ActiveX Controls box.

In Step 4, uncheck Docking Toolbar, Initial Status Bar, Printing And Print Preview, and 3D Controls.

The SdiSquares Application…
Also in the Step 4 dialog box, click the Advanced button and type the letters sqr into the File Extension

box (as shown in Figure) to define the default file name extension for SdiSquares documents.

The SdiSquares Application…
1. In the Step 6 dialog box, manually edit the class names as CSquaresApp. Everywhere else, accept

the AppWizard defaults.

The SdiSquares Application…

Add the member variables m_clrGrid and m_clrCurrentColor to the document class, and add code to

initialize them to OnNewDocument. AppWizard overrides OnNewDocument, so all you have to do is add

the statements that initialize the data members.

The SdiSquares Application…

Add the member functions GetCurrentColor, GetSquare, and SetSquare to the document class. Be sure to

make them public member functions, since they must be accessible to the view.

Modify the Serialize function that AppWizard included in the document class to serialize m_clrGrid and

m_clrCurrentColor.

Implement the view's OnDraw function. AppWizard generates a do-nothing OnDraw function; you write

the code to perform application-specific duties.

The SdiSquares Application…
Add the WM_LBUTTONDOWN handler (OnLButtonDown) to the view. You can add the message

handler by hand or use ClassWizard to add it. I used ClassWizard.

Open the AppWizard-generated application menu for editing, delete the Edit menu, and add the Color

menu. Then write command and update handlers for the new menu items. As with message handlers, you

can add command and update handlers manually or you can add them with ClassWizard's help.

SDI vs MDI

MDI

 MDI application frame windows are derived from the class CMDIFrameWnd.

 An MDI application has multiple child windows, each of which corresponds to an individual

document. Microsoft Word is a good example of an MDI application. When you run AppWizard to

create a new project, MDI is the default application type

The parent-child hierarchy of a Windows MDI application.

 MDI application

 MDI windows

 MDI classes

An MDI application has two frame window classes and many frame objects

Base Class

CMDIFrameWnd

CMDIChildWnd

AppWizard-Generated Class

CMainFrame

CChildFrame

The MDI frame-view window relationship

• Splitter Windows

• A splitter window is a window that can be divided into two or more panes horizontally, vertically,

or both horizontally and vertically using movable splitter bars. Each pane contains one view of a

document's data. The views are children of the splitter window, and the splitter window itself is

normally a child of a frame window.

• Splitter windows

• Using splitter windows provided by MFC, a single document interface (SDI) application can

present two or more views of the same document in resizeable "panes" that subdivide the frame

window's client area

• In an SDI application, the splitter window is a child of the top-level frame window.

• In an MDI application, the splitter window is a child of an MDI document frame.

• Types of splitter windows

• static splitter window:

 The numbers of rows and columns in a static splitter window are set when the splitter is created and

can't be changed by the user. The user is, however, free to resize individual rows and columns. A static

splitter window can contain a maximum of 16 rows and 16 columns. For an example of an application that

uses a static splitter, look no further than the Windows Explorer. Explorer's main window is divided in

half vertically by a static splitter window.

• Static splitter window

• Dynamic Splitter window

• A dynamic splitter window is limited to at most two rows and two columns, but it can be split and

unsplit interactively. The views displayed in a dynamic splitter window's panes aren't entirely

independent of each other: when a dynamic splitter window is split horizontally, the two rows have

independent vertical scroll bars but share a horizontal scroll bar. Similarly, the two columns of a

dynamic splitter window split vertically contain horizontal scroll bars of their own but share a

vertical scroll bar. The maximum number of rows and columns a dynamic splitter window can be

divided into are specified when the splitter is created. Thus, it's a simple matt

• Dynamic Splitter window

• Procedure for Creating and initializing a dynamic splitter window

1. Add a CSplitterWnd data member to the frame window class.

2. Override the frame window's virtual OnCreateClient function, and call CSplitterWnd::Create to

create a dynamic splitter window in the frame window's client area.

• Creating splitter window…

• Assuming m_wndSplitter is a CSplitterWnd object that's a member of the frame window class

CMainFrame, the following OnCreateClient override creates a dynamic splitter window inside the

frame window:

BOOL CMainFrame::OnCreateClient

(LPCREATESTRUCT lpcs,

CCreateContext* pContext)

{

 return m_wndSplitter.Create (this, 2, 1, CSize (1, 1), pContext);

}

• Creating splitter window…

• The first parameter to CSplitterWnd::Create identifies the splitter window's parent, which is the

frame window.

• The second and third parameters specify the maximum number of rows and columns that the

window can be split into.

• Because a dynamic splitter window supports a maximum of two rows and two columns, these

parameter values will always be 1 or 2.

• The fourth parameter specifies each pane's minimum width and height in pixels. The framework

uses these values to determine when panes should be created and destroyed as splitter bars are

moved.

• Creating splitter window…

• CSize values equal to (1,1) specify that panes can be as little as 1 pixel wide and 1 pixel tall.

• The fifth parameter is a pointer to a CCreateContext structure provided by the framework. The

structure's m_pNewViewClass member identifies the view class used to create views in the splitter's

panes.

• The framework creates the initial view for you and puts it into the first pane. Other views of the

same class are created automatically as additional panes are created.

UNIT – III
THE DOCUMENT VIEW ARCHITECTURE

PART – A (2 MARKS)

1. Define Keyboard Accelerator
2. List out Rich Edit Control Functions
3. Define toolbar
4. List out toolbar states.
5. Define Statusbar
6. Define Status Indicator
7. What are the two text editing tools?
8. What are the steps to be followed to build floating popup menus?
9. What are the characteristic of SDI frame window?
10. Define Serialization
11. Explain splitter window?
12. Distinguish between dynamic and static splitter windows
13. Define Document – View Architecture
14. Distinguish Implicit and Explicit Linkage
15. What is LoadLibrary function?

PART – B

1. Write down the steps to create a VC++ program that encapsulates the
menu, keyboard accelerator and tool bar to draw a circle and
rectangle and show the output. (16)
2. What are the functions performed in SDI application and Explain that
functions in detail (16)
3. Write down the steps to create a VC++ program to create an
Extension DLL and use it and test it in the client program. (16)
4. Develop a dialog based application to simulate a calculator. The
calculator should add, multiply, subtract and divide 2 integers. (16)
5. Develop a DLL to add & multiply two numbers and write an
application to use the DLL (16)
6. Explain how to create a toolbox for the application. (16)
7. Explain SDI & MDI application in detail. (16)
8. a. What is Rich Edit control & Discuss the supporting MFC classes for
the control. (8)
b. Discuss the Menu item properties (8)

UNIT IV
ACTIVEX AND OBJECT LINKING AND EMBEDDING (OLE)

MFC Drag and Drop

• Drag and drop was the ultimate justification for the data object code you've been looking at.

• OLE supports this feature with its IDropSource and IDropTarget interfaces plus some library code

that manages the drag-and-drop process.

• The MFC library offers good drag-and-drop support at the view level, so we'll use it.

• Drag-and-drop transfers are immediate and independent of the clipboard.

• If the user cancels the operation, there's no "memory" of the object being dragged.

• Drag-and-drop transfers should work consistently between applications, between windows of the

same application, and within a window.

• When the user starts the operation, the cursor should change to an arrow_rectangle combination.

• If the user holds down the Ctrl key, the cursor turns into a plus sign (+), which indicates that the

object is being copied rather than moved.

• MFC also supports drag-and-drop operations for items in compound documents.

• This is the next level up in MFC OLE support, and it's not covered in this chapter.

• Look up the OCLIENT example in the online documentation under Visual C++ Samples.

• The Source Side of the Transfer

• The Destination Side of the Transfer

OnDragEnterAdjusts the focus rectangle and then calls

OnDragOver OnDragOverMoves the dotted focus rectangle and sets the drop effect (determines

cursor shape)

OnDragLeave Cancels the transfer operation; returns the rectangle to its original position and

size

OnDrop Adjusts the focus rectangle and then calls the DoPaste helper function to

get formats from the data object

The Drag-and-Drop Sequence

1. User presses the left mouse button in the source view window.

2. Mouse button handler calls CRectTracker::HitTest and finds out that the cursor was inside the

tracker rectangle.

3. Handler stores formats in a COleDataSource object.

4. Handler calls COleDataSource::DoDragDrop for the data source.

5. User moves the cursor to the view window of the target application.

6. OLE calls IDropTarget::OnDragEnter and OnDragOver for the COleDropTarget object,

which calls the corresponding virtual functions in the target's view. The OnDragOver function

is passed a COleDataObject pointer for the source object, which the target tests for a format it

can understand.

7. OnDragOver returns a drop effect code, which OLE uses to set the cursor.

8. OLE calls IDataSource::QueryContinueDrag on the source side to find out whether the drag

operation is still in progress. The MFC COleDataSource class responds appropriately.

9. User releases the mouse button to drop the object in the target view window.

10. OLE calls IDropTarget::OnDrop, which calls OnDrop for the target's view. Because OnDrop is

passed a COleDataObject pointer, it can retrieve the desired format from that object.

11. When OnDrop returns in the target program, DoDragDrop can return in the source program.

OLE Embedded Components and Containers

• A component that supports in-place activation also supports embedding

• Both in-place activation and embedding store their data in a container's document

• The container can activate both.

• An in-place-capable component can run inside the container application's main window, taking

over the container's menu and toolbar,

• An embedded component can run only in its own window, and that window has a special menu that

does not include file commands.

• Embedding relies on two key interfaces, IOleObject and IOleClientSite, which are used for in-

place activation as well.

Excel spreadsheet activated inside a Word document.

MFC base classes—

• COleIPFrameWnd, COleServerDoc, and COleServerItem.

• COleIPFrameWnd class is rather like CFrameWnd. It's your

 application's main frame window, which contains the view.

• It has a menu associated with it, IDR_SRVR_INPLACE, which

 will be merged into the container program's menu.

• The embedded menu is IDR_SRVR_EMBEDDED, and the

 stand-alone menu is IDR_MAINFRAME.

• The COleServerDoc class is a replacement for CDocument.

 It contains added features that support OLE connections to the

 container. The COleServerItem class works with the

 COleServerDoc class.

The EX28A Example—An MFC In-Place-Activated

Mini-Server

Here are the steps for creating the program from scratch:

1. Run AppWizard to create the EX28A project in the \vcpp32\ex28a directory. Select Single

Document interface. Click the Mini-Server option in the AppWizard Step 3 dialog shown

here.

2. Examine the generated files. You've got the familiar application, document, main frame, and

view file s, but

you've got two new files too.

3. Add a text member to the document class. Add the following public data member in the class

declaration in ex28aDoc.h:

 CString m_strText;
 Set the string's initial value to Initial default text in the document's OnNewDocument member

function.

4. Add a dialog to modify the text. Insert a new dialog template with an edit control, and then use

ClassWizard to generate a CTextDialog class derived from CDialog.

 Don't forget to include the dialog class header in ex28aDoc.cpp. Also, use ClassWizard to add a

CString member variable named m_strText for the edit control.

5. Add a new menu command in both the embedded and in-place menus. Add a Modify menu

command in both the IDR_SRVR_EMBEDDED and IDR_SRVR_INPLACE menus.

 To insert this menu command on the IDR_SRVR_EMBEDDED menu, use the resource editor to

add an EX28A-EMBED menu item on the top level, and then add a Modify option on the submenu for

this item.

 Next add an EX28A-INPLACE menu item on the top level of the IDR_SRVR_INPLACE menu and

add a Modify option on the EX28A-INPLACE submenu.

To associate both Modify options with one OnModify function, use ID_MODIFY as the ID for the Modify

option of both the IDR_SRVR_EMBEDDED and IDR_SRVR_INPLACE menus. Then use ClassWizard to

map both Modify options to the OnModify function in the document class. Code the Modify command

handler as shown here:

void CEx28aDoc::OnModify()

{ CTextDialog dlg;

 dlg.m_strText = m_strText;

 if (dlg.DoModal() == IDOK)

 { m_strText = dlg.m_strText;

 UpdateAllViews(NULL); // Trigger CEx28aView::OnDraw

 UpdateAllItems(NULL); // Trigger

 //CEx28aSrvrItem::OnDraw SetModifiedFlag();

 }
6. Override the view's OnPrepareDC function. Use ClassWizard to generate the function, and then

replace any existing code with the following line:

 pDC->SetMapMode(MM_HIMETRIC);

7. Edit the view's OnDraw function. The following code in ex28aView.cpp draws a 2-cm circle

centered in the client rectangle, with the text wordwrapped in the window:

 void CEx28aView::OnDraw(CDC* pDC)

 {

 CEx28aDoc* pDoc = GetDocument(); ASSERT_VALID(pDoc);

 CFont font; font.CreateFont(-500, 0, 0, 0, 400, FALSE, FALSE, 0,

ANSI_CHARSET, OUT_DEFAULT_PRECIS, CLIP_DEFAULT_PRECIS,

 DEFAULT_QUALITY, DEFAULT_PITCH | FF_SWISS, "Arial");

CFont* pFont = pDC->SelectObject(&font);

CRect rectClient; GetClientRect(rectClient);

CSize sizeClient = rectClient.Size();

pDC->DPtoHIMETRIC(&sizeClient);

CRect rectEllipse(sizeClient.cx / 2 - 1000, -sizeClient.cy / 2 + 1000, sizeClient.cx / 2 + 1000, -

sizeClient.cy / 2 - 1000);

 pDC->Ellipse(rectEllipse);

pDC->TextOut(0, 0, pDoc->m_strText);

pDC->SelectObject(pFont);
}

8. Edit the server item's OnDraw function. The following code in the SrvrItem.cpp file tries to

draw the same circle drawn in the view's OnDraw function.

BOOL CEx28aSrvrItem::OnDraw(CDC* pDC, CSize& rSize)

{ // Remove this if you use rSize

UNREFERENCED_PARAMETER(rSize);

CEx28aDoc* pDoc = GetDocument();

ASSERT_VALID(pDoc); // TODO: set mapping mode and extent // (The extent is usually the same as the

size returned from // OnGetExtent)

pDC->SetMapMode(MM_ANISOTROPIC);

 pDC->SetWindowOrg(0,0);

 pDC->SetWindowExt(3000, -3000);

CFont font; font.CreateFont(-500, 0, 0, 0, 400, FALSE, FALSE, 0, ANSI_CHARSET,

OUT_DEFAULT_PRECIS, CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,

DEFAULT_PITCH | FF_SWISS, "Arial");

CFont* pFont = pDC->SelectObject(&font);

CRect rectEllipse(CRect(500, -500, 2500, -2500));

pDC->Ellipse(rectEllipse);

pDC->TextOut(0, 0, pDoc->m_strText);
 pDC->SelectObject(pFont); return TRUE;

}

9. Edit the document's Serialize function. The framework takes care of loading and saving the

document's data from and to an OLE stream named Contents that is attached to the object's main storage.

You simply write normal serialization code, as shown here:

void CEx28aDoc::Serialize(CArchive& ar)

{

 if (ar.IsStoring())

 { ar << m_strText; }

 else

 { ar >> m_strText; }

 }

There is also a CEx28aSrvrItem::Serialize function that delegates to the document Serialize function.

10. Build and register the EX28A application. You must run the application directly once to update the

Registry.

11. Test the EX28A application. You need a container program that supports in-place activation. Use

Microsoft Excel 97 or a later version if you have it, or build the project in the MFC DRAWCLI sample.

Choose the container's Insert Object menu item. If this option does not appear on the Insert menu, it might

appear on the Edit menu instead. Then select Ex28a Document from the list.

 When you first insert the EX28A object, you'll see a hatched border, which indicates that the object

is in-place active. The bounding rectangle is 3-by-3-cm square, with a 2-cm circle in the center, as

illustrated here.

ActiveX Controls

Introduction

 Microsoft Visual Basic (VB) was introduced in 1991 and has proven to be a wildly popular and

successful application development system for Microsoft Windows

 The 16-bit versions of VB supported Visual Basic controls (VBXs), ready-to-run software

components that VB developers could buy or write themselves.

 VBXs became the center of a whole industry, and pretty soon there were hundreds of them.

 The VBX standard, which was highly dependent on the 16-bit segment architecture, did not make

it to the 32-bit world.

 ActiveX Controls (formerly known as OLE controls, or OCXs) are the industrial-strength

replacement for VBXs based on Microsoft COM technology.

 ActiveX controls can be used by application developers in both VB and Visual C++ 6.0.

 ActiveX controls can be written in C++ with the help of the MFC library or with the help of the

ActiveX Template Library (ATL).

ActiveX Controls vs. Ordinary Windows Controls

Ordinary Controls—A Frame of Reference

 These controls are all child windows that you use most often in dialogs, and they are represented

by MFC classes such as CEdit and CTreeCtrl. The client program is always responsible for the

creation of the control's child window.

 Ordinary controls send notification command messages (standard Windows messages), such as

BN_CLICKED, to the dialog.

 If you want to perform an action on the control, you call a C++ control class member function,

which sends a Windows message to the control.

 The controls are all windows in their own right. All the MFC control classes are derived from

CWnd, so if you want to get the text from an edit control, you call CWnd::GetWindowText. But

even that function works by sending a message to the control.

 Windows controls are an integral part of Windows, even though the Windows common controls

are in a separate DLL.

How ActiveX Controls Are Similar to Ordinary Controls

 You can consider an ActiveX control to be a child window, just as an ordinary control is.

 If you want to include an ActiveX control in a dialog, you use the dialog editor to place it there,

and the identifier for the control turns up in the resource template.

 If you're creating an ActiveX control on the fly, you call a Create member function for a class that

represents the control, usually in the WM_CREATE handler for the parent window.

 When you want to manipulate an ActiveX control, you call a C++ member function, just as you do

for a Windows control. The window that contains a control is called a container.

ActiveX Controls vs. Ordinary Windows Controls

How ActiveX Controls Are Different from Ordinary Controls—Properties and Methods

 The most prominent ActiveX Controls features are properties and methods.

 Properties have symbolic names that are matched to integer indexes. For each property, the control

designer assigns a property name, such as BackColor or GridCellEffect, and a property type, such

as string, integer, or double.

 The client program can set an individual ActiveX control property by specifying the property's

integer index and its value. The client can get a property by specifying the index and accepting the

appropriate return value.

 In certain cases, ClassWizard lets you define data members in your client window class that are

associated with the properties of the controls the client class contains. The generated Dialog Data

Exchange (DDX) code exchanges data between the control properties and the client class data

members.

ActiveX Controls vs. Ordinary Windows Controls

 How ActiveX Controls Are Different from Ordinary Controls—Properties and Methods

 ActiveX Controls methods are like functions. A method has a symbolic name, a set of

parameters, and a return value. You call a method by calling a C++ member function of the

class that represents the control. A control designer can define any needed methods, such as

PreviousYear, LowerControlRods, and so forth.

 An ActiveX control doesn't send WM_ notification messages to its container the way

ordinary controls do; instead, it "fires events."

 An event has a symbolic name and can have an arbitrary sequence of parameters—it's really

a container function that the control calls.

 Like ordinary control notification messages, events don't return a value to the ActiveX

control.

 Examples of events are Click, KeyDown, and NewMonth. Events are mapped in your client

class just as control notification messages are.

 ActiveX Controls vs. Ordinary Windows Controls

 How ActiveX Controls Are Different from Ordinary Controls—Properties and Methods

 In the MFC world, ActiveX controls act just like child windows, but there's a significant

layer of code between the container window and the control window.

 In fact, the control might not even have a window. When you call Create, the control's

window isn't created directly; instead, the control code is loaded and given the command for

"in-place activation." The ActiveX control then creates its own window, which MFC lets you

access through a CWnd pointer. It's not a good idea for the client to use the control's hWnd

directly, however.

 A DLL is used to store one or more ActiveX controls, but the DLL often has an OCX

filename extension instead of a DLL extension.

 Your container program loads the DLLs when it needs them, using sophisticated COM

techniques that rely on the Windows Registry.

 Once you specify an ActiveX control at design time, it will be loaded for you at runtime.

 Obviously, when you ship a program that requires special ActiveX controls, you'll have to

include the OCX files and an appropriate setup program.

Installing ActiveX Controls

 Your first step is to copy the ActiveX control's DLL to \Windows\System for Microsoft Windows

95 or \Winnt\System32 for Microsoft Windows NT. Copy associated files such as help (HLP) or

license (LIC) files to the same directory.

 Your next step is to register the control in the Windows Registry. Actually, the ActiveX control

registers itself when a client program calls a special exported function. The Windows utility

Regsvr32 is a client that accepts the control name on the command line.

 After you register your ActiveX control, you must install it in each project that uses it. That doesn't

mean that the OCX file gets copied. It means that ClassWizard generates a copy of a C++ class

that's specific to the control, and it means that the control shows up in the dialog editor control

palette for that project.

Installing ActiveX Controls

 Choose Add To Project from the Project menu and then choose Components And Controls.

 Select Registered ActiveX Controls

This gets you the list of all the ActiveX controls currently registered on your system.

The Calendar Control

Properties Methods Events

BackColor AboutBox AfterUpdate

Day NextDay BeforeUpdate

DayFont NextMonth Click

DayFontColor NextWeek DblClick

DayLength NextYear KeyDown

 Each of the

properties,

methods, and

events has a

corresponding

integer identifier.

 Information about

the names, types,

parameter

sequences, and

integer IDs is

stored inside the

control and is

accessible to ClassWizard at container design time.

ActiveX Control Container Programming
MFC and ClassWizard support ActiveX controls both in dialogs and as "child windows."

To use ActiveX controls, you must understand how a control grants access to properties, and you must

understand the interactions between your Dialog Data Exchange (DDX) code and those property values.

Property Access
The ActiveX control developer designates certain properties for access at design time.

Those properties are specified in the property pages that the control displays in the dialog editor when you

right-click on a control and choose Properties.

Property Access
When you click on the All tab, you will see a list of all the design- time-accessible properties, which

might include a few properties not found on the Control tab

All the control's properties, including the design-time properties, are accessible at runtime.

Some properties, however, might be designated as read-only.

FirstDay PreviousDay KeyPress

GridCellEffect PreviousMonth KeyUp

GridFont PreviousWeek NewMonth

GridFontColor PreviousYear NewYear

GridLinesColor Refresh

Month Today

MonthLength

ShowDateSelectors

ClassWizard's C++ Wrapper Classes for ActiveX Controls

 When you insert an ActiveX control into a project, ClassWizard generates a C++ wrapper class,

derived from CWnd, that is tailored to your control's methods and properties.

 The class has member functions for all properties and methods, and it has constructors that you can

use to dynamically create an instance of the control.

ClassWizard's C++ Wrapper Classes for ActiveX Controls
unsigned long CCalendar::GetBackColor()

{

 unsigned long result;

 InvokeHelper(DISPID_BACKCOLOR, DISPATCH_PROPERTYGET, VT_I4,

(void*)&result, NULL);

 return result;

}

void CCalendar::SetBackColor(unsigned long newValue)

{

 static BYTE parms[] = VTS_I4;

 InvokeHelper(DISPID_BACKCOLOR, DISPATCH_PROPERTYPUT,

 VT_EMPTY, NULL, parms, newValue);

}

ClassWizard's C++ Wrapper Classes for ActiveX Controls
short CCalendar::GetDay()

{

 short result;

 InvokeHelper(0x11, DISPATCH_PROPERTYGET, VT_I2, (void*)&result,

NULL);

 return result;

}

void CCalendar::SetDay(short nNewValue)

{

 static BYTE parms[] = VTS_I2;

 InvokeHelper(0x11, DISPATCH_PROPERTYPUT, VT_EMPTY,NULL, parms, nNewValue);

}

ClassWizard's C++ Wrapper Classes for ActiveX Controls

COleFont CCalendar::GetDayFont()

{

 LPDISPATCH pDispatch;

 InvokeHelper(0x1, DISPATCH_PROPERTYGET, VT_DISPATCH, (void*)&pDispatch,

NULL);

 return COleFont(pDispatch);

}

void CCalendar::SetDayFont(LPDISPATCH newValue)

{

 static BYTE parms[] = VTS_DISPATCH;

 InvokeHelper(0x1, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,

newValue);

}

ClassWizard's C++ Wrapper Classes for ActiveX Controls
VARIANT CCalendar::GetValue()

{

 VARIANT result;

 InvokeHelper(0xc, DISPATCH_PROPERTYGET, VT_VARIANT, (void*)&result,

NULL);

 return result;

}

void CCalendar::SetValue(const VARIANT& newValue)

{

 static BYTE parms[] = VTS_VARIANT;

 InvokeHelper(0xc, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,

&newValue);

}

ClassWizard's C++ Wrapper Classes for ActiveX Controls
void CCalendar::NextDay()

{

 InvokeHelper(0x16, DISPATCH_METHOD, VT_EMPTY, NULL, NULL);

}

void CCalendar::NextMonth()

{

 InvokeHelper(0x17, DISPATCH_METHOD, VT_EMPTY, NULL, NULL);

}

ClassWizard's C++ Wrapper Classes for ActiveX Controls

 The first parameter of each InvokeHelper function match with the dispatch ID for the

corresponding property or method in the Calendar control property list.

 Properties always have separate Set and Get functions.

 To call a method, simply call the corresponding function.

 To call the NextDay method from a dialog class function, you write code such as this:

 m_calendar.NextDay();

 m_calendar is an object of class CCalendar, the wrapper class for the Calendar control.

AppWizard Support for ActiveX Controls

 When the AppWizard ActiveX Controls option is checked (the default), AppWizard inserts the

following line in your application class InitInstance member function:

 AfxEnableControlContainer();

 It also inserts the following line in the project's StdAfx.h file:

 #include <afxdisp.h>

If you decide to add ActiveX controls to an existing project that doesn't include the two lines above, you

can simply add the lines.

ClassWizard and the Container Dialog
If your template contains one or more ActiveX controls, you can use ClassWizard to add data members

and event handler functions.

Dialog Class Data Members vs. Wrapper Class Usage

 What kind of data members can you add to the dialog for an ActiveX control?

 If you want to set a control property before you call DoModal for the dialog, you can add a dialog

data member for that property.

 If you want to change properties inside the dialog member functions, you must take another

approach: you add a data member that is an object of the wrapper class for the ActiveX control.

Dialog Class Data Members vs. Wrapper Class Usage

 MFC DDX logic.

 The CDialog::OnInitDialog function calls CWnd::UpdateData(FALSE) to read the dialog class

data members, and the CDialog::OnOK function calls UpdateData(TRUE) to write the members.

 Suppose you added a data member for each ActiveX control property and you needed to get the

Value property value in a button handler.

 If you called UpdateData(FALSE) in the button handler, it would read all the property values from

all the dialog's controls—clearly a waste of time.

 It's more effective to avoid using a data member and to call the wrapper class Get function instead.

 To call that function, you must first tell ClassWizard to add a wrapper class object data member.

Dialog Class Data Members vs. Wrapper Class Usage

 Suppose you have a Calendar wrapper class CCalendar and you have an m_calendar data member

in your dialog class. If you want to get the Value property, you do it like this:

 COleVariant var = m_calendar.GetValue();

 you want to set the day to the 5th of the month before the control is displayed. To do this by hand,

add a dialog class data member m_sCalDay that corresponds to the control's short integer Day

property. Then add the following line to the DoDataExchange function:

 DDX_OCShort(pDX, ID_CALENDAR1, 0x11, m_sCalDay);

 Following codes construct and display dialog

 CMyDialog dlg;

 dlg.m_sCalDay = 5;

 dlg.DoModal();

Dialog Class Data Members vs. Wrapper Class Usage

 The DDX code takes care of setting the property value from the data member before the control is

displayed.

 No other programming is needed.

Mapping ActiveX Control Events

 ClassWizard lets you map ActiveX control events the same way you map Windows messages and

command messages from controls.

 If a dialog class contains one or more ActiveX controls, ClassWizard adds and maintains an event

sink map that connects mapped events to their handler functions.

 It works something like a message map.

Locking ActiveX Controls in Memory

 Normally, an ActiveX control remains mapped in your process as long as its parent dialog is active.

 That means it must be reloaded each time the user opens a modal dialog.

 The reloads are usually quicker than the initial load because of disk caching, but you can lock the

control into memory for better performance.

 To do so, add the following line in the overridden OnInitDialog function after the base class call:

 AfxOleLockControl(m_calendar.GetClsid());

 The ActiveX control remains mapped until your program exits or until you call the

AfxOleUnlockControl function.

Example—An ActiveX Control Dialog Container

Step 1:

Verify that the Calendar control is registered. If the control does not appear in the Visual C++

Gallery's Registered ActiveX Controls page, copy the files MSCal.ocx, MSCal.hlp, and MSCal.cnt

to your system directory and register the control by running the REGCOMP program.

Step 2:

Run AppWizard to produce \vcpp32\ex08a\ex08a.

Accept all of the default settings but two: select Single Document and deselect Printing And Print

Preview.

In the AppWizard Step 3 dialog, make sure the ActiveX Controls option is selected, as shown below.

Step 3: Install the Calendar control in the EX08A project.

Choose Add To Project from Visual C++'s Project menu, and then choose Components And Controls.

Choose Registered ActiveX Controls, and then choose Calendar Control 8.0.

ClassWizard generates two classes in the EX08A directory

Step 4: Edit the Calendar control class to handle help messages.

Add Calendar.cpp to the following message map code:

 BEGIN_MESSAGE_MAP(CCalendar, CWnd) ON_WM_HELPINFO()

 END_MESSAGE_MAP()
In the same file, add the OnHelpInfo function:

BOOL CCalendar::OnHelpInfo(HELPINFO* pHelpInfo)

 {

 // Edit the following string for your system ::WinHelp(GetSafeHwnd(),

"c:\\winnt\\system32\\mscal.hlp", HELP_FINDER, 0);

 return FALSE;

 }
In Calendar.h, add the function prototype and declare the message map:

 protected:

 afx_msg BOOL OnHelpInfo(HELPINFO* pHelpInfo);

 DECLARE_MESSAGE_MAP()
The OnHelpInfo function is called if the user presses the F1 key when the Calendar control has the input

focus.

We have to add the message map code by hand because ClassWizard doesn't modify generated ActiveX

classes.

Step 5:Use the dialog editor to create a new dialog resource.

Choose Resource from Visual C++'s Insert menu, and then choose Dialog.

The dialog editor assigns the ID IDD_DIALOG1 to the new dialog.

Next change the ID to IDD_ACTIVEXDIALOG, change the dialog caption to ActiveX Dialog, and set the

dialog's Context Help property (on the More Styles page).

Accept the default OK and Cancel buttons with the IDs IDOK and IDCANCEL, and then add the other

controls .

Step 5: Use the dialog editor to create a new dialog resource.(2)

 Make the Select Date button the default button. Drag the Calendar control from the control

palette.

 Then set an appropriate tab order. Assign control IDs as shown in the following table.

Control ID

Calendar control IDC_CALENDAR1

Select Date button IDC_SELECTDATE

Edit control IDC_DAY

Edit control IDC_MONTH

Edit control IDC_YEAR

Next Week button

IDC_NEXTWEEK

Step 6: Use ClassWizard to create the CActiveXDialog class

If you run ClassWizard directly from the dialog editor window, it will know that you want to create a

CDialog-derived class based on the IDD_ACTIVEXDIALOG template.

Simply accept the default options, and name the class CActiveXDialog.

Click on the ClassWizard Message Maps tab, and then add the message handler functions .

To add a message handler function, click on an object ID, click on a message, and click the Add Function

button.

If the Add Member Function dialog box appears, type the function name and click the OK button.

Step 6: Use ClassWizard to create the CActiveXDialog class (2)

Message Handler Function

Object ID Message Member Function

CActiveXDialog WM_INITDIALOG OnInitDialog (virtual function)

IDC_CALENDAR1 NewMonth (event) OnNewMonthCalendar1

IDC_SELECTDATE BN_CLICKED OnSelectDate

IDC_NEXTWEEK BN_CLICKED OnNextWeek

IDOK BN_CLICKED OnOK (virtual function)

Step 7:Use ClassWizard to add data members to the CActiveXDialog class.

Click on the Member Variables tab, and then add the data members

Step 8: Edit the CActiveXDialog class.

Add the m_varValue and m_BackColor data members, and then edit the code for the five handler

functions OnInitDialog, OnNewMonthCalendar1, OnSelectDate, OnNextWeek, and OnOK.

Step 8.1 : Edit the CActiveXDialog class.

void CActiveXDialog::OnNewMonthCalendar1()

{

AfxMessageBox("EVENT: CActiveXDialog::OnNewMonthCalendar1");
 }

void CActiveXDialog::OnSelectDate()

{ CDataExchange dx(this, TRUE);

 DDX_Text(&dx, IDC_DAY, m_sDay);

 DDX_Text(&dx, IDC_MONTH, m_sMonth);

 DDX_Text(&dx, IDC_YEAR, m_sYear);

 m_calendar.SetDay(m_sDay);

 m_calendar.SetMonth(m_sMonth);

 m_calendar.SetYear(m_sYear);
}

void CActiveXDialog::OnNextWeek()

{

 m_calendar.NextWeek();
}

void CActiveXDialog::OnOK()

{

 CDialog::OnOK(); m_varValue = m_calendar.GetValue();

 // no DDX for VARIANTs
}

Step 8.2 : Edit the CActiveXDialog class. (3)

 The OnSelectDate function is called when the user clicks the Select Date button.

 The function gets the day, month, and year values from the three edit controls and transfers them to

the control's properties. ClassWizard can't add DDX code for the BackColor property, so you must

add it by hand.

 In addition, there's no DDX code for VARIANT types, so you must add code to the OnInitDialog

and OnOK functions to set and retrieve the date with the control's Value property.

Step 9 : Connect the dialog to the view.

Use ClassWizard to map the WM_LBUTTONDOWN message, and then edit the handler function

as follows:

 void CEx08aView::OnLButtonDown(UINT nFlags, CPoint point)

 {

 CActiveXDialog dlg;

 dlg.m_BackColor = RGB(255, 251, 240); // light yellow COleDateTime today =

COleDateTime::GetCurrentTime();

dlg.m_varValue= COleDateTime(today.GetYear(), today.GetMonth(), today.GetDay(), 0, 0, 0);

 if (dlg.DoModal() == IDOK)

 {

 COleDateTime date(dlg.m_varValue); AfxMessageBox(date.Format("%B %d,

%Y"));

 }

 }

 The code sets the background color to light yellow and the date to today's date, displays the

modal dialog, and reports the date returned by the Calendar control. You'll need to include

ActiveXDialog.h in ex08aView.cpp.

Step 10: Edit the virtual OnDraw function in the file ex08aView.cpp.

To prompt the user to press the left mouse button, replace the code in the view class OnDraw

function with this single line:

 pDC->TextOut(0, 0, "Press the left mouse button here.");

Step 11: Build and test the EX08A application.

 Open the dialog, enter a date in the three edit controls, and then click the Select Date button.

 Click the Next Week button.

 Try moving the selected date directly to a new month, and observe the message box that is

triggered by the NewMonth event.

 Watch for the final date in another message box when you click OK.

 Press the F1 key for help on the Calendar control.

Creating ActiveX Controls at Runtime

 Insert the component into your project. ClassWizard will create the files for a wrapper class.

 Add an embedded ActiveX control wrapper class data member to your dialog class or other C++

window class. An embedded C++ object is then constructed and destroyed along with the window

object.

 Choose Resource Symbols from Visual C++'s View menu. Add an ID constant for the new control.

 If the parent window is a dialog, use ClassWizard to map the dialog's WM_INITDIALOG

message, thus overriding CDialog-::OnInitDialog. For other windows, use ClassWizard to map the

WM_CREATE message. The new function should call the embedded control class's Create

member function. This call indirectly displays the new control in the dialog. The control will be

properly destroyed when the parent window is destroyed.

 In the parent window class, manually add the necessary event message handlers and prototypes for

your new control. Don't forget to add the event sink map macros.

 ClassWizard doesn't help you with event sink maps when you add a dynamic ActiveX control to a

project.

 Consider inserting the target control in a dialog in another temporary project.

 After you're finished mapping events, simply copy the event sink map code to the parent window

class in your main project.

Component Object Model

 COM is a powerful integrating technology.

It allows developers to write software that runs regardless of issues such as thread awareness and language

choice

Benefits of COM – Distributed Components

Component Object Model

• How should one chunk of software access the services provided by another chunk of software?

• COM: A standard approach to access all kinds of software services, regardless of how they are

provided

• COM is not a programming language

• COM is not DLL

• COM is not only a set of API or functions

• with the benefits of object orientation

• language independent

• COM defines a binary interface that objects must support

• with simple and efficient.

• available on Windows, Windows NT.

Basic COM Concept

Basic COM Concept

Identifying an Interface

• Human-readable name

• Globally Unique Identifier (GUID)

• Interface Identifier (IID)

Interface Definition Language

• uuid(E3BE7D4D-F26C-4C35-B694-ABA329A4A0E5),

• version(1.0),

• helpstring("aks_ATL 1.0 Type Library")

Immutability of the Interfaces

• Once an interface has been implemented in released software, it cannot be changed

• To add new functionality or to modify existing functionality requires defining an entirely new

interface, with a new and different IID

• The creator of the software is free to stop supporting the original interface but is absolutely

prohibited from changing it

Changing Features to an interface

• The object‘s creator must define a new interface, say ―multiply‖ that includes the new or changed

methods and the COM object continues to support ―add‖ as before, but it now also support

―multiply‖.

• Clients that are unaware of the upgrade never ask for a pointer to ―mutiply‖, they continue to use

―add‖ as before

COM Classes

• Class identifier (CLSID)

• An object of a specific class supports a certain set of interfaces

• An object‘s class identifies a particular implementation of a group of interfaces

COM Library

• The COM library implements a group of functions that supply basic services to objects and their

clients

• The COM library‘s services are accessed through ordinary function calls

System Registry

• The classes of all objects that the COM library will be asked to create on this machine must be

registered

• Registry mapping includes

• CLSID

• Kinds of servers

• Pathname for the file containing the server‘s DLL or executable, or for where to find remote

server‘s executable

Creating a Single Object

Reusing COM Objects

• One COM object can‘t reuse another‘s code through inheritance

• Containment (delegation)

Aggregation

Marshaling and Type Information

• Marshaling makes that the client can invoke the methods in the same way, regardless of where the

object is implemented

Kinds of COM Servers

Accessing a COM Object in an In-Process Server

Accessing a COM Object in a Local Server

Accessing a COM object in a Remote Server

Steps to Create a COM using VC++

STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

STEP 6

STEP 7

STEP 8

STEP 9

• SAVE

• COMPILE by F7

 COM CREATED

SUCESSFULLY

UNIT – IV

ACTIVEX AND OBJECT LINKING AND EMBEDDING

PART – A (2 MARKS)

1. Define ActiveX control
2. List out Calendar control’s properties, methods and events.
3. Define Container
4. Define Event sink map
5. Define COM
6. Define Mini Server
7. Define Full Server
8. List out the Component States
9. What is the use of IUnknown interface?
10. What is class factory?
11. Define OLE
12. Define DCOM
13. What are main features of COM?

PART – B

1. How the COM Client interacts with Inprocess Component. (16)
2. a. What are the steps involved to create an ActiveX control at run
time (6)
b. What are the steps involved in OLE Drag & Drop (10)
3. Explain the features of OLE container – component interactions (16)
4. Explain in detail ActiveX control container programming with
example (16)
5. Write a short notes on
a. IUnknown Interface and QueryInterface Member function (10)
b. Reference Counting (6)
6. Write a short notes on
a.Class Factory (8)
b.Containment & Aggregation Vs Inheritance (8)
7. a. Write a COM class using multiple inheritance approach (8)
b. Discuss the container interfaces (8)
8. a. Highlight the features of the control (8)
b. Explain the steps involved in the installation of ActiveX control(8)

 UNIT V

Introduction

 Database is used to store data and

 Provide access to manipulate the data.

 Use of standard file formats
 Provides multiple user interaction

 Database with Visual C++

Database Architecture of VC++

ODBC Architecture

 use the ODBC API to access data from a variety of different data sources

 Contains Driver Manager for performing the database activities.

 Supports various database drivers Microsoft SQL Server Oracle Microsoft Access Microsoft FoxPro

 Implemented by C native API

MFC classes for ODBC

 There are 3 different Built in classes provided by MFC

 CDatabase Manages a Connection to a data source. Work as a Database Manager

 CRecordSet Manages a set of rows returned from the database. CRecordView Simplifies the display of data

from CRecordSet Object.

ODBC classes overview

 CRecordSet MFC Appwizard generates a CRecordSet derived class and return a pointer named m_pSet to

our application program.

 How to Map database values to Recordset Using Record Field Exchange we can move the data back

and forth from recordset to data base. The exchange is set up by implementing the CRecordset::

DoFieldExchange() function, and it maps the member variables of Recordset and Database.

void CChap21Set::DoFieldExchange(CFieldExchange* pFX)

 { //{{AFX_FIELD_MAP(CChap21Set)

 pFX->SetFieldType(CFieldExchange:: outputColumn); RFX_Long(pFX, _T("[EmpId]"), m_EmpId);

 RFX_Text(pFX, _T("[EmpName]"), m_EmpName);

 RFX_Text(pFX, _T("[Salary]"), m_Salary);

//}}AFX_FIELD_MAP}

 CRecordset::GetFieldValue() Is a alternative for RecordFieldExchange Which enables you to retrieve the

value of any field in a current View. Even if we not defined member variable OR set up of RFX. Using the

column name or index to retrieve the data retrieve values as a CString or a CDBVariant object

CRecordset functions

 Provides various built in functions

 Table and ODBC related

 To Navigating data in the recordset

 To Manipulating the data's in record set

 Bookmark the records in a recordset

 Tabl and ODBC related Functions CRecordSet:: GetSQL() Returns the Entire SQL String.

GetTableName() Returns the table name used. GetODBCFieldCount() Returns the total no of columns

returned by the query Close() Close the database connection Open() Reconnect / connect the data base to

the program

 Navigating the data in recordset MoveNext() MovePrev() MoveLast() MoveFirst() CanScroll() Check the

recordset having only forward only cursor SetAbsolutePosition() Move to specific rows in Record set

Which takes Zero based index into the record set.

 To Manipulating the data's in record set Delete() Delete the current row & set the member variables NULL.

AddNew() Create a new row with field values are empty. CanAppend() Used to check whether record set

provides adding of records Edit()To edit or modify the current record details Update() Used to update the

record set when a new record is added / existing record is edited.

Recordset selection

 Visual C++ provides 3 types of Recordset They are differ in speed versus features Snapshot Dynaset Table

 Snapshot Download the entire query in one shot Have data as a static copy When any changes made to the

database will not reflected to the current Application. Occupy more memory to hold the data.

 Dynaset Only the records you actually need to fill the screen will get downloaded. Take less time to reflect.

Constantly resynchronizes the recordset, so that any changes will reflected immediately.

 The snapshot and Dynaset work at the record level. ODBC will only support this two options.

 Table Work with table level and supported by DAO. Places the contents of the query into Temporary table.

Have a problem with updation.

CRecordView

 is basically a form view

 make it easier to display data from a recordset

 enables you to use dialog data exchange to display data directly in a dialog box from the recordset

 Functions of CRecordView class

 DoDataExchange() Perform dialog data exchange. In a Normal version move data between control and

member variable. It will move data between the view controls and column data member variables of

CRecordset. Sample code:

 void CChap21View::DoDataExchange(CDataExchange* pDX)

 {

 CRecordView::DoDataExchange(pDX); //{{AFX_DATA_MAP(CChap21View)

 DDX_FieldText(pDX, IDC_DEPTCODE, m_pSet->m_Dept, m_pSet); DDV_MaxChars(pDX, m_pSet-

>m_Dept, 10); DDV_MaxChars(pDX, m_pSet->m_EmpName, 50);

//}}AFX_DATA_MAP

 OnGetRecordSet() Retrieve a pointer of the CRecordset. The default implementation supplied by Class

Wizard returns the pointer stored in CRecordView ::m_pSet OnMove() takes only one parameter,

specifying where to move. This can be one of the following constants: ID_RECORD_FIRST

ID_RECORD_LAST ID_RECORD_NEXT ID_RECORD_PREV

CDatabase

 is used to encapsulate your application's dealings with a connection to the database

 Perform ODBC C API connection Handles.

 We can retrieve CDatabase object associated with CRecordset by m_pSet->m_pDatabase variable in

CRecordset

 Used to execute SQL statements void ExecuteSQL(LPCSTR sqlstmt) Takes SQL String & execute it

against the current datasource Does not return error, if any run time error occurs, CDBException will be

thrown

 Transaction with CDatabase Enables to execute a series of SQL statements as a single operation. One of the

operation fails, rest of all can be undone. This is most useful future for doing related updation to various

tables at the same time. CanTransact() BeginTrans() Tells transaction process starts. ExecuteSQL()

CommitTrans() Rollback() The functions work properly, depends on the ODBC driver support.

 This example shows a simple transaction involving a row insertion made by calling ExecuteSQL():

 try {

 m_pSet->m_pDatabase->BeginTrans();

 m_pSet->m_pDatabase->ExecuteSQL("INSERT INTO Employee VALUES ('Joe Beancounter', 'Accounting',

80000)");

 m_pSet->m_pDatabase->CommitTrans();

 }

 catch(CDBException *pEx)

 {

 pEx->ReportError();

 m_pSet->m_pDatabase->Rollback();

 }

DAO

 Data Access Object

 is supplied in the form of redistributable components

 enable you to access and manipulate databases through the Microsoft Jet database engine.

 Similar to ODBC

 Won‘t support Remote Communication

 Is based on OLE.

 DAO Classes

 CDaoRecordset Just like CRecordset Object in ODBC The navigation functions include Find,

FindFirst, FindLast, FindNext, and FindPrev;and Move, MoveFirst, MoveLast, MoveNext, and

MovePrev. Data update functions include AddNew,CancelUpdate, Delete, Edit, and Update.

 CDaoDatabase

 represents a connection to a database A connection is created by calling CDaoDatabase::Open and

terminated by calling CDaoDatabase::Close. A new database can be created by calling

CDaoDatabase::Create. DeleteTableDef () Deletes a DAO TableDef object and also the underlying

table and all its data from the database.

 CDaoWorkspace

 represents database sessions created by calling CDaoWorkspace::Create An existing workspace object

can be opened by calling CDaoWorkspace::Open

 CDaoQueryDef represents query definitions To create a new query definition CQueryDef::Create to access

a already existing query definition CQueryDef::Open to execute an action query that modifies the data in

the database CQueryDef::Execute

 CDaoTableDef represents table definitions open an existing table definition in a database by calling

CDaoTableDef::Open A new table definition can be created by calling CDaoTableDef::Create Fields can

be created and deleted by calling CreateField and DeleteField member functions

 CDaoFieldExchange is used in calls to DaoRecordset::DoFieldExchange

 ODBC Vs DAO

 when you only need access to data in a format that the Microsoft Jet engine can read directly (Access

format, Excel format, and so on) the obvious choice is to use the DAO Database Classes.

 More complex cases arise when your data exists on a server or on a variety of different servers . ODBC

provides facilities to access and perform complex join operations.

 Example 1

 Create a Visual C++ application using Appwizard to connect the Access database and display the records.

 Example 2

 Create a Visual C++ application using Appwizard to connect the Access database and perform Navigation

and Manipulation operation using Dialog Controls.

Network Issues

 Network protocols – Layering

Internet Protocol

Connection-oriented protocol – TCP

Connectionless –UDP

IP Address

Network Byte Order

 All values stored in a sockaddr_in must be in network byte order.

 sin_port a TCP/IP port number.

 sin_addr an IP address.

Network Byte Order functions

 ‗h‘ : host byte order ‗n‘ : network byte order

 ‗s‘ : short (16bit) ‗l‘ : long (32bit)

 uint16_t htons(uint16_t);

 uint16_t ntohs(uint_16_t);

 uint32_t htonl(uint32_t);

 uint32_t ntohl(uint32_t);

 File System –NTFS Vs FAT

NTFS FAT

More secured Less Secured

User permission for

individual files and

folders

No individual user permissions

Used with Win 95,98 Used with Win NT and above

Socket

 A socket is an abstract representation of a communication endpoint.

 Sockets work with Unix I/O services just like files, pipes & FIFOs.

 Sockets have special needs:

 establishing a connection

 specifying communication endpoint addresses

Winsock

3 Types of Socket

 Stream sockets interface to the TCP (transmission control protocol).

 Datagram sockets interface to the UDP (user datagram protocol).

 Raw sockets interface to the IP (Internet protocol).

MFC Winsock classes

 CAsyncSocket - CAsyncSocket is a thin wrapper around the C API

 CSocket – base class

 CBlockingSocket - A thin wrapper around the Windows API.

 Feature :Exception throwing and time outs

 CHttpBlockingSocket –read http data

 Helper classes:CSockAddr & CBlockingSocketException

 CSockAddr

CSockAddr

struct sockaddr_in {

 uint8_t sin_len;

 sa_family_t sin_family;

 in_port_t sin_port;

 struct in_addr sin_addr;

 char sin_zero[8];

 };
A special kind of sockaddr structure

sockaddr Sockaddr_in

Windows API: Server

Windows API: Client

Class definition

 class CSockAddr : public sockaddr_in {

 public:

 // constructors

 CSockAddr()

 {

 sin_family = AF_INET;

 sin_port = 0;

 sin_addr.s_addr = 0; } // Default

 CSockAddr(const SOCKADDR& sa) { memcpy(this, &sa, sizeof(SOCKADDR)); }

 CSockAddr(const SOCKADDR_IN& sin) { memcpy(this, &sin, sizeof(SOCKADDR_IN)); }

CSockAddr(const ULONG ulAddr, const USHORT ushPort = 0)

 // parms are host byte ordered

 {

 sin_family = AF_INET;

 sin_port = htons(ushPort);

 sin_addr.s_addr = htonl(ulAddr);

 }

 CSockAddr(const char* pchIP, const USHORT ushPort = 0)

 // dotted IP addr string

 {

 sin_family = AF_INET;

sin_port = htons(ushPort);

 sin_addr.s_addr = inet_addr(pchIP);

 } // already network byte ordered

WinInet

 WinInet is a higher-level API ,but it works only for HTTP, FTP, and gopher client programs

 Benefits

 Caching

 Security

 Web proxy access

 User friendly

MFC WinInet Classes

 CInternetSession

 CHttpConnection

 CFtpConnection

 CGopherConnection

Moniker

 A moniker is a COM object that holds the name (URL) of the object, which could be an embedded

component but more often is just an Internet file.

 Monikers implement the IMoniker interface, which has two important member functions: BindToObject -

object into running state

 BindToStorage - object data can be read

Internet Information Server

IIS

3 servers

High performance Internet/Intranet server

Special kind of Windows program- service

Allows to define virtual web server

Provides for Strong Authentication

Allows IP source filtering

Scaled down –Personal Web Server

 ISAPI

An ISAPI server extension can perform Internet business transactions such as order entry. It is a program runs in

response to a GET or POST request from a client program

An ISAPI filter intercepts data traveling to and from the server and thus can perform specialized logging and other

tasks

ISAPI server extension and ISAPI filter are DLLs.

ISAPI DLLs are usually stored in a separate virtual directory on the server.

These DLLs must have execute permission but do not need read permission.

HTTP.SYS

Called by TCP/IP when data arrives on a port associated with IIS

Reads HTTP headers into Kernel memory

Maps port+hostname+application to a running process

Passes request to that process

ISAPI

Web services

• CGI programs allow dynamic webpage content; HTML is built when a page is requested, instead of

existing statically on disk.

• Simple uses would be hit-counters, real-time server reports, generating e-mail from web-based forms, etc.

• Compiled program executes quickly, and code can be kept elsewhere.

Web services

 Programs saved as .DLL files

• Web service recognized hits to particular file types as requests for ISAPI-generated data.

• Used in MS‘s web-based server administration system.

Simple Voice Chat

A simple peer to peer voice chat application using sockets

Introduction

This is a simple voice chat program implemented in an ActiveX control (OVoiceChatt Control) using windows

sockets in non compressed PCM format. You just need to give your name and the IP address of the computer on

which you want to establish a voice chat session.

There is a simple test application (OVoiceChattClient) which has implemented the control.

Run the OVoiceChatClient.exe and enter you name and the ip address of the computer same application should be

running on that computer as well. .A request for the voice chat goes to that computer and if that person accepts it

then the voice chat starts.

To use in a program.

Below is some sample code that demonstrates using the control in your code.

In the header:

COVoiceChatt m_ctlVoice;

In the implementation:

BEGIN_EVENTSINK_MAP(COVoiceChattClientDlg, CDialog)

 //{{AFX_EVENTSINK_MAP(COVoiceChattClientDlg)

 ON_EVENT(COVoiceChattClientDlg, IDC_OVOICECHATTCTRL1, 1 /* GetVoiceInvitation */, \

 OnGetVoiceInvitation, VTS_BSTR VTS_BSTR)

 ON_EVENT(COVoiceChattClientDlg, IDC_OVOICECHATTCTRL1, 2 /* GetReqStatus */, \

 OnGetReqStatus, VTS_I4)

 ON_EVENT(COVoiceChattClientDlg, IDC_OVOICECHATTCTRL1, 3 /* GetVoiceEndNotice */, \

 OnGetVoiceEndNoticeOvoicechattctrl1, VTS_NONE)

 //}}AFX_EVENTSINK_MAP

END_EVENTSINK_MAP()

void COVoiceChattClientDlg::OnGetVoiceInvitation(LPCTSTR ip, LPCTSTR nick)

{

 m_ip=ip;

 CString str=nick;

 str+=" wants to have voice chat with you";

 if(AfxMessageBox(str,MB_YESNO)==IDYES)

 {

 m_ctlVoice.OVoiceInvStatus(1,ip);

 }

 else

 m_ctlVoice.OVoiceInvStatus(0,ip);

}

void COVoiceChattClientDlg::OnGetReqStatus(long status)

{

 if(status==0)

 AfxMessageBox("request rejected");

 else

 {

 m_strStatus="Connecting";

 UpdateData(FALSE);

 }

}

void COVoiceChattClientDlg::OnButton1()

{

 m_ctlVoice.OVoiceInit();

}

void COVoiceChattClientDlg::OnButtonEnd()

{

 m_ctlVoice.OVoiceEnd();

}

void COVoiceChattClientDlg::OnGetVoiceEndNoticeOvoicechattctrl1()

{

 AfxMessageBox("Voice Conversation Has Been Ended");

}

Program to play mp3 and AVI files

Introduction

This program plays files of mp3 and avi format. This program is an illustration to use MCIWnd class.

Using the code

The main function or API is MCIWndCreate(). The MCIWndCreate function registers the MCIWnd window class

and creates an MCIWnd window for using MCI services. MCIWndCreate can also open an MCI device or file

(such as an AVI file) and associate it with the MCIWnd window.

HWND m_Video;

m_Video = NULL;

if(m_Video == NULL)

{

/*The MCIWndCreate function registers the MCIWnd window class

and creates an MCIWnd window for using MCI services. */

m_Video = MCIWndCreate(this->GetSafeHwnd(),AfxGetInstanceHandle(),

 WS_CHILD | WS_VISIBLE|MCIWNDF_NOMENU,m_Path);

}

else

{

 MCIWndHome(m_Video); //go to the start

}

MCIWndPlay(m_Video); //play the file

Similarly you can use MCIWndPause(m_Video) for pausing or MCIWndResume(m_Video) to resume the file.

BOOL Pause;

if(Pause)

{

 MCIWndResume(m_Video);

 Pause = FALSE;

}

else

{

 MCIWndPause(m_Video);

 Pause = TRUE;

}

If you want to add more files viz. *.wav, *.mpeg, etc you can just append the extension to the fifth parameter of

CFileDialog. CFileDialog box helps you to choose the file to be executed.

CFileDialog Cfile_dialog(TRUE,NULL,NULL,OFN_HIDEREADONLY,

 "MP3 Files (*.mp3)|*.mp3|AVI Files(*.avi)|*.avi|");

PLAYING MULTIMEDIA FILES

Introduction

This is a simple application that shows you how to play and record sound under windows.

It uses the old multimedia API. A better solution may be to use DirectSound.

Quick Guide to the Code

Start with the two functions in CFisterDlg called OnPlay and OnRecord. Follow them down to the depth you need

to use the classes.

Short description

CSoundIn is a wrapper class that will let you retreive sound from the soundcard. The main functions are Start() and

Stop()

CSoundOut is a wrapper class that will let you play sound on the soundcard. The main functions are Start() and

Stop()

CSoundFile is a wrapper class of a single wave file, it can either be a file reader or a file writer object. See the

constructor.

CSoundBase is a very small class that encapsulates the wave format.

CBuffer is a very small class that encapsulates a simple one dimentional buffer.

The project has a number of different callback functions:

 One callback function makes the Play button change it's label to stop when it has finished playing the file.

CDialogDlg enherits CPipe and overloads a function that CPipe can call when it has finished playing the

wave file.

 Another callback function make it possible for CSoundIn to callback to CPipe when it has filled the input

buffer. Thus CPipe can give CSoundIn a new buffer to fill.

 A clone of the above principle is also used in CSoundOut, which enables it to callback to the owner when it

is finished playing the sound in a given buffer.

UNIT – V
ADVANCED CONCEPTS

PART – A (2 MARKS)

1. List out the advantages of DBMS
2. Define SQL
3. List out the functions in CRecordset class
4. List out the ODBC elements
5. List out the MFC classes for DAO
6. Define Dynaset
7. Define snapshot
8. Define Threads
9. Define event
10. Define IP, UDP and TCP
11. Define WinSock
12. Define WinInet
13. Define IIS
14. Define ISAPI Server
15. List the advantages of WinInet over WinSock

PART – B

1. How the Worker and Main Thread communicate with each other (16)
2. Explain how ODBC database connectivity is done in VC++ with sample
application (16)
3. Write down the WinSock Server and Client Program (16)
4. a. Explain in detail about ISAPI server extension DLL (8)
b. Explain in detail about MFC ISAPI server extension classes (8)
5. Write a program to play a audio and Video file (16)
6. Write a VC++ program to query the database (16)
7. Write a MFC automation client program (16)
8. Write a program to implement a WinInet Client using openURL (16)

